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Abstract. We consider front-running to be a course of action where
an entity benefits from prior access to privileged market information
about upcoming transactions and trades. Front-running has been an is-
sue in financial instrument markets since the 1970s. With the advent of
the blockchain technology, front-running has resurfaced in new forms we
explore here, instigated by blockchain’s decentralized and transparent
nature. In this paper, we draw from a scattered body of knowledge and
instances of front-running across the top 25 most active decentral ap-
plications (DApps) deployed on Ethereum blockchain. Additionally, we
carry out a detailed analysis of Status.im initial coin offering (ICO) and
show evidence of abnormal miner’s behavior indicative of front-running
token purchases. Finally, we map the proposed solutions to front-running
into useful categories.

1 Introduction

Blockchain technology enables decentralized applications (DApps) or smart con-
tracts. Function calls (or transactions) to the DApp are processed by a decen-
tralized network. Transactions are finalized in stages: they (generally) first relay
around the network, then selected by a miner and put into a valid block, and
finally, the block is well-enough incorporated that is unlikely to be reorganized.
Front-running is an attack where a malicious node observes a transaction after it
is broadcast but before it is finalized, and attempts to have its own transaction
confirmed before or instead of the observed transaction.

The mechanics of front-running works on all DApps but front-running is not
necessarily beneficial, depending on the DApp’s internal logic and/or as any mit-
igations it might implement. Therefore, DApps need to be studied individually or
in categories. In this paper, we draw from a scattered body of knowledge regard-
ing front-running attacks on blockchain applications and the proposed solutions,
with series of case studies of DApps deployed on Ethereum (a popular blockchain
supporting DApps). We do case studies on decentralized exchanges (e.g., Ban-
cor), crypto-collectibles (e.g., CryptoKitties), gambling services (e.g., Fomo3D),
and decentralized name services (e.g., Ethereum Name Service). We also study
initial coin offerings (ICOs). Finally, we provide a categorization of techniques
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to eliminate or mitigate front-running including transaction sequencing, cryp-
tographic techniques like commit/reveal, and redesigning the functioning of the
DApp to provide the same utility while removing time dependencies.

2 Preliminaries & Related Work

2.1 Traditional Front-running

Front-running is a course of action where someone benefits from early access to
market information about upcoming transactions and trades, typically because
of a privileged position along the transmission of this information and is applica-
ble to both financial and non-financial systems. Historically, floor traders might
have overheard a broker’s negotiation with her client over a large purchase, and
literally race the broker to buy first, potentially profiting when the large pur-
chase temporarily reduces the supply of the stock. Alternatively, a malicious
broker might front-run their own client’s orders by purchasing stock for them-
selves between receiving the instruction to purchase from the client and actually
executing the purchase (similar techniques can be used for large sell orders).
Front-running is illegal in jurisdictions with established securities regulation.

Cases of front-running are sometimes difficult to distinguish from related
concepts like insider trading and arbitrage. In front-running, a person sees a
concrete transaction that is set to execute and reacts to it before it actually gets
executed. If the person instead has access to more general privileged information
that might predict future transactions but is not reacting at the actual pending
trades, we would classify this activity as insider trading. If the person reacts after
the trade is executed, or information is made public, and profits from being the
fastest to react, this is considered arbitrage and is legal and encouraged because
it helps markets integrate new information into prices quickly.

2.2 Literature on Traditional Front-running

Front-running originates on the Chicago Board Options Exchange (CBoE ) [41].
The Securities Exchange Commission (SEC) in 1977 defined it as: “The practice
of effecting an options transaction based upon non-public information regarding
an impending block transaction1 in the underlying stock, in order to obtain a
profit when the options market adjusts to the price at which the block trades. [2]”
Self-regulating exchanges (e.g., CBoE ) and the SEC spent the ensuing years
planning how to detect and outlaw front-running practices [41]. The SEC stated:
“It seems evident that such behaviour on the part of persons with knowledge of
imminent transactions which will likely affect the price of the derivative security
constitutes an unfair use of such knowledge.2” The CBoE tried to educate their

1 A block in the stock market is a large number of shares, 10 000 or more, to sell which
will heavily change the price.

2 Securities Exchange Act Release No. 14156, November 19, 1977, (Letter from George
A. Fitzsimmons, Secretary, Securities, and Exchange Commission to Joseph W. Sul-
livan, President CBoE).
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Fig. 1: The front-runner
upon spotting the
profitable transaction
Buy(1000) sends his own
transaction with higher
gas price to bribe the
miners to prioritize his
transaction over initial
transaction.

members on existing rules, however, differences in opinion regarding the unfair-
ness of front-running activities, insufficient exchange rules and lack of a precise
definition in this area resulted in no action [2] until the SEC began the regu-
lation. We refer the reader interested in further details on this early regulatory
history to Markham [41]. The first front-running policies applied only to certain
option markets. In 2002, the rule was expanded to cover all security futures [3].
In 2012, it was expanded further with the new amendment, FINRA Rule 5270,
to cover trading in options, derivatives, or other financial instruments overlying
a security with only a few exceptions [6,5]. Similar issues have been seen with
domain names [4,25] as well.

