
On-Chain Smart Contract Veri�cation

over Tendermint
?

Luca Olivieri1,2 , Fausto Spoto1 , and
Fabio Tagliaferro1

1 Dipartimento di Informatica, Università di Verona, Italy
2 Corvallis S.r.l. , Padova, Italy

{luca.olivieri, fausto.spoto, fabio.tagliaferro}@univr.it

Abstract. Smart contracts are computer code that runs in blockchain
and expresses the rules of an agreement among parties. A bug in their
code has major consequences, such as rule violations and security attacks.
Smart contracts are immutable and cannot be easily replaced to patch a
bug. To overcome these problems, there exist automatic static analyzers
that �nd bugs before smart contracts are installed in blockchain. How-
ever, this o�-chain veri�cation is optional : programmers are not forced
to use it. This paper de�nes on-chain veri�cation instead, that occurs
inside the same blockchain nodes, when the code of smart contracts is
installed. It acts as a mandatory entry �lter that bans code that does not
abide to the veri�cation rules, that are consequently part of the consensus
rules of the blockchain. Thus, an improvement in on-chain veri�cation
entails a consensus update of the network. This paper provides an im-
plementation of on-chain veri�cation for smart contracts written in the
Takamaka subset of Java, running as a Tendermint application. It shows
that on-chain veri�cation works, reporting actual experiments.

Keywords: Smart contract · software veri�cation · program analysis ·

blockchain · Tendermint.

1 Introduction

Blockchain is a distributed ledger that replicates data in a peer-to-peer network
of nodes. Transactions are ledger updates, digitally signed by the users. The
nodes of the network collect broadcasted transactions into a growing cryptogra-
phically-linked chain of blocks. They execute a consensus algorithm to agree
on the ledger evolution. Once consensus is achieved, it is hard, or impossible,
to withdraw transactions from the blockchain. In this sense, blockchains are
immutable. Smart contracts specify rules and e�ects of transactions and can be
either built-in or given as custom code installed inside the same blockchain.

Bitcoin [9,1], in 2008, was the �rst popular blockchain implementation. It is a
peer-to-peer electronic cash system that stores and transmits value in a currency

? Work supported by FSE � Regione del Veneto: DGR N. 1463/2019, Innovazione e
ricerca per un Veneto più competitivo � Assegni di ricerca anno 2019.

https://orcid.org/0000-0001-8074-8980
https://orcid.org/0000-0003-2973-0384
https://orcid.org/0000-0002-5904-8768

called bitcoin, using a Proof of Work (PoW) consensus algorithm. A Turing-
incomplete low-level language speci�es Bitcoin's transactions. It can be seen as
a limited scripting language for smart contracts. In 2013, Ethereum [4,2] intro-
duced a Turing-complete bytecode for smart contracts, for developing decentral-
ized applications. Ethereum smart contracts can be programmed in high-level
languages, with Solidity being the most popular one, and run on the Ethereum
virtual machine. Ethereum uses PoW but is currently switching to Proof of

Stake (PoS), a consensus algorithm with reduced resource consumption [12].
The Tendermint protocol [8] provides a generic and customizable infrastructure
for networking and consensus through PoS, with a pseudo-random election of
the validator node for the next block. Network participants who want to become
validators freeze a certain amount of stake, that acts as an economic incentive
that dissuades from validating or creating fraudulent transactions. If the network
detects a fraudulent transaction, the culprit loses part of its stake and the right
to act as a validator. Tendermint's protocol tolerates up to 1

3 of misbehaving
nodes. Tendermint leaves the notion of transaction unspeci�ed: programmers
can develop an application layer for Tendermint, that speci�es which transac-
tions exist and which is their semantics. The application layer can be written in
any programming language and can be an actual environment for the execution
of Turing-complete smart contracts, similarly to Ethereum.

