
1/32

Overview
Some Technicality

Own Evaluation
Summary

Defining the Ethereum Virtual Machine for
Interactive Theorem Provers

Yoichi Hirai

Ethereum Foundation

Workshop on Trusted Smart Contracts
Malta, Apr. 7, 2017

Yoichi Hirai Defining EVM for Interactive Theorem Provers

2/32

Overview
Some Technicality

Own Evaluation
Summary

Outline

1 Overview
Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

2 Some Technicality
EVM
Choice on Reentrancy

3 Own Evaluation
Remaining Problems

4 Summary

Yoichi Hirai Defining EVM for Interactive Theorem Provers

3/32

Overview
Some Technicality

Own Evaluation
Summary

Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

Outline

1 Overview
Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

2 Some Technicality
EVM
Choice on Reentrancy

3 Own Evaluation
Remaining Problems

4 Summary

Yoichi Hirai Defining EVM for Interactive Theorem Provers

4/32

Overview
Some Technicality

Own Evaluation
Summary

Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

Ethereum: Public Ledger with Code

Public ledger with accounts:
. . . some controlled by private key holders,
. . . the others (called Ethereum contracts) controlled by
code stored on the ledger.

Accounts (including Ethereum contracts) can call other
accounts and send balance.

Calls invoke code in Ethereum contracts.

Yoichi Hirai Defining EVM for Interactive Theorem Provers

5/32

Overview
Some Technicality

Own Evaluation
Summary

Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

Bugs in Ethereum Programs.

The DAO: funds moved much more than expected /
led to network split into two
Programs stop working when array iteration becomes too
long
Ethereum Name Service (prev. version):
in a secret auction, bids could be added after other bids
were revealed
...

This does not work:
1 Develop the source code of Ethereum contracts on GitHub.
2 Enough people would look at it.
3 Bugs would be found early enough.

Yoichi Hirai Defining EVM for Interactive Theorem Provers

6/32

Overview
Some Technicality

Own Evaluation
Summary

Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

Potential Ways to Prevent Bugs in Ethereum
Programs.

Testing can check prepared scenarios
cannot find unknown attacks without luck

Code review sometimes finds attacks
Never known: how much review is enough?

Machine-checked theorem proving can enumerate everything
that can happen, if it finishes.
You can see when proofs finish.

Yoichi Hirai Defining EVM for Interactive Theorem Provers

7/32

Overview
Some Technicality

Own Evaluation
Summary

Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

Why Formal Proofs might Make Sense for Ethereum
Contracts

My speculation: for Ethereum contracts the benefit of proving
might outweigh the costs.

You cannot change deployed programs
Bugs remain.
An upgradable Ethereum contract is somehow at odds with
the cause of decentralization.

The bugs are visible to all potential attackers
Ethereum contracts sometimes manage big amount of fund

Yoichi Hirai Defining EVM for Interactive Theorem Provers

8/32

Overview
Some Technicality

Own Evaluation
Summary

Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

Need of a Definition of a Programming Language in
Theorem Provers

In some cases, the semantics looks like an interpreter.
In other cases, it contains clauses of possibilities.

The definition in theorem provers is code,
but it should be readable/comparable against spec.
The definition needs to be tested

Goal: what happens on-chain should be an instantiation of
the definition in theorem provers

Yoichi Hirai Defining EVM for Interactive Theorem Provers

9/32

Overview
Some Technicality

Own Evaluation
Summary

Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

Outline

1 Overview
Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

2 Some Technicality
EVM
Choice on Reentrancy

3 Own Evaluation
Remaining Problems

4 Summary

Yoichi Hirai Defining EVM for Interactive Theorem Provers

10/32

Overview
Some Technicality

Own Evaluation
Summary

Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

We Defined the Ethereum Virtual Machine for
Isabelle/HOL, HOL4 and Coq

Coq (27 yrs. old), Isabelle (31 yrs. old) and HOL4 (ca. 30
yrs. old) are interactive theorem provers, where

one can develop math proofs and have them checked.
one can also develop software and prove correctness.