2.3 Background on Blockchain Front-running

Blockchain technology (introduced via Bitcoin in 2008 [48]) strives to disinter-
mediate central parties that participate in a transaction. However, blockchains
also introduce new participants in the process of relaying and finalizing trans-
actions. Miners are in the best position to conduct these attacks as they hold
fine-grained control over the exact set of transactions that will execute and in
what order and can mix in their own (late) transactions without broadcasting
them. Miners do however have to commit to what their own transactions will be
before beginning the proof of work required to solve a block.

Any user monitoring network transactions (e.g., running a full node) can see
unconfirmed transactions. On the Ethereum blockchain, users have to pay for
the computations in a small amount of Ether called gas [1]. The price that users
pay for transactions, gasPrice, can increase or decrease how quickly miners will
execute them and include them within the blocks they mine. A profit-motivated
miner who sees identical transactions with different transaction fees will prior-
itize the transaction that pays a higher gas price due to limited space in the
blocks. This has been called a gas auction [32]. Therefore, any regular user who
runs a full-node Ethereum client can front-run pending transactions by sending
adaptive transactions with a higher gas price (see Figure 1).

Finally, well-positioned relaying nodes on the network (or part of the broader
internet backbone) can attempt to influence how transactions are propagated
through the network, which can influence the order miners receive transactions,
or if they receive them at all [30,40].
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2.4 Literature on Blockchain Front-running

Given the purpose of this entire paper is systemizing the existing literature, we
do not re-enumerate the literature here. However, we note two points. First,
we are not aware of any other systematic study of this issue. Second, front-
running is related to two well-studied concepts: double-spending and rushing
adversaries [38].

Double-spending attacks in Bitcoin are related to front-running [11,36]. In
this attack, a user broadcasts a transaction and is able to obtain some off-
blockchain good or service before the transaction has actually been (fully) con-
firmed. The user can then broadcast a competing transaction that sends the same
unspent coins to herself, perhaps using higher transaction fees, arrangements
with miners or artifacts of the network topology to have the second transaction
confirmed instead of the first. This can be considered a form of self-front-running.
In the cryptographic literature, front-running attacks are modeled by allowing
a so called ‘rushing’ adversary to interact with the protocol [12]. In particu-
lar, ideal functionalities of blockchains (such as those used in simulation-based
proofs) need to capture this adversarial capability, assuming the real blockchain
does not address front-running. See e.g., Bitcoin backbone [29] and Hawk [38].

3 A Taxonomy of Front-running Attacks

As we will illustrate with examples through-out the paper, front-running attacks
can often be reduced to one of a few basic templates. We emphasize what the
adversary is trying to accomplish (without worrying about how) and we distin-
guish three cases: displacement, insertion, and suppression attacks. In all three
cases, Alice is trying to invoke a function on a contract that is in a particular
state, and Mallory will try to invoke her own function call on the same contract
in the same state before Alice.

In the first type of attack, a displacement attack, it is not important to the
adversary for Alice’s function call to run after Mallory runs her function. Alice’s
can be orphaned or run with no meaningful effect. Examples of displacement in-
clude: Alice trying to register a domain name and Mallory registering it first [35];
Alice trying to submit a bug to receive a bounty and Mallory stealing it and sub-
mitting it first [16]; and Alice trying to submit a bid in an auction and Mallory
copying it.

In an insertion attack, after Mallory runs her function, the state of the con-
tract is changed and she needs Alice’s original function to run on this modified
state. For example, if Alice places a purchase order on a blockchain asset at a
higher price than the best offer, Mallory will insert two transactions: she will
purchase at the best offer price and then offer the same asset for sale at Alice’s
slightly higher purchase price. If Alice’s transaction is then run after, Mallory
will profit on the price difference without having to hold the asset.