Not surprisingly, Turing-completeness for smart contracts introduces the risk
of all sort of bugs [3,11]. Since smart contracts deal with money and cannot be
replaced, it is paramount to install only correct code in blockchain. Thus, there
exist many analyzers that verify smart contracts before they get installed in
blockchain. For instance, https://mythx.io is an analysis service for Solidity
that uses symbolic analysis to detect software vulnerabilities. Echidna [7] uses a
fuzzing approach to �nd a sequence of transactions that violates a given property.
Slither [6] uses data-�ow and taint analysis to �nd potential issues. Furthermore,
there are companies that provide code audit services, using both automatic tools
and human investigation. A limit of these tools and procedures is that they are
optional and external to the blockchain (hence o�-chain): the latter does not
actively protect itself against the deployment of bugged or dangerous code.

This paper makes the following contributions:

� It de�nes on-chain code veri�cation, where the nodes of the blockchain ver-
ify the code being deployed. That is, the same network, internally, runs a
mandatory code veri�cation step and rejects code that does not pass it. As
a consequence, on-chain veri�cation is a defensive, proactive technique that
guarantees that all code executed in blockchain has been successfully veri�ed.

� It describes an actual implementation of a blockchain with on-chain veri�ca-
tion, built as a Tendermint application that runs smart contracts written in
the Takamaka subset of Java [14]. Note that we have used Tendermint as a
third-party tool over which we integrate our code. Nothing has been changed
in Tendermint. Our code includes 26 on-chain checks, that mostly verify the
correct use of Takamaka's primitives and code annotations and the use of a
deterministic subset of Java [15].

https://mythx.io

Application

Verification

Consensus

Networking Input

ABCI

Output

Fig. 1. High-level architecture of an application running on Tendermint Core and per-
forming on-chain veri�cation.

� It describes a lazy re-veri�cation approach that copes with the evolution of
the code veri�cation rules. Namely, on-chain veri�cation is part of code de-
ployment transactions, hence its rules are consensus rules whose evolution
requires a network update. Moreover, code previously successfully veri�ed
with old veri�cation rules might fail to pass new veri�cation rules. The im-
plementation of this last contribution is not available yet.

This paper is organized as follows. Sec. 2 de�nes a general architecture for
on-chain code veri�cation. Sec. 3 describes our implementation of on-chain ver-
i�cation, over Tendermint, and shows an on-chain check. Sec. 4 reports exper-
iments with our implementation and describes how readers and reviewers can
validate them. Sec. 5 shows how the blockchain can cope with the evolution of
code veri�cation rules. Sec. 6 comments on limitations, related and future work.

2 On-Chain Code Veri�cation

This section de�nes the architecture of a blockchain node with on-chain code
veri�cation, built over Tendermint. Following Fig. 1, it consists of three layers:

Networking: discovers and connects nodes with each other, propagates re-
quests for transactions and collects their responses from other nodes.

Consensus: compares and approves/rejects the responses obtained by execut-
ing the requests on the nodes.

Application: speci�es which requests are valid, how their responses are com-
puted and how the application's state consequently evolves.

Tendermint Core is an implementation of networking and consensus, without any
application layer (its distribution includes a few toy applications, irrelevant for
our purposes). Programmers develop their own application layer and plug it into
Tendermint Core via its Application BlockChain Interface (ABCI). Tendermint
Core replicates the application state on each machine of the network.

Application

State

Tendermint Core

Database of blocks

Messages

TCPTCP

ABCI
via

TCP

Other
Tendermint

nodes
running
the same

application

Fig. 2. Tendermint Core and a Tendermint application, with their respective databases.

Fig. 2 shows a more detailed picture of Tendermint Core and of an application
connected through its ABCI. It shows that Tendermint Core keeps the blocks of
the blockchain in its own database, that needn't be the same used to hold the
application's state. The latter holds, for instance, the code of the smart contracts
installed in blockchain and the value of their state variables. Tendermint Core
needs only the hash of the application state, for consensus, to ensure that all
nodes have reached the same application state.

One can de�ne the application state as a map σ from the hash of the requests
that the blockchain has executed to the responses that have been computed for
them. The application state contains the full responses, but only the hash of
the requests. Hence, it can be implemented as a Merkle-Patricia trie. The full
requests are contained in the database of blocks of Tendermint Core instead,
since they are needed to replay the transactions in all nodes of the network.