“Programs” look similar in all these theorem provers

Strategic Goal: inviting users of these tools to Ethereum
contract verification.

Yoichi Hirai Defining EVM for Interactive Theorem Provers

11/32

Overview
Some Technicality

Own Evaluation
Summary

Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

Our EVM Definition is Originally in Lem

We used a language called Lem.

Lem code can be translated into HOL4, Isabelle/HOL, Coq
and OCaml.

Yoichi Hirai Defining EVM for Interactive Theorem Provers

12/32

Overview
Some Technicality

Own Evaluation
Summary

Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

How the paper spec and Lem spec look

The EVM definition in Lem has 2,000 lines.
Most instructions are simply encoded as functions in Lem. . .
Yellow Paper (original spec):

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER EIP-150 REVISION (032ba84 - 2017-03-27) 23

Another useful function is “all but one 64th” function L defined as:

(226) L(n) ≡ n− bn/64c

H.2. Instruction Set. As previously specified in section 9, these definitions take place in the final context there. In
particular we assume O is the EVM state-progression function and define the terms pertaining to the next cycle’s state
(σ′,µ′) such that:

(227) O(σ,µ, A, I) ≡ (σ′,µ′, A′, I) with exceptions, as noted

Here given are the various exceptions to the state transition rules given in section 9 specified for each instruction,
together with the additional instruction-specific definitions of J and C. For each instruction, also specified is α, the
additional items placed on the stack and δ, the items removed from stack, as defined in section 9.

0s: Stop and Arithmetic Operations
All arithmetic is modulo 2256 unless otherwise noted.

Value Mnemonic δ α Description

0x00 STOP 0 0 Halts execution.

0x01 ADD 2 1 Addition operation.
µ′s[0] ≡ µs[0] + µs[1]

0x02 MUL 2 1 Multiplication operation.
µ′s[0] ≡ µs[0]× µs[1]

0x03 SUB 2 1 Subtraction operation.
µ′s[0] ≡ µs[0]− µs[1]

0x04 DIV 2 1 Integer division operation.

µ′s[0] ≡
{

0 if µs[1] = 0

bµs[0]÷ µs[1]c otherwise

0x05 SDIV 2 1 Signed integer division operation (truncated).

µ′s[0] ≡





0 if µs[1] = 0

−2255 if µs[0] = −2255 ∧ µs[1] = −1

sgn(µs[0]÷ µs[1])b|µs[0]÷ µs[1]|c otherwise

Where all values are treated as two’s complement signed 256-bit integers.
Note the overflow semantic when −2255 is negated.

0x06 MOD 2 1 Modulo remainder operation.

µ′s[0] ≡
{

0 if µs[1] = 0

µs[0] mod µs[1] otherwise

0x07 SMOD 2 1 Signed modulo remainder operation.

µ′s[0] ≡
{

0 if µs[1] = 0

sgn(µs[0])(|µs[0]| mod |µs[1]|) otherwise

Where all values are treated as two’s complement signed 256-bit integers.

0x08 ADDMOD 3 1 Modulo addition operation.

µ′s[0] ≡
{

0 if µs[2] = 0

(µs[0] + µs[1]) mod µs[2] otherwise

All intermediate calculations of this operation are not subject to the 2256 modulo.

0x09 MULMOD 3 1 Modulo multiplication operation.

µ′s[0] ≡
{

0 if µs[2] = 0

(µs[0]× µs[1]) mod µs[2] otherwise

All intermediate calculations of this operation are not subject to the 2256 modulo.

0x0a EXP 2 1 Exponential operation.

µ′s[0] ≡ µs[0]µs[1]

0x0b SIGNEXTEND 2 1 Extend length of two’s complement signed integer.

∀i ∈ [0..255] : µ′s[0]i ≡
{
µs[1]t if i 6 t where t = 256− 8(µs[0] + 1)

µs[1]i otherwise

µs[x]i gives the ith bit (counting from zero) of µs[x]

Lem:

| A r i t h MOD −> stack_2_1_op v c
(fun a d i v i s o r −> (i f d i v i s o r = 0 then 0 else

word256FromInteger ((u i n t a) mod (u i n t d i v i s o r))
))

. . . except CALL and friends.