In a suppression attack, after Mallory runs her function, she tries to delay
Alice from running her function. After the delay, she is invariant to whether



5

DApp Category Names Rank

Exchanges

IDEX 1
ForkDelta, EtherDelta 2

Bancor 7
The Token Store 13
LocalEthereum 14

Kyber 22
0x Protocol 23

Crypto-Collectible
Games

(ERC-721 [26])

CryptoKitties 3
Ethermon 4
Cryptogirl 9

Gods Unchained TCG 12
Blockchain Cuties 15

ETH.TOWN! 16
0xUniverse 18

MLBCrypto Baseball 19
HyperDragons 25

Gambling

Fomo3D 5
DailyDivs 6
PoWH 3D 8
FomoWar 10
FairDapp 11

Zethr 17
dice2.win 20

Ether Shrimp Farm 21

Name Services Ethereum Name Service 24

Table 1: Top 25 DApps based on recent user activity from DAppRadar.com on
September 4th, 2018. The DApps that are in bold are discussed in this paper.

Alice’s function runs or not. We only observe this attack pattern in one DApp
and the details are quite specific to it, so we defer discussion until Section 4.3.

Each of these attacks have two variants, asymmetric and bulk. For example,
Alice’s function and Mallory’s function are different: e.g., Alice trying to cancel
an offer and Mallory fulfilling the offer first. We call this asymmetric displace-
ment. Finally, in some cases, Mallory is trying to run a large set of functions:
for example Alice and others are trying to buy a limited set of shares offered by
a firm on a blockchain. We call this bulk displacement.

4 Cases of Front-running in DApps

To find example DApps to study, we used the top 25 DApps based on recent user
activity from DAppradar.com in September 2018.3 User activity is admittedly
an imperfect metric for finding the ‘most significant’ DApps: significant DApps

3 List of decentralized applications https://DAppradar.com/DApps

https://DAppradar.com/DApps
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Fig. 2: The adversar-
ial miner monitors the
Ethereum mempool for
decentralized exchange
transactions. Upon
spotting a profitable can-
cellation transaction, he
puts his buy order prior
to the cancel transaction
in the block he mines.
Doing so, the miner can
profit from the underlying
trade and also get the
gas included in the cancel
transaction.

might be lower volume overall or for extended periods of time (e.g., ICOs, which
we remedy by studying independently in Section 5). However, user activity is
an objective criteria, data on it is available, and the list captures our intuition
about which DApps are significant. It suffices for a first study in this area, and
is preferable over an ad hoc approach. Using the dataset, we categorized the top
25 applications into 4 principal use cases. The details are given in Table 1.

4.1 Markets and Exchanges

The first category of DApp in Table 1 are financial exchanges for trading ether
and Ethereum-based tokens. Exchanges such as EtherDelta4, purport to imple-
ment a decentralized exchange, however, their order books are stored on a central
server they control and shown to their users with a website interface. Central
exchanges can front-run orders in the traditional sense, as well as re-order or
block orders on their servers. 0xProtocol [65] uses Relayers which act as the
order book holders and could front-run the orders they relay.

As seen in traditional financial markets, one method to manipulate the spot
price of an asset, is to flood the market with orders and cancel them when there
are filling orders (“taker’s griefing” [7]). Placing an order in a partially centralized
exchange is free, but to prevent taker’s griefing attacks, the user needs to send
an Ethereum transaction to cancel each of his orders. Cancelling orders is most
important when prices change faster than order execution. In this case, when an
adversarial actor sees a pending cancellation transaction, he sends a fill order
transaction with higher gasPrice to get in front of the cancellation order and take
the order before it is canceled (this is known as cancellation grief ). This attack
follows the asymmetric displacement template and is illustrated in Figure 2.

4 Also known as ForkDelta for the user interface: https://forkdelta.app/

https://forkdelta.app/
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Designing truly decentralized exchanges, where the order book is imple-
mented directly on a public blockchain, is being pursued by a number of projects [24].
These designs are generally vulnerable to front-running attacks following a dis-
placement or insertion template. For example, a front-running full node or miner
might gauge the demand for trades at a given price by the number of pending
orders, and try to displace them at the same price assuming the demand is the
result of the accurate new information about the asset. Alternatively, the front-
runner might observe a large market order (i.e., it will execute at any price). The
adversary can try to insert a pair of limit orders that will bid near the best offer
price and offer at a higher price. If the pair executes ahead of the market order,
the front-runner profits by scalping the price of the shares. Finally, if adversary
has pre-existing offers likely to be reached by the market order, she could insert
cancelations and new offers at a higher price.