On-chain code veri�cation requires a code veri�cation module (Fig. 1). This
is part of the application layer, since it contributes to the execution of the
application-speci�c requests for code installation in blockchain. Assume that
a request , whose hash is requesth, reaches the blockchain, requiring to install, in
blockchain, the code of some smart contracts, reported inside request .

Fig. 3 shows the sequence diagram for the execution of request . Namely,
Tendermint Core routes request through networking and consensus up to the
application, that uses its veri�cation module to either approve or reject the
code. If approved, the application includes the code in a response and updates
its state σ with a new binding: σ(requesth) = response. The hash requesth is an
immutable, machine-independent reference to this code, used later to instantiate

NETWORK/CONSENSUS APPLICATION

ABCIUser Request
handler

call method request, request
h

Verification

jar check

approve/reject code

response

Smart contract
executor

Tendermint
Core

response with

consensus

State

update state σ(request
h
)

Fig. 3. Sequence diagram for code veri�cation and installation in blockchain.

and execute smart contracts. If the code is rejected, instead, the application state
is expanded with a failure response, that does not contain any code.

Fig. 4 reports an example of application state evolution. It reports the re-
quests in full, for readability, but remember that only the hash of the requests
is kept in the application state. Fig. 4 (a) shows the application state after the
execution of a code installation request for which veri�cation succeeds. The code
is Java bytecode, packaged into a jar, i.e., a zipped container of Java bytecode.
The response contains the same jar (i.e., the same code as the request3). In terms
of Java, the hash of the request is the classpath of subsequent code executions.
Fig. 4 (b) reports, instead, a request whose code fails to verify. The response
does not include any code installed in blockchain. This shows that the veri�ca-
tion rules are part of the consensus rules that determine which code installation
request is valid and which must be rejected instead (Fig. 4 (a) and (b)). Hence
they must be the same in every node of the network and must be deterministic.

On-chain veri�cation performs code veri�cation statically, only once, when
the code is installed in blockchain. For instance, Fig. 4 (c) shows a subsequent
request that asks to instantiate a smart contract whose code has been installed
by the request in Fig. 4 (a). The request in Fig. 4 (c) uses the hash of the re-
quest in Fig. 4 (a) as its classpath and contains the parameters for calling the
constructor of the smart contract. The execution of the request runs that con-
structor, without code veri�cation: it has been already performed in Fig. 4 (a).

3 The response might also contain an instrumentation of the code, as it is the case for
the Java subset for programming smart contracts called Takamaka, that we use in
our implementation. This is irrelevant here and we refer the interested reader to [14].

Fig. 4. The evolution of the application state during a sequence of requests.

The immutable reference hash of request#0 is used later to refer to the new
smart contract instance4. The state of the new smart contract is reported in the
response as a set of updates, that is, instance �elds modi�ed during the execution
of the request, including those of the smart contract instance hash of request#0

that has been created in blockchain. Finally, Fig. 4 (d) shows the execution of
a request asking to call a method on the instance of smart contract hash of re-

quest#0. This last request refers to both the classpath and the target instance
smart contract. Its execution, in general, modi�es some instance �elds of objects
in blockchain, that are reported as updates in its response. This last request does
not verify the code either, since it is not a code installation request.

The rules of on-chain veri�cation are part of the consensus rules of the
blockchain, since they determine if the response of a request to install code
in the blockchain is successful or failed. Hence, they determine the evolution of

4 The index #0 refers to the �rst object created during the execution of a request.
In general, a request can instantiate many objects, depending on the code that it
executes. For simplicity, this example assumes that only one has been instantiated.

the state of the application layer and its hash, that is reported in the blocks
of the underlying Tendermint blockchain, that uses it for consensus. This is the
standard way of working for Tendermint. Hence, all nodes must use the same
veri�cation rules. Nodes that use di�erent rules will be automatically excluded
from the Tendermint blockchain.

