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Abstract. An empirical case study to evaluate state channels as a scal-
ing solution for cryptocurrencies demonstrated that providing an appli-
cation’s full state during the dispute process for a state channel is finan-
cially costly (i.e. $0.24 to $8.83 for a battleship game) which can hamper
their real-world use. To overcome this issue, we present State Assertion
Channels, the first state channel to guarantee an honest party is always
refunded the cost if it becomes necessary to send an application’s full
state during the dispute process. Furthermore it ensures an honest party
will pay an approximate fixed cost to continue an application’s execution
via the dispute process. We provide a proof of concept implementation
in Ethereum which demonstrates it costs approximately $0.02 to submit
evidence regardless of the smart contract’s application.

1 Introduction

Blockchain-based cryptocurrencies do not scale. The community is pursing three
approaches to alleviate the scalability issue. These are: new blockchain protocols
[2,19,8], sharding transactions into distinct processing areas [1,12,13] and off-
chain protocols [15,10,20,5,18,17,11]. While the first two approaches can strictly
increase the network’s throughput, they harm the network’s public verifiability as
they reduce the diversity of peers with the computational, bandwidth or storage
requirements to validate all transactions on the network and ultimately hold the
miners accountable. [9,4] This paper focuses on the off-chain (or so-called Layer
2) approach that simply aims to reduce the network’s load.

One promiment off-chain approach are state channels that lets a group of par-
ties process transactions (and execute a smart contract) locally amongst them-
selves instead of on the global network. In the best case, the application is no
longer restricted by the underlying blockchain’s latency and all execution is free
as it remains local between the parties. If there is a disagreement about the lat-
est state of the smart contact, then any party can trigger a dispute and rely on
the underlying blockchain to arbitrate the dispute’s outcome. To arbitrate, the
blockchain provides a fixed time period to collect evidence from all online par-
ties before using this evidence to decide the off-chain smart contract’s new state.
So far, there are two types of dispute processes for a state channel. The first
is called closure dispute [6,15,20] as the dispute process is responsible for clos-
ing the channel, re-deploying the smart contract with the new state and letting



parties continue its execution via the blockchain. The second is called command-
issuance dispute [16,14,10,3] as the dispute process collects commands from each
party and then executes the command to compute the new state.

A recent case study empirically evaluated state channels as a scaling solution
by building the two player game battleship [15]. It highlights that sending the
application’s full state during the dispute process can be financially expensive
which may deter real-world use of state channels. For example, the case study
claimed that sending the full game state approximately costs $0.24 when the
blockchain is not congested, but it can potentially sky-rocket to $8.83 if the
blockchain is congested. The above can clearly hamper real-world use of state
channels as an honest party will not use the dispute process if it is too costly (and
thus they cannot self-enforce the application’s correct execution). The case study
also highlights the need to preserve liveness of an application. If one party is no
longer co-operating off-chain, then a state channel should ensure the application’s
progress can continue via the blockchain. Again, this can be costly if progressing
the application is computationally expensive or if it requires a significant number
of transactions.

To alleivate the above issues, we propose State Assertion Channels. It builds
upon state channels with command-issuance disputes and relies on the concept of
an optimistic contract. Combined, honest parties can always assert the hash of a
new state (and thus progress an application’s execution) without the blockchain
computing the state transition directly. Our contributions:

– We propose the first state channel that ensures an honest party never pays
the cost to send the application’s full state during the dispute process.

– Our state channel is also the first to ensure the cost of progressing an applica-
tion is based only on the number of transactions required to reach a terminal
state, thus it is independent of the application’s computational cost.

– We provide a proof of concept implementation and experimentally demon-
strate that it is cost-effective to deploy.

2 Background

Optimistic Smart Contracts An optimistic smart contract trades the cost of
computation for time. This lets a smart contract accept an application’s new
state if no one has proved it is invalid within a fixed challenge period. Briefly,
one party submits to the optimistic smart contract the application’s statei,
a command cmd, its inputs, the next statei+1 and a financial bond. This as-
serts that statei+1 is the next state if the smart contract were to compute
statei+1 = Transition(statei, cmd, inputs). Other interested parties can com-
pute the transition locally to verify its validity. If the asserted state is invalid,
then anyone can issue a challenge by notifying the smart contract to compute
the transition. If the challenge is successful, then a bond is used to refund the
challenger. Eigenmann, Moore and Johnson provided the first demo implemen-
tation of an optimistic contract for the Ethereum Name Service [7], but so far
this technique has alluded real-world use.