Bancor is an exchange DApp that allows users to exchange their tokens with-
out any counter-party risk. The protocol aims to solve the cryptocurrency liquid-
ity issue by introducing Smart Tokens [31]. Smart tokens are ERC20-compatible
that can be bought or sold through a DApp-based dealer that is always available
and implements a market scoring rule to manage its prices. Bancor provides con-
tinuous liquidity for digital assets without relying on brokers to match buyers
with sellers. Implemented on the Ethereum blockchain, when transactions are
broadcast to the network, they sit in a pending transaction pool known as mem-
pool waiting for the miners to mine them. Since Bancor handles all the trades
and exchanges on the chain (unlike other existing decentralized exchanges), these
transactions are all visible to the public for some time before being included
within a block. This leaves Bancor vulnerable to the blockchain race condition
attack as attackers are given enough time to front-run other transactions, in
which they can gain favourable profits by buying before the order and fill the
original order with slightly higher price [58]. Researchers have shown and imple-
mented a proof of concept code to front-run Bancor as a non-miner user [13].

4.2 Crypto-Collectibles Games

The second category of DApp in Table 1 is crypto-collectables. Consider Cryp-
tokitties [9], the most active DApp in this category and third most active overall.
Each kitty (see Appendix A) is a cartoon kitten with a set of unique features
to distinguish it from other cryptokitties, some features are rarer and harder
to obtain. They can be bought, sold, or bred with other cryptokitties. At the
Ethereum level, the kitty is a token implemented with ERC-721: Non-Fungible
Token Standard [26]. Kitties are generally bought and sold on-chain through auc-
tion smart contracts. See Sections 4.1 and 4.4 for more details on auction-based
front-running attacks.

Specific to Cryptokitties protocol, they can breed and give birth. When cryp-
tokitties breed, the smart contract sets from which future block the pregnancy
of the cat can be completed. Anyone can complete the pregnancy by calling
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giveBirth() after the birthing block and they will receive a reward in ether5.
Even though front-running these calls would not affect the protocol workflow, but
this displacement attack could result in financial profit for front-runners [68,37].

4.3 Gambling

The third category of DApp in Table 1 is gambling services. While a large cat-
egory of gambling games are based on random outcomes, DApps do not have
unique access to an unpredictable data stream to harvest for randomness [51].
Any candidate source of randomness (such as block headers) is accessible to all
DApp functions and can also be manipulated to an extent by miners.

Fomo3D is an example of a game style (known as Exit Scam6) not based on
random outcomes, and it is the most active game on Ethereum in our sample.
The aim of this game is to be the last person to have purchased a ticket when
a timer goes to zero in a scenario where anyone can buy a ticket and each
purchase increases the timer by 30 seconds. Many speculated such a game would
never end but on August 22, 2018, the first round of the game ended with the
winner collecting 10,469 Ether7 equivalent to $2.1M USD at the time. Blockchain
forensics indicate a sophisticated winning strategy to displace any new ticket
purchases [10,57] that would reset the counter. The winner appears to have
started by deploying many high gas consumption DApps unrelated to the game.
When the timer of the game reached about 3 minutes, the winner bought 1
ticket and then sent multiple high gasPrice transactions to her own DApps.
These transactions congested the network and bribed miners to prioritize them
ahead of any new ticket purchases in Fomo3D. Recall this basic form of bribery
is called a Gas Auction; See related work [43,14] for more sophisticated bribery
contracts.

We classify this in the unique category of a suppression attack in our tax-
onomy (see Section 3). At first glance, it seemed like an extreme version of an
asymmetric/bulk displacement attack on any new ticket purchase transactions.
However the key difference is that the front-runner does not care at all about the
execution of her transactions—if miners mined empty blocks for three minutes,
that would also be acceptable. Thus, bulk displacement8 is simply a means-to-
an-end and not the actual end goal of the adversary.

4.4 Name Services

The final category in Table 1 is name services, which are primarily aimed at dis-
intermediating central parties involved in web domain registration (e.g., ICAAN

5 As there are no automated function calls in Ethereum, this incentive model –known
as Action Callback [52]– is used to encourage users to call these functions.

6 https://exitscam.me/play
7 The first winner of Fomo3D, won 10,469 Ether https://etherscan.io/tx/

0xe08a519c03cb0aed0e04b33104112d65fa1d3a48cd3aeab65f047b2abce9d508
8 Also known as Block Stuffing Attack [59]

https://exitscam.me/play
 https://etherscan.io/tx/0xe08a519c03cb0aed0e04b33104112d65fa1d3a48cd3aeab65f047b2abce9d508
 https://etherscan.io/tx/0xe08a519c03cb0aed0e04b33104112d65fa1d3a48cd3aeab65f047b2abce9d508
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and registrars) and resolution (e.g., DNS). For simple name services (such as
some academic work like Ghazal [47]), domains purchases are transactions and
front-runners can displace other users attempting to register domains. This par-
allels front-running attacks seen in regular (non-blockchain) domain registra-
tion [4]. Ethereum Name Service (ENS) [34] is the most active naming service
on Ethereum. Instead of allowing new .eth domain names to be purchased di-
rectly, they are put up for a sealed bid auction which seals the domain name
in a bid, but not the bid amount. Most implementations use the more user
friendly but less confidential method for starting and bidding on a domain name:
startAuctionsAndBid(). This method leaks the hash of the domain and the ini-
tial bid amount in the auction. Original names can be guessed from the hashes
(e.g., rainbow tables, used in ENS Twitter bot9) or people can bid on domains
even though they do not know what they are because of speculation on its value.