3 Implementation

We have implemented on-chain veri�cation for smart contracts written in the
Takamaka subset of Java [14] (the lazy re-veri�cation technique of Sec. 5 is still
under development and we leave it for future work). The goal of Takamaka is to
write smart contracts in a well-known programming language, leveraging exper-
tise and existing mature development tools. The application layer of Takamaka
is a state machine (the Tendermint application in Fig. 2) that executes trans-
actions from request to response. Requests can specify the addition of a jar in
the permanent state of the application, or the execution of a constructor, or of
an instance or static method of code previously installed in the state. Responses
include the e�ects of the transaction, as a set of �eld updates (see Fig. 4). Up-
dates can be computed since the jar of the Java code is instrumented before
being installed in blockchain, with extra code that keeps track of the a�ected
�elds of objects [14]. Determinism is ensured since only a deterministic subset
of Java is allowed, restricted to a deterministic API of the Java library [15]. The
state machine of Takamaka is implemented in Java and runs on a standard Java
virtual machine. The state is kept in a Merkle-Patricia trie that implements a
map from hash of requests to their corresponding response (Fig. 4). This trie is
kept in the Xodus transactional database by JetBrains5.

The veri�cation module is implemented as a sequence of checks performed
on methods and classes. Since the request of installing new code in blockchain
contains the compiled bytecode only, such checks run at Java bytecode level, by
using the BCEL library for Java bytecode manipulation6. The source code is
simply not available in blockchain. Currently, Takamaka's on-chain veri�cation
performs 26 checks on every jar that gets installed in blockchain. They must all
pass, or otherwise the jar will be rejected. Fig. 5 describes some of them.

We show a speci�c example of check now. It veri�es that method caller() is
used in the right context. That method corresponds to msg.sender in Solidity:
it allows programmers to get a reference to the contract that called a method or
constructor X.

5 https://github.com/JetBrains/xodus
6 https://commons.apache.org/proper/commons-bcel

https://github.com/JetBrains/xodus
https://commons.apache.org/proper/commons-bcel

Correct context for @FromContract

@FromContract is only applied to instance
methods or to constructors of storage classes
(i.e., classes whose instances can be kept in
blockchain).

Correct calls to @FromContract
@FromContract methods or constructors are
only called from instance methods or construc-
tors of contracts.

Correct context for @Payable

@Payable is only applied to @FromContract

methods or constructors of contracts (since
only contracts have a balance).

Correct �elds in storage classes
Classes whose instances can be kept in
blockchain can only have a restricted set of
types for their �elds.

Correct context for caller() See the description in this paper.

No �nalizers
Since their execution is non-deterministic in
Java.

Only white-listed Java APIs To enforce determinism (see [15]).

Fig. 5. Some of the 26 on-chain veri�cations currently performed by Takamaka.

The method caller() can be used inside the code of X only if X satis�es
two constraints7:

1. X is annotated as @FromContract(class), for some class;

2. the invocation of caller() occurs on this.

The rationale of constraint 1 is that @FromContract(class) guarantees that X
can only be called from a contract of type class, or subclass, or from an external
wallet whose paying account has type class, or subclass. Hence the caller exists.
For instance, the following contract stores its creator in �eld owner. The use of
caller() is correct here, since it occurs inside a @FromContract constructor:

7 @FromContract and, later, @Payable are Java annotations, that is, a mechanism for
adding metadata information to source and compiled code. They are irrelevant for
the code executor, but can be used by code analysis and instrumentation tools.

import io.takamaka.code.lang.Contract;

import io.takamaka.code.lang.FromContract;

public class C1 extends Contract {

private C1 owner;

public @FromContract(C1.class) C1() {

owner = (C1) caller(); // ok

}

}

Instead, it is incorrect to invoke caller() in a method or constructor not an-
notated as @FromContract, since its caller is not necessarily a contract and
caller() would be meaningless in that case:

import io.takamaka.code.lang.Contract;

public class C2 extends Contract {

public void m() {

... = caller(); // error at deployment time

}

}

The reason of constraint 2 is that its violation lets one access the caller of other
contracts, with possible logical inconsistencies and security issues. For the same
reason, the use of tx.origin is normally an antipattern in Solidity (see Tx.origin
Authentication in [2]). Constraint 2 holds in classes C1 and C2 above, but is
violated below:

import io.takamaka.code.lang.Contract;

import io.takamaka.code.lang.FromContract;

public class C3 extends Contract {

private C3 owner;

public @FromContract(C3.class) C3() {

owner = (C3) caller(); // ok

}

public @FromContract void m() {

... owner.caller() ...; // error at deployment-time

}

}

Fig. 6 reports our implementation of a check that veri�es if a method sat-
is�es constraints 1 and 2 above. The code has been simpli�ed for readability:
its complete version can be found in the repository of the distribution of our
implementation of the runtime of Takamaka (see Sec. 4). Full understanding of
the code in Fig. 6 requires knowledge about Java bytecode and BCEL, which

public class CallerIsUsedOnThisAndInFromContractCheck extends Check {

public CallerIsUsedOnThisAndInFromContractCheck() {
boolean isFromContract = annotations.isFromContract

(className, methodName, methodArgs, methodReturnType);

instructions()
.filter(this::isCallToCaller)
.forEach(ih -> {

if (!isFromContract)
issue(new CallerOutsideFromContractError(inferSourceFile(), methodName, lineOf(ih)));

if (!previousIsLoad0(ih))
issue(new CallerNotOnThisError(inferSourceFile(), methodName, lineOf(ih)));

});
}

private boolean previousIsLoad0(InstructionHandle ih) {
Instruction ins = ih.getPrev().getInstruction();
return ins instanceof LoadInstruction && ((LoadInstruction) ins).getIndex() == 0;

}

private final static String TAKAMAKA_CALLER_SIG = "()Lio/takamaka/code/lang/Contract;";

private boolean isCallToCaller(InstructionHandle ih) {
Instruction ins = ih.getInstruction();
if (ins instanceof InvokeInstruction) {

InvokeInstruction invoke = (InvokeInstruction) ins;
ReferenceType receiver;

return "caller".equals(invoke.getMethodName())
&& TAKAMAKA_CALLER_SIG.equals(invoke.getSignature())
&& (receiver = invoke.getReferenceType()) instanceof ObjectType
&& classLoader.isStorage(((ObjectType) receiver).getClassName());

}
else

return false;
}

}

Fig. 6. The on-chain check for a correct use of caller().

is outside the scope of this paper. Nevertheless, it is possible to understand the
structure of the code: the constructor of the check scans the stream of Java
bytecode instructions of the method (instructions()), �lters those that call
a method named caller that returns a contract, and checks two conditions
for each of them (with the two if's inside the forEach): the method must be
annotated as FromContract (constraint 1 above) and the invocation must be
immediately preceded by an aload_0 bytecode instruction. The latter is Java
bytecode for pushing this on the stack, as receiver of the call to caller() (con-
straint 2 above). If any of the if's is satis�ed, an issue is generated, which will
later reject the installation of the code in blockchain.

4 Experiments

We have implemented our on-chain veri�cation for the Takamaka subset of
Java, inside its runtime that works as a Tendermint application. It is an ac-

tual blockchain running on Tendermint, that can be programmed with smart
contracts written in Java. Our implementation is part of a larger project, called
Hotmoka, whose long-term goal is to use the Takamaka language for program-
ming both blockchains and IoT devices. We have created three scripts that re-
quest to install in blockchain the examples from Sec. 3. We have also created a
test that installs a smart contract and uses it to run many transactions, to check
the scalability of the technique and evaluate the di�erence when on-chain veri-
�cation is on or o�. Readers who want to run the experiments and inspect the
results can download the code8 and follow the instructions in the WTSC21.txt.
That repository contains also the code of the 26 checks of on-chain veri�cation
(including that in Fig. 6).

The �rst experiment starts a blockchain of a single node and runs a script
that connects to the node and installs a jar containing class C1 from Sec. 3. The
result is successful:

Connecting to the blockchain node at localhost:8080... done

Installing the Takamaka runtime in the node... done

Installing C1 in the node... done (on-chain verification succeeded)

C1.jar installed at address ee848b5bc7fd8283ab01b5977970e71f548...