Yoichi Hirai Defining EVM for Interactive Theorem Provers

13/32

Overview
Some Technicality

Own Evaluation
Summary

Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

Special Treatment of CALL

During CALL instruction, nested calls can enter our program.
Nasty effects after executing CALL:

the balance of the contract might have changed
the storage of the contract might have changed

Our blackbox treatment of CALL:
by default, the storage and the balance change arbitrarily
during a CALL.
optionally, you can impose an invariant of the contract,
which is assumed to be kept during a CALL
but you are supposed to prove the invariant.

Currently, we are working on a precise model of what happens
during a CALL.

Yoichi Hirai Defining EVM for Interactive Theorem Provers

14/32

Overview
Some Technicality

Own Evaluation
Summary

Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

We Tested Our EVM Definition against
Implementations’ Common Test

Luckily, we have test suites for EVM definitions
The test suites compare Ethereum Virtual Machine
implementations in Python, Go, Rust, C++, . . .
All EVM implementations need to behave the same, lest the
Ethereum network forks (ugly)

Definitions in Lem are translated into OCaml
Our OCaml test harness reads test cases from Json, runs
the Lem-defined EVM, checks the result v.s. expectations
in Json
VM Test suite: 40,617 cases (24 cases skipped; they
involve multiple calls)
Running those 24 involves implementing multiple calls
(current efforts).

Yoichi Hirai Defining EVM for Interactive Theorem Provers

15/32

Overview
Some Technicality

Own Evaluation
Summary

Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

Problems in LATEX Specification

Test suits are the spec in effect; the LATEX spec is not tested.
While writing definitions in Lem (or previously in Coq)

memory usage when accessing addresses [2256 − 31,1)
an instruction had a wrong number of arguments
ambiguities in signed modulo:
sgn(µs[0])|µs[0]| mod |µs[1]|
some instructions touched memory but did not charge for
memory usage
malformed definition: o was defined to be o

While testing the Lem definition:
spurious modulo 2256 in read positions of call data
exceptional halting did not consume all remaining gas

Yoichi Hirai Defining EVM for Interactive Theorem Provers

16/32

Overview
Some Technicality

Own Evaluation
Summary

Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

Proving Theorems about Ethereum Programs

We used Isabelle/HOL to prove theorems about Ethereum
programs.
One theorem about a program (501 instructions) says:

If the caller’s address is not at the storage index 1, the call
cannot decrease the balance
On the same condition, the call cannot change the storage

Techniques:
Brute-force directly on the big-step semantics
(naïvely ignoring many techniques from 1960’s and on).

Human spends 3 days constructing the proof
Machine spends 3 hours checking the proof

Yoichi Hirai Defining EVM for Interactive Theorem Provers

17/32

Overview
Some Technicality

Own Evaluation
Summary

Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

An Invariant

Well-defined, but questionable as documentation.

inductive fail_on_reentrance_invariant :: "account_state⇒ bool"
where

depth_zero:
"account_address st = fail_on_reentrance_address =⇒
account_storage st 0 = 0 =⇒
account_code st = program_of_lst

fail_on_reentrance_program program_content_of_lst =⇒
account_ongoing_calls st = [] =⇒ account_killed st = False =⇒
fail_on_reentrance_invariant st"

| depth_one:
"account_code st = program_of_lst

fail_on_reentrance_program program_content_of_lst =⇒
account_storage st 0 = 1 =⇒
account_address st = fail_on_reentrance_address =⇒
account_ongoing_calls st = [(ve, 0, 0)] =⇒
account_killed st = False =⇒
vctx_pc ve = 28 =⇒ vctx_storage ve 0 = 1 =⇒
vctx_storage_at_call ve 0 = 0 =⇒
fail_on_reentrance_invariant st"