Users are allowed to bid for 3 days before the 2-day reveal phase begins (see
6.2), in which all bidders (winners and losers) must send a transaction to reveal
their bids for a specific domain or sacrifice their bid amount . Also note that if
two bidders bid the same price, the first to reveal wins it [23]. Using the leaked
information, the domain squatter can win the auction with the same price of the
original bidder by revealing it first. This is similar to front-running as it relies
on inserting an action before the user, however we do not consider this specific
action as front-running attack.

5 Cases of Front-running in ICOs

Initial coin offerings (ICOs) have changed how blockchain firms raise capital.
More than 3000 ICOs have been held on Ethereum, and the market capitaliza-
tion of these tokens appears to exceed $75B USD in the first half of 2018 [67].
At the DApp level, tokens are offered in short-term sales that see high trans-
action activity while the sale is on-going and then the activity tapers off to
occasional owner transfers. When we collected the top 25 most active DApps
on DAppRadar.com, no significant ICOs were being sold. The ICO category slips
through our sampling method, but we identify it as a major category of DApp
and study it here.

5.1 Status.im ICO

To deal with demand, ICOs cap sales in a variety of ways to mitigate front-
running attacks. In June 2017, Status.im [8] started its ICO and reached the
predefined cap within 16 hours, collecting close to 300,000 Ether. In order to
prevent wealthy investors purchasing all the tokens and limit the amount of
Ether deposited in each investment, they used a fair token distribution method
called Dynamic Ceiling as an attempt to increase the opportunity for smaller
investors. They implemented multiple caps (ceilings) in which, each had a maxi-
mum amount that could be deposited in. In this case, every deposit was checked

9 https://twitter.com/ensbot

https://twitter.com/ensbot
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Fig. 3: The percentage of
Ethereum blocks mined
between block 3903900 and
3908029, this is the time
frame in which Status.im ICO
was running. This percentage
roughly shows the hashing
power ratio each miner had at
that time.

by the smart contract and the exceeding amount was refunded to the sender
while the accepted amount was sent to their multi-signature wallet address [50].

During the time frame the ICO was open for participation, there were reports
of Ethereum network being unusable and transactions were not confirming. Fur-
ther study showed that some mining pools might have been manipulating the
network for their own profit. In addition, there were many transactions sent with
a higher gas price to front-run other transactions, however, these transactions
were failing due to the restriction in the ICO smart contract to reject transactions
with higher than 50 GWei gas price (as a mitigation against front-running).

5.2 Data Collection and Analysis

According to the analysis we carried out, we discovered that the F2Pool—an
Ethereum mining pool that had around 23% of the mining hash rate at the time
(Figure 3)—sent 100 Ether to 30 new Ethereum addresses before the Status.im
ICO started. When the ICO opened, F2Pool constructed 31 transactions to the
ICO smart contract from their addresses, without broadcasting the transactions
to the network10. They used their entire mining power to mine their own trans-
actions and some other potentially failing high gas price transactions.

Ethereum’s blockchain contains all transaction ever made on Ethereum. While
the default client and online blockchain explorers offer some limited query ca-
pabilities, in order to analyze this case, we built our own database. Specifically,
we used open source projects such as Go Ethereum implementation11 for the
full node, a python script for extracting, transforming and loading Ethereum
blocks, named ethereum-etl [45] and Google BigQuery.12 Using this software
stack, we were able to isolate transactions within the Status.im ICO. We used
data analysis tool Tableau.13 A copy of this dataset and the initial findings can
be found in our Github repository14.

10 Note that we do not have an authoritative copy of the mempool over time, how-
ever, the probability of these transactions being broadcasted to the network and
exclusively get mined by the same pool as the sender is low.