The subsequent experiment installs C2 instead. The attempt to install the code
in blockchain will fail since on-chain veri�cation fails:

Connecting to the blockchain node at localhost:8080... done

Installing the Takamaka runtime in the node... done

Installing C2 in the node...

Exception in thread "main" io.hotmoka.beans.TransactionException:

io.takamaka.code.verification.VerificationException: C2.java:8

caller() can only be used inside a @FromContract method or constructor

The third experiment performs the same operation with class C3. This attempt
will fail since on-chain veri�cation fails:

Connecting to the blockchain node at localhost:8080... done

Installing the Takamaka runtime in the node... done

Installing C3 in the node...

Exception in thread "main" io.hotmoka.beans.TransactionException:

io.takamaka.code.verification.VerificationException: C3.java:14

caller() can only be called on "this"

In order to evaluate the scalability of our technique, we have created a smart
contract that creates and funds a pool of 500 externally-owned accounts and
allows one to determine which is the richest among them (has highest balance).
We have written a JUnit test that installs that smart contract in blockchain
and uses it to create and fund the 500 accounts, execute 1, 000 random money
transfers between them and ask for the richest. This process is repeated ten
times. The execution time of this test is 158.19 seconds on our machine (Intel

8 git clone �branch wtsc21 https://github.com/Hotmoka/hotmoka.git

Core i3-4150, 16GB of RAM, running Ubuntu Linux 20.04.1). In total (including
code installation and account creation) the test runs 10, 020 transactions, that is,
it performs 63.34 transactions per second. By turning on-chain veri�cation o�,
the same test runs in 156.95 seconds, that is, it performs 63.84 transactions per
second. These numbers have been computed as an average over �ve executions
of the test. This shows that on-chain veri�cation increases the execution time of
the test by only 0.79%.

5 Evolution of Code Veri�cation

This section shows that a change in the veri�cation rules requires to re-verify all
code installed in blockchain and that this can be performed lazily, on-demand.

Sec. 2 stated that code veri�cation is only performed when code is installed
in blockchain. However, that is true only under the unrealistic assumption that
the veri�cation module never changes. In practice, that module will be updated
eventually, to include new veri�cation rules or to improve the precision of already
existing rules. When a new version is deployed, it becomes necessary to update
all nodes to that version (or at least all validators), or otherwise consensus might
be lost. A change in the veri�cation rules, if deployed on a subset of the network
only, entails that the updated nodes might accept a request that the non-updated
nodes might reject instead, or vice versa.

All approaches to a network update can be used here. The novelty, however,
is that some code that was successfully veri�ed with the previous version of the
veri�cation module might be rejected with its current version, or vice versa.
Hence, there must be a mechanism that enforces that the execution of some
code in blockchain occurs only if that code passes the current veri�cation rules.
Conceptually, this means that an update of the veri�cation module triggers a re-
veri�cation of all code previously successfully installed in blockchain. In practice,
this cannot be performed, since it would be extremely expensive and would hang
the nodes for a long time. Our solution, that we are going to describe, is to lazily
re-verify the code on-demand, when it is asked to run. This amortizes the cost
of re-veri�cation. Moreover, [10] shows that only 0.05% of all contracts installed
in Ethereum are involved in 80% of the transactions. Hence, a lazy approach
avoids the re-veri�cation of code that might actually never run again.

In order to implement this lazy re-veri�cation approach, we expand the in-
formation in the response of a successful code installation request (Fig. 4 (a)).
Namely, together with the installed code, response is enriched with a numeri-
cal tag τ(response), i.e., the version of the veri�cation module that has been
used to verify the code inside response. The sequence diagram in Fig. 7 shows
the work�ow for lazy code re-veri�cation. Assume that a request arrives, that
requires to run code referred with the hash requesth of a previous, successful
code installation request (as in Fig. 4 (c) and (d)). The node �nds out that
σ(requesth) = response has a veri�cation tag τ(response) and compares it with
the current version τ of the veri�cation module. There are two possibilities:

NETWORK/CONSENSUS APPLICATION

ABCIUser Request
handler

run code referred with request
h

Verification

 jar check

 if τ > τ(σ(request
h
))​

approve/reject code

response

Smart contract
executor

Tendermint
Core

response with

consensus

execute code

State

update state σ(request
h
)

execution result

Fig. 7. Sequence diagram for lazy code re-veri�cation.