Command Issuance State Channels Sprites proposed the concept of a command-
issuance state channel, and since then it has been extended by PISA [14], Coun-
terfactual [10] and Magmo [3]. At a high level, one party can submit the latest
statei agreed by all parties before triggering the dispute process. The smart con-
tract provides a fixed time period for all parties to submit commands and the
contract is responsible for computing every command (i.e. state transition). In
Sprites (and PISA), all commands are executed after the dispute process has ex-
pired. Whereas in Counterfactual and Magmo, the command is executed when
it is submited and the dispute period’s expiry time is reset (i.e. it dispute period
is extended for every command). The dispute process can be cancelled if one
party submits a later state agreed by all parties, or after the expiry time.

3 State Assertion Channels

The state assertion contract SC and the application contract AC must be de-
ployed on the blockchain. Each party must lock coins into the state assertion
contract before the state channel is activated. Both parties can co-operatively
execute the application off-chain amongst themselves by executing every state
transition for AC locally and exchanging signatures for every new state. If there
is a disagreement off-chain, then both parties can continue its progression via
the dispute process.

Our contribution involves changing the dispute process to avoid sending the
full application’s state, and to avoid computing the next states on-chain. Instead
parties will assert an application’s new state by submitting a hash of the previous
state hstatei, the command cmd, its inputs, a hash of the next state hstatei+1

and a financial bond. The dispute process provides a fixed time period for the
counterparty to verify the assertion by computing the state transition locally.
To challenge an assertion, the party submits the previous statei−1 which lets SC
verify the assertion was indeed correct by executing the transition via AC. If the
honest party successfully challenges an assertion and proves it is invalid, then
they are sent the bond as a refund.

Thus an honest party can always continue an application’s execution via the
blockchain’s dispute process by asserting a hash of the next state. As well, they
are always refunded the cost of sending the application’s full state in order to
challenge an invalid state assertion.

3.1 Application Contract Assumptions

Turn-based application We assume that the parties execute a turn-based appli-
cation where each party performs their state transition in turn until a terminal
state is reached. As well, AC must be instantiated on the blockchain to ensure
its address is provided to the state assertion contract SC.

Single transition function The application contract implements a transition func-
tion which accepts the full state, a command and a list of inputs. The application



contract is responsible for computing a state transition and returning a hash of
the new state via hstatei+1 := Transition(statei, cmd, inputs);. The application
contract is stateless consequently the state must be supplied to compute a state
transition.

No exceptions or out-of-gas errors In Ethereum, an entire transaction’s execu-
tion can be reverted if a smart contract throws an exception (i.e. out of gas). If
the application AC can throw an exception, then it can be used to revert the
execution of an honest party’s challenge. Thus the application’s transition func-
tion should not permit exceptions. We propose the transition function should
return hstate and if the command doesn’t exist or its execution simply fails,
then it should return hstate = 0. This ensures an honest party can always issue
a challenge via SC.challenge() as the state transition (and the verification) will
always complete its execution.

3.2 Assertion Channel Overview

Figure 1 presents the state channel assertion contract. We’ll use it to aid the
following overview on how to instantiate the contract, authorise states off-chain,
how to trigger a dispute, how to submit and challenge assertions, and finally
how to close the channel.

Channel status The channel has three flags Status = {DEPOSIT, ON, DISPUTE}.
Both parties must deposit coins in SC before it will transition from DEPOSIT →
ON. While the channel’s status is set as ON both parties can co-operatively con-
tinue the application’s progression off-chain by exchanging signatures for new
states. If there is a disagreement about a state transition, then one party can
trigger a dispute which changes the status from ON → DISPUTE.

Instantiating contract One party must deploy SC to the blockchain and initalise
it with the address of both parties P1,P2, the application’s address AC, the fixed
dispute period ∆ and the required security bond bond. Both parties must review
the contracts SC,AC and the intialisation values before sending their deposit via
SC.deposit(). After SC has received both deposits (and before turning on the
channel), it will compute the initial state stateinitial = (⊥,balance1,balance2)
and declare the first turn will be taken by P1.1

Progressing application off-chain Both parties can begin exchanging signatures
to execute the application off-chain when the channel is ON. In each round,
one party is responsible for proposing a state transition, and the other party
is responsible for verifying the state transition before co-operatively authorising
it. To propose, the party computes statei+1 = Transition(statei, inputs, cmd),
they hash the state hstatei+1 = hash(statei+1) and they sign its hash σP1

=

1 We highlight a subtle difference between the initial state (⊥,balance1,balance2)
and the terminal state (balance1,balance2).



Sign(hstatei+1, i + 1,SC,Pturn), where Pturn specifies the next party’s turn. The
proposer must send hstatei+1, i + 1, σP to the counterparty. To verify, the coun-
terparty computes state transition and the state hash hstate′i+1 before checking
if hstate′i+1 == hstatei+1. If this condition is satisified (and i + 1 is the largest
counter so far), then the counterparty signs σP2

= Sign(hstatei+1, i+1,SC,Pturn)
and sends their signature σP1

to the proposer.