11 Official Go implementationhttps://github.com/ethereum/go-ethereum.
12 https://cloud.google.com/bigquery/
13 https://www.tableau.com/
14 http://bit.ly/madibaFrontrunning

https://github.com/ethereum/go-ethereum
https://cloud.google.com/bigquery/
https://www.tableau.com/
http://bit.ly/madibaFrontrunning
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Fig. 4: This chart shows
the miners behaviour on
the time frame that Sta-
tus.im ICO was running.
It is clear that the num-
ber of successful transac-
tions mined by F2Pool do
not follow the random ho-
mogeneous pattern of the
rest of the network.

Fig. 5: Prior to Status.im ICO F2Pool
deposited 100 Ether in multiple new
Ethereum addresses. On the time of the
ICO, transactions sent from these addresses
to Status ICO smart contract were priori-
tized in their mining pool, resulting in pur-
chasing ERC20 tokens. This method was
used to overcome the dynamic ceiling algo-
rithm of the ICO smart contract. Later on
they sent the refunded Ether back to their
own address.15

As shown in Figure 4, most of the top miners in the mentioned time frame,
have mined almost the same number of failed and successful transactions which
were directed toward Status.im token sale, however F2Pool’s transactions indi-
cate their successful transactions were equivalent to 10% of the failed transac-
tions, hence maximizing the mining rewards on gas, while censoring other trans-
actions to the token sale smart contract. The terminology used here is specific to
smart contract transactions on Ethereum, by “failed transaction” we mean the
transactions in which the smart contract code rejected and threw an exception
and by “successful transaction” we mean the transactions that went through and
received tokens from the smart contract.

By tracing the transactions from these 30 addresses, we found explicit inter-
ference by F2Pool16 in this scenario. As shown in Figure 5, the funds deposited
by F2Pool in these addresses were sent to Status.im ICO and mined by F2Pool

15 Graph was made using Blockseer.com blockchain explorer.
16 F2Pool address was identified by their mining reward deposit address https://

etherscan.io/address/0x61c808d82a3ac53231750dadc13c777b59310bd9.

Blockseer.com
https://etherscan.io/address/0x61c808d82a3ac53231750dadc13c777b59310bd9
https://etherscan.io/address/0x61c808d82a3ac53231750dadc13c777b59310bd9
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themselves, where the dynamic ceiling algorithm refunded a portion of the de-
posited funds. A few days after these funds were sent back to F2Pool main
address and the tokens were aggregated later in one single address. Although
this incident does not involve transaction reordering in the blocks, it shows how
miners can modify their mining software to behave in a certain way to front-run
other transactions by bulk displacement to gain monetary profit.

6 Key Mitigations

As we studied front-running attacks on the blockchain, we also encountered a
number of ways of preventing, detecting or mitigating front-running attacks.
Instead of providing the details of exact solutions which will change over time,
we extract the main principles or primitives that address the attack. A particular
system may implement more than one in a layered mitigation approach.

We classify the mitigations into three main categories. In the first category,
the blockchain removes the miner’s ability to arbitrarily order transactions and
tries to enforce some ordering, or queue, for the transactions. In the second
category, cryptographic techniques are used to limit the visibility of transactions,
giving the potential front-running less information to base their strategy on.
In the final category, DApps are designed from the bottom-up to remove the
importance of transaction ordering or time in their operations. We also note
that for DApps that are legally well-formed (e.g., with identified parties and
a clear jurisdiction), front-running attacks can violate laws, which is its own
deterrent. We do not discuss this further here; see Appendix B.

6.1 Transaction Sequencing

Ethereum miners store pending transactions in pools and draw from them when
forming blocks. As the term ‘pool’ implies, there is no intrinsic order to how
transactions are drawn and miners are free to sequence them arbitrarily.17 The
vanilla Go-Ethereum (geth) implementation prioritizes transactions based on
their gas price and nonce [27]. Because no rule is enforced, miners can sequence
transactions in advantageous ways. A number of proposals attempt to thwart
this attack by enforcing a rule about how to sequence transactions.

First-in-first-out (FIFO) is generally not possible on a distributed network
because transactions can reach different nodes in a different order. While the
network could theoretically form a consensus based on locally observed FIFO,
this would increase the rate of orphaned blocks, as well as adding complexity to
the protocol. A trusted third party can be used to assign sequential numbers to
transactions (and sign them), but this is contrary to blockchain’s core innovation
of distributed trust. None the less, some exchanges do centralize time-sensitive
functionalities (e.g., EtherDelta and 0xProject) in off-chain order books [65,64].