Yoichi Hirai Defining EVM for Interactive Theorem Provers

18/32

Overview
Some Technicality

Own Evaluation
Summary

EVM
Choice on Reentrancy

Outline

1 Overview
Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

2 Some Technicality
EVM
Choice on Reentrancy

3 Own Evaluation
Remaining Problems

4 Summary

Yoichi Hirai Defining EVM for Interactive Theorem Provers

19/32

Overview
Some Technicality

Own Evaluation
Summary

EVM
Choice on Reentrancy

Overall Data Structure

An account contains:
balance (256-bit word)
code (byte sequence)
storage (2256 words)
nonce (256-bit word)

A contract invocation provides:
input data (byte sequence)
memory (2256 bytes, charged by max accessed word)
stack (up to 1024 words)
information by miner (timestamp, block number etc)

Yoichi Hirai Defining EVM for Interactive Theorem Provers

20/32

Overview
Some Technicality

Own Evaluation
Summary

EVM
Choice on Reentrancy

How EVM Works 1
Untitled Page

Origin Account Contract A

Ether
byte seq

storage [50@0, 4@25996]

program
counter

0x60
0x08
0x60
0xff
0x55
...

[]

PUSH1
0x08

PUSH1
0xff

SSTORE

code

Exported from Pencil ­ Thu Mar 30 2017 19:37:34 GMT+0200 (CEST) ­ Page 1 of 1

Yoichi Hirai Defining EVM for Interactive Theorem Provers

21/32

Overview
Some Technicality

Own Evaluation
Summary

EVM
Choice on Reentrancy

How EVM Works 2
Untitled Page

Origin Account Contract A

Ether
byte seq

storage [50@0, 4@25996]

program
counter

0x60
0x08
0x60
0xff
0x55
...

[0x08]

PUSH1
0x08

PUSH1
0xff

SSTORE

code

Exported from Pencil ­ Thu Mar 30 2017 19:38:00 GMT+0200 (CEST) ­ Page 1 of 1

Yoichi Hirai Defining EVM for Interactive Theorem Provers

22/32

Overview
Some Technicality

Own Evaluation
Summary

EVM
Choice on Reentrancy

How EVM Works 3
Untitled Page

Origin Account Contract A

Ether
byte seq

storage [50@0, 4@25996]

program
counter

0x60
0x08
0x60
0xff
0x55
...

[0x08; 0xff]

PUSH1
0x08

PUSH1
0xff

SSTORE

code

Exported from Pencil ­ Thu Mar 30 2017 19:40:01 GMT+0200 (CEST) ­ Page 1 of 1

Yoichi Hirai Defining EVM for Interactive Theorem Provers

23/32

Overview
Some Technicality

Own Evaluation
Summary

EVM
Choice on Reentrancy

How EVM Works 4
Untitled Page

Origin Account Contract A

Ether
byte seq

storage [50@0, 8@255, 4@25996]

program
counter

0x60
0x08
0x60
0xff
0x55
...

[]

PUSH1
0x08

PUSH1
0xff

SSTORE

code

Exported from Pencil ­ Thu Mar 30 2017 19:39:11 GMT+0200 (CEST) ­ Page 1 of 1

Yoichi Hirai Defining EVM for Interactive Theorem Provers

24/32

Overview
Some Technicality

Own Evaluation
Summary

EVM
Choice on Reentrancy

Outline

1 Overview
Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

2 Some Technicality
EVM
Choice on Reentrancy

3 Own Evaluation
Remaining Problems

4 Summary

Yoichi Hirai Defining EVM for Interactive Theorem Provers

25/32

Overview
Some Technicality

Own Evaluation
Summary

EVM
Choice on Reentrancy

An Annoying Phenomenon Called Reentrancy
(transaction’s view)

Untitled Page

Origin Account Contract A

Ether
byte seq

storage&balance are shared

program
counter

CALL
...

[...]

code

Contract B Contract A

CALL

...

...
program
counter

...