Triggering a dispute In general, a dispute must be triggered if the counterparty
stops responding in the state channel (i.e. they do not agree with the state
update and they refuse to sign it). There are two cases to consider. Either the
proposer is waiting on a signature from the verifier to authorise the new state, or
the verifier is waiting on the proposer to propose a new state transition. In both
cases, each party waits for a local time-out before submiting the most recently
hstatei via SC.setstate() and triggering a dispute via SC.triggerDispute().
The signed state hash includes Pturn and thus SC waits for a new state assertion
from the named party before deadline = now + ∆. To continue off-chain and
cancel the dispute, one party must submit a co-operatively signed hstate (with
a larger counter i) via SC.setstate.

Submitting a state assertion The named party Pturn must send an asserted
hstatei+1, the command cmd and its inputs inputs using SC.assertState() before
the dispute process expiry time deadline. Every time a state assertion hstatei+1

is submitted, the contract resets the deadline deadline = now + ∆ and stores
the previous state assertion hstatei as accepted. Furthermore the contract records
that it is the counterparty’s turn to respond. In terms of the financial bond, the
contract only needs to store a single bond per party which can be collected when
the party asserts a new state or when the parties send their initial deposit.

Responding to a state assertion The counterparty is responsible for verifying if a
state assertion is correct by computing statei+1 = Transition(statei, cmd, inputs)
locally and checking if the asserted hstatei+1 represents statei+1. If the state as-
sertion is valid, then the counterparty can continue the application’s execution
by responding with a new state assertion using SC.assertState(). By contin-
uing the application’s execution, the counterparty is agreeing that the previ-
ous state assertion is valid. If the state assertion is invalid, then the counter-
party can challenge it by supplying the plaintext state statei to the contract
using SC.challenge(). The contract will compute the transition and confirm
if hstatei+1 represents the new state statei+1. If the challenger is successful and
proves the state assertion as invalid, they are sent all coins in the channel (in-
cluding the counterparty’s bond to refund the cost of this transaction).

Reaching the terminal state In Section 3.1, we assumed an application’s exe-
cution will always reach a terminal state which is simply the final balance of
both parties statefinal = (balance1,balance2). The final hstatefinal must be
accepted by the assertion contract SC before both parties are sent their final



balance by supplying statefinal to SC.resolve(). It is clear if both parties con-
tinue the application’s execution co-operatively off-chain, then they can simply
send the terminal state hash via SC.setstate() before resolving the channel.
On the other hand, the dispute process enforces turn-based state assertions
to ensure that one party will eventually propose the terminal state hash via
SC.assertState(). When the terminal state hash is reached, the counterparty’s
only option is to submit statefinal before the deadline using SC.resolve()

4 Discussion and Future Work

Proof of concept implementation We developed a proof of concept for the Ethereum
blockchain. Our smart contract is written in Solidity2, and gas costs were mea-
sured using a private network. The assertions contract costs 2,943,664 gas to
deploy, approximately $0.97 using the gas price of 2.6 Gwei and the conversion
rate of 1 ether = $127 which was the real world rate in January 2019. The cost
to make a state assertion is only 59,774+39.5n gas ($0.02 at 2.6 Gwei and $0.77
on a congested network at 96 Gwei) where n corresponds to the number of bytes
supplied as inputs to the assertion. Compared to the 725,508 gas ($0.24 at 2.6
Gwei and $8.83 at 96 Gwei) required to send the full battleship state.

Honest party can always verify state assertions To issue a challenge or continue
the application’s execution, an honest party must have the statei which corre-
sponding to the contract’s accepted hstatei. There are only two situations when a
new hstatei can be accepted by SC. In the first situation, hstatei will be accepted
by SC if it is submitted using SC.setstate(), but this requires both parties to
have already signed it (and thus acknowledge they know statei). In the second
situation, a new hstatei will be accepted by SC if the counterparty has asserted
it using SC.assertState() and if the honest party continues the application’s
execution by asserting the next hstatei+1 via SC.assertState(). We highlight
the contract accepts hstatei as the honest party has countinued its execution in-
stead of challenging it. As the above demonstrates, an honest party will always
have a copy of statei if the corresponding hstatei is accepted by the contract.
Thus they can always verify state transitions and issue challenges.

Motivation for turn-based commands There are two motivations for the turn-
based channel. First each party can submit a state assertion and the counterparty
is always provided an opportunity to accept or challenge it. Second, each state
assertion must strictly build upon a previously accepted state hash. If there are
two or more state assertions that reference the same previous state hash, then
SC can only accept one state assertion. Because of the requirement to strictly
order state assertions and the need to ‘accept the first received state assertion’,
this lets an attacker simply pay a higher fee and front-run an honest party to
ensure their state assertion is always accepted first (i.e. front-running ensures
an honest party’s state assertion is never accepted by SC). Thus the turn-based
nature of this state channel prevents the above front-running attack.