17 Sometimes the pool is called a ‘queue.’ It is important to note is a misnomer as
queues enforce a first-in-first-out sequence.
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One alternative is to sequence transactions pseudorandomly. This can be
seen in proposals like Canonical Transaction Ordering Rule (CTOR) by Bitcoin
Cash ABC [60] which adds transactions in lexicographical order according to
their hash [61]. Note that Bitcoin does not have a front-running problem for
standard transactions. While this could be used by Ethereum to make front-
running statistically difficult, the protection is marginal at best and might even
exacerbate attacks. A front-runner can construct multiple equivalent transac-
tions, with slightly different values, until she finds a candidate that positions her
transaction a desirable location in the resulting sequence. She broadcasts only
this transaction and now miners that include her transaction will position it in
front of transactions they heard about much earlier.

Finally, transactions themselves could enforce order. For example, they could
specify the current state of the contract as the only state to execute on. This
transaction chaining only prevents certain types of front-running; i.e., it prevents
insertion attacks but not displacement attacks (recall our taxonomy in Section 3).
As transaction chaining only allows one state-changing transaction per state, at
most one of a set of concurrent transactions can be confirmed; a drawback for
active DApps.

6.2 Confidentiality

Privacy-Preserving Blockchains. All transaction details in Bitcoin are made pub-
lic and participant identities are only lightly protected. A number of techniques
increase confidentiality [19,42] and anonymity [46,49,56] for cryptocurrencies.
A current research direction is extending these protections to DApps [66,55]. It
is tempting to think that a confidential DApp would not permit front-running,
as the front-runner would not know the details of the transaction she is front-
running. However, there are some nuances here to explore.

A DApp includes the following components: (1) the code of the DApp, (2)
the current state of the DApp, (3) the name of the function being invoked, (4)
the parameters supplied to the function, (5) the address of the contract the
function is being invoked on, and (6) the identity of the sender. Confidentiality
applied to a DApp could mean different levels of protection for each of these. For
front-running, function calls (3,4) are the most important, however, function calls
could be inferred from state changes (2). Hawk [38] and Ekiden [21] are examples
of (2,3,4)-confidentiality (with limitations we are glossing over).

The applicability of privacy-preserving blockchains needs to be evaluated on
a case-by-case base. For example, one method used by traditional financial ex-
changes in dealing with front-running from high frequency traders is a dark mar-
ket: essentially a (2,3,4)-confidential order book maintained by a trusted party. A
DApp could disintermediate this trusted party. Users whose balances are affected
by changes in the contract’s state would need to be able to learn this information.
Further, if the contract addresses are known (i.e., no 5-confidentiality), front-
runners can know about the traffic pattern of calls to contracts which could
be sufficient grounds for attack; for example, if each asset on an exchange has
its own market contract, this leaks trade volume information. As a contrasting
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example, consider again decentralized domain registration: hiding state changes
(2-confidentiality) defeats the entire purpose of the DApp, and protecting func-
tion calls is ineffective with a public state change since the state itself reveals
the domain being registered.

Commit/Reveal. While confidentiality appears insufficient for solving domain
name front-running alone, a hybrid approach of sequencing and confidentiality
can be effective and is, in fact, an example of an older cryptographic trick known
as commit/reveal. The essence of the approach is to protect the function call
(e.g., (3,4)- or (4)-confidentiality) until the function is enqueued in a sequence
of functions to be executed. Once the sequence is established, the confidentiality
is lifted and the function can only be executed in the place it was given (or,
generally speaking, not at all).

Recall that a commitment scheme enables one to commit to a digital value
(e.g., a statement, transaction, data, etc.) while keeping it a secret (hiding), and
then open it (and only it: binding) at a later time of the committer’s choos-
ing [15]. A common approach (conjectured to be hiding) is to submit the crypto-
graphic hash of the value with a random nonce (for low entropy data) to a smart
contract, and later reveal the original value and nonce which can be verified by
the contract to correctly hash to the commitment (see Figure 8 in Appendix C).

An early application of this scheme to blockchain is Namecoin, a Bitcoin-
forked DApp for name services [35]. In Namecoin, a user sends a commit trans-
action which registers a new hidden domain name, similar to a sealed bid. Once
this first transaction is confirmed, a time delay begins. After the delay, a second
transaction reveals the details of the requested domain. This prevents front-
running if the reveal transaction is confirmed faster than an adversarial node or
miner can redo the entire process.

Commit/reveal is a two-round protocol, and aborting after the first round
(early aborts) could be an issue for this (along with most multi-round crypto-
graphic protocols). For example, in a financial exchange where the number of
other orders might be in a predictable interval, an adversary can spray the se-
quence (i.e., a price-time priority queue) with multiple committed transactions
and no intention of executing them all. She then only reveal the ones that result
in an advantageous trade.18 There are other ways of aborting; if payments are re-
quired but not collateralized, the aborting party can ensure that payment is not
available for transfer. One mitigation to early aborts that blockchain is uniquely
positioned to make is having users post a fidelity bond of a certain amount of
cryptocurrency that can be automatically dispensed if they fail to fully execute
committed transactions (this is used in multi-round blockchain voting [44]). Fi-
nally, we note that any multiple round protocol will have usability challenges:
users must be aware that participating in the first round is not sufficient for
completing their intention.