[]

code

Exported from Pencil ­ Fri Mar 31 2017 22:41:55 GMT+0200 (CEST) ­ Page 1 of 1

Yoichi Hirai Defining EVM for Interactive Theorem Provers

26/32

Overview
Some Technicality

Own Evaluation
Summary

EVM
Choice on Reentrancy

An Annoying Phenomenon Called Reentrancy
(invocation’s view)

Untitled Page

Origin Account Contract A

Ether
byte seq

storage [50@0, 8@255, 4@25996]

program
counter

CALL
...

[1]

...

storage [(can be very different)]

Exported from Pencil ­ Fri Mar 31 2017 22:43:05 GMT+0200 (CEST) ­ Page 1 of 1

Yoichi Hirai Defining EVM for Interactive Theorem Provers

27/32

Overview
Some Technicality

Own Evaluation
Summary

EVM
Choice on Reentrancy

We Picked the Invocation’s View

Pro
A partial implementation of the other approach
Just enough for program syntax, no bigger view necessary

Con
Unnecessary diversion from the implementations/spec
Complexity due to mixture of determinism/nondeterminism

After the paper. . .
We got a deterministic definition that covers a whole block (now
some newly-covered tests are failing).

Yoichi Hirai Defining EVM for Interactive Theorem Provers

28/32

Overview
Some Technicality

Own Evaluation
Summary

EVM
Choice on Reentrancy

One Proving Strategy that We Took

1 Speculate an invariant of a contract
“the code of the account can only stay the same or
become empty”

2 Prove the invariant, assuming the invariant on reentrant
calls

3 (hand-waiving argument that reentrant depth is finite)
4 Take the invariant for granted and prove pre-post

conditions
“if the caller is not the owner, the balance of the account
does not decrease”

Yoichi Hirai Defining EVM for Interactive Theorem Provers

29/32

Overview
Some Technicality

Own Evaluation
Summary

Remaining Problems

Outline

1 Overview
Why Prove Ethereum Programs Correct
We Defined EVM for Theorem Provers

2 Some Technicality
EVM
Choice on Reentrancy

3 Own Evaluation
Remaining Problems

4 Summary

Yoichi Hirai Defining EVM for Interactive Theorem Provers

30/32

Overview
Some Technicality

Own Evaluation
Summary

Remaining Problems

What can still Go Wrong

This work only connects EVM spec and programs’ properties
Things can go wrong with/above programs’ properties

Proven properties are different from desired ones.
Signature forged / inverse of hash functions computed.
An exchanges calls Ethereum contracts on behalf of users
with wrong parameters (as reported yesterday)

Things can go wrong with/below EVM spec

Bug in EVM definition can turn the theorems valueless.
Protocol changes.

Theorem provers have bugs sometimes

Yoichi Hirai Defining EVM for Interactive Theorem Provers

31/32

Overview
Some Technicality

Own Evaluation
Summary

Remaining Problems

More Work

Ongoing:
definition of a whole block, containing transactions
containing calls
modular reasoning on bytecode snippets (Hoare logic w/
separating conjunction)

Not started:
common Ethereum contract method/argument encoding
specification language for end-users of smart contracts
connect to test/main network

Yoichi Hirai Defining EVM for Interactive Theorem Provers

32/32

Overview
Some Technicality

Own Evaluation
Summary

Summary

We defined EVM for proof assistants Isabelle/HOL, Coq
and HOL4
The EVM definition is usable for proving Ethereum
contracts correct for a specification

Outlook
Formalization efforts underway for multiple message calls
Proof/tool/language/protocol developments in the proof
assistants welcome
https://github.com/pirapira/eth-isabelle
(Apache License ver. 2)

Yoichi Hirai Defining EVM for Interactive Theorem Provers

https://github.com/pirapira/eth-isabelle

	Overview
	Why Prove Ethereum Programs Correct
	We Defined EVM for Theorem Provers

	Some Technicality
	EVM
	Choice on Reentrancy

	Own Evaluation
	Remaining Problems

	Summary