1. τ = τ(response): the code was veri�ed with the current version of the veri�-
cation module, it does not need re-veri�cation and can be run immediately;

2. τ > τ(response): the code was veri�ed with an old version of the veri�cation
module; it must be re-veri�ed before being run.

In the second case, the node veri�es the code again, using the current version
τ of the veri�cation module. This is possible since response includes that code
(Fig. 4 (a)). A new response response ′ will be computed (successful, having τ
as veri�cation module version, or failed) and the application state is updated as
σ(requesth) = response ′. The use of requesth in future requests will not re-verify
the code, until a newer version of the veri�cation module is installed. The update
is possible since it occurs in the state, not in the blockchain, whose blocks are
immutable.

It is important to note that response ′ might state that reveri�cation failed,
because the old code passed the previous veri�cation rules but not the new ones.
In that case, the execution of the code will fail, since its classpath is not valid
anymore. This means that a smart contract might work today, but might stop
working tomorrow, if updated veri�cation rules reject its code. In theory, the
converse is also possible: the same contract might be reactivated after tomor-
row, if another change in the veri�cation rules replaces a failed response with
a successful response. However, we have decided to forbid this second scenario,
since it might be surprising for users.

6 Discussion

To our knowledge, this paper de�nes and implements the �rst on-chain code
veri�cation for smart contracts, that allows the same blockchain to reject the
code that does not pass a set of veri�cation rules. From this point of view, the
technique is related to continuous integration, that builds and deploys code only
if it passes all compilation and testing requirements. The main di�erence is that
smart contracts cannot be replaced or debugged once installed in blockchain.

Some blockchains, such as Ethereum, apply a notion of transparency [10],
that lets one store in blockchain the source code of the smart contracts, to guar-
antee that it actually compiles into their bytecode. But this is only an optional
technique that ensures that bytecode and source code match: no code veri�cation
is applied.

The speci�c technique for updating the consensus rules of a network, after
a change in the veri�cation rules (Sec. 5), is orthogonal to our work. In Cos-
mos, the government module supports such an update, with (dis-)incentives to
minimize misconduct within the participants. Polkadot delegates updates to pe-
riodic referendums among stakeholders9. Algorand [5] triggers an update if a
large majority of block proposers declare to be ready for that.

On-chain veri�cation must be e�cient, in order not to block the nodes of the
network. Our experiments (Sec. 4) show that the time of analysis is largely dom-
inated by the time of block creation, also because smart contracts are typically
small. Nevertheless, the on-chain application of powerful static analyses, such as
those currently running, for instance, on Java desktop applications [13], seems
challenging. On-chain veri�cation must be understood as a mandatory, defensive
veri�cation technique, rather than as a replacement for o�-chain veri�cation.

In Sec. 5, a change of the veri�cation rules triggers the re-veri�cation of code
already in blockchain. This might not be the best choice, since it might disable
some smart contracts already in blockchain and lock their funds. Moreover, a
change of the veri�cation rules might be opposed by a large number of users, if
it a�ects some highly popular contract. Future work will investigate linguistic
primitives and programming patterns that allow funds to be unlocked or specify
that some contract should not be re-veri�ed after a veri�cation rules change.

References

1. A. M. Antonopoulos. Mastering Bitcoin: Unlocking Digital Cryptocurrencies.
O'Reilly, 2nd edition, 2017.

2. A. M. Antonopoulos and G. Wood. Mastering Ethereum: Building Smart Contracts
and Dapps. O'Reilly, 2018.

3. N. Atzei, M. Bartoletti, and T. Cimoli. A Survey of Attacks on Ethereum Smart
Contracts (SoK). In 6th International Conference on Principles of Security and
Trust (POST'17), volume 10204 of Lecture Notes in Computer Science, pages 164�
186, Uppsala, Sweden, April 2017. Springer.