18 This is analogous to behavior in traditional financial markets where high-frequency
traders will make and cancel orders at many price points (flash orders or pinging).
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Fig. 6: Submarine Send [18]. User gen-
erates an Unlock transaction from which
the commitment address is retrieved using
ECDSA ECRecover. 1. by funding the com-
mitment address,user is committed to the
transaction. 2. User sends the reveal trans-
action to the DApp, revealing the nature of
the commitment transaction. 3. She broad-
casts the unlock transaction to unlock the
funds in the commitment address. 4. After
the ”Auction” is over, anyone can call Fi-
nalize function to finalize the process.

Enhanced Commit/Reveal. Submarine Commitments [18,17] extend the con-
fidentiality of the commit and reveal, so that the commitment transaction is
identical to a transaction to a newly generated Ethereum address. They initially
hide the contract address being invoked, providing (3,4,5)-confidentiality during
the commit phase; and they ensure that if a revealed transaction sent funds, the
funds were fully collateralized at commit time and are available to the receiving
smart contract. See Figure 6.

6.3 Design Practices

The final main category of mitigation is to assume front-running is unpreventable
and to thus responsively redesign the functionality of the DApp to remove any
benefit from it. For example, when designing a decentralized exchange, one can
use a call market design instead of a time-sensitive order book [22] to side-
step and disincentivize front-running. In a call market design, the arrival time
of orders does not matter as they are executed in batches19 . The call market
solution pivots profitable gains that front-running miners stand to gain into fees
that they collect [22], removing the financial incentive to front-run.

In the finance literature, Malinova and Park discuss front-running mitigations
for blockchain-based trading platforms [39]. Instead of studying DApps, they de-
velop an economic model where transactions, asset holdings, and traders’ identi-
ties have greater transparency than in standard economic models—transparency
they argue that could be accomplished by blockchain technology. However, in
their model, they assume entities can interact directly over private channels to
arrange trades. They define front-running in the context of private offers, where
parties might adjust their position before accepting or countering a received
offer. This model is quite different than the DApp-based model we study here.

Another example in the design of ERC20 standard [62], is on the allowance
functionality. approve() function in the specification allows a second entity to

If they can cancel faster than someone can execute it—someone who has only seen
the order and not the cancelation—then the victim reveals their price information.

19 Also known as batch auctions [63]
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be able to spend N tokens from the sender’s balance. In order to change the
allowance, sender must send a transaction to set the new allowance value. Us-
ing the insertion attack, attacker could front-run the new allowance transaction
and spend the old value before the new value is set [54,33], and then addi-
tionally spend the new amount at a later time. Solutions such as decreaseAp-
proval()/increaseApproval() were added in updated implementations.

7 Concluding Remarks

Front-running is a pervasive issue in Ethereum DApps. While some DApp-level
application logic could be built to mitigate these attacks, its ubiquity across dif-
ferent DApp categories suggests mitigations at the blockchain-level would per-
haps be more effective. We highlight this as an important research area.
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8 Appendix

A CryptoKitty

Fig. 7: Cryptokitty Number 842912

Figure 7 shows an example of a Cryptokitty.

B Traditional Front-running Prevention Methods

There are debates in traditional markets regarding the fact that front-running is
considered to be a form of insider trading which deemed to be illegal. Traditional
methods to prevent front-running mainly involves after the fact investigation
and legal action against the front-runners [28]. As mentioned in section 2.2,
defining front-running and educating the employees were the first step taken
to prevent such issues in traditional markets, however, front-running became
less likely to happen mainly because of the high fine and lawsuits against firms
who behaved in an unethical way. Other methods such as dark pools [69,20] and
sealed bids [53] were discussed and implemented in a variety of regulated trading
systems. The traditional methods to prevent front-running does not apply to
blockchain applications, as mainly they are based on central enforcement and
limitations, also in case of blockchains the actors who are front-running could
be anonymous and the fear of lawsuits would not apply.

C Commit-and-Reveal

Figure 8 illustrates the commit/reveal approach.
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Fig. 8: Commit and Reveal. User sends a commitment transaction with the hash of the data,
After the commitment period is over, user sends her reveal transaction to the DApp revealing the
information that matches the commitment.
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