2 Our PoC is an optimised for Solidity https://pastebin.com/UBVvZ0FU



Enforcing time-based events The assertion channel is responsible for enforc-
ing time-based events with the dispute period ∆. When the application is co-
operatively progressing off-chain, an honest party will wait for a local timeout
before triggering a dispute via the blockchain. For every new state assertion,
the dispute process is reset to ensure each party has a time period of ∆ to take
their next move. If a party doesn’t assert a new state before the deadline, then
the honest party will notify the contract via SC.timeout(). This terminates the
application and sends all coins (including the bonds) to the honest party.

Bond Requirement Each party must deposit a bond to cover the cost of a suc-
cessful challenge to their assertion. A bond’s value must consider the worst-case
when a transaction fee spikes due to network congestion. For example, in the
battleship empirical case study it was highlighted that submitting the game’s
state can sky rocket from $0.24 to approximately $8.83 during network conges-
tion. If the security bond isn’t sufficient to challenge a state assertion, then the
counterparty may not challenge it.

Offline parties and PISA If the honest party is offline, then the counterparty
can trigger a dispute with the latest agreed hash and then assert an invalid state
hash (i.e. sends the counterparty all the coins in the channel). If the offline party
relies on a watching service, like PISA [14], then the watching service must have
a copy of the latest state in plaintext to verify the invalid state transition and
issue a challenge. This hinders state privacy as the watching service can view the
channel’s internal state. As well, a watching service cannot perform a valid state
transition on the offline party’s behalf, so the offline party must ensure the only
valid state transition for the counterparty is the application’s terminal state.

Extending to N-parties Future work should investigate how the state assertion
paradigm could be extended to n-party state channels. Channels could progress
in a round-robin fashion and store the last n state assertions. This will ensure a
state assertion will not be accepted unless each party explicitly extends it with
their own assertion.
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contract StateAssertionChannel {
enum Status {DEPOSIT, ON, DISPUTE}, address[] plist;
Status status; uint deadline; hash hstatei, uint i; address turn;
address asserter; hash hstatei+1; bytes input; uint cmd; bool assertion;

function setstate(bytes[] sigs, uint i, address turn, hash hstatei) {
require( i > i)); // Largest counter so far

hash hmsg = hash( i, hstatei, turn, address(this));
require(verifySigs(hmsg, sigs, plist)); // Everyone signed new hstate

delete(input,cmd,hstatei+1,asserter, assertion); // Delete assertion

status = Status.ON; i = i; hstatei = hstatei; turn = turn; // Agreed state

}

function triggerDispute() {
require(status == Status.ON & onlyParties()); // Only parties trigger

status = Status.DISPUTE; deadline = now + disputePeriod;
}

function assertState(hash hstatei, hash hstatei+1, bytes input, uint cmd) {
require(status == Status.DISPUTE AND checkCallerTurn());
if(!assertion) {

assertion = true; require(hstatei == hstatei) // First assertion

} else { require(hstatei+1 == hstatei); } // Extending existing assertion

asserter = msg.sender; input = input; cmd = cmd; // Store assertion

hstatei = hstatei+1; hstatei+1 = hstatei+1; // i accepted. i+1 assertion

deadline = now + disputePeriod; // Reset deadline after an assertion

progressTurn()); // Increment the turn counter

}

function challengeAssertion(bytes oldstate) {
require(status == Status.DISPUTE AND checkCallerTurn());
require(hstatei == hash( oldstate) AND assertion); // Assertion exists

hash check = AC.transition(asserter, oldstate, input, cmd); // Compute

if(hstatei+1 != checkh) { // Send all coins and bond to non-cheater. }
}

function timeOut() {
require(now >= deadline && status == Status.dispute);
// Send all coins/bonds to asserter (i.e. last party to respond).

}

function resolve(uint balance1, uint balance2) {
if(status == Status.Dispute) {

require(checkCallerTurn()); // Non-asserter must resolve b4 timeout.

} else { require(status == Status.ON); } // No on-going dispute.

require(hstate == hash(balance1, balance2)); // Terminal state?

// Send each party their final balance and bond.

}
function deposit(); // Not implemented due to space - INCLUDES BOND

function onlyParties() returns(bool); // Check if tx signer is whitelisted

function refundAllBonds() internal; // Refunds all bonds

function checkCallerTurn() returns(bool); Enforce turn based disputes

function progressTurn() returns(bool); Update the turn counter

function verifySigs(bytes hmsg, bytes[] sigs, address[] signers) returns(bool);
}

Fig. 1: Example of the state assertion contract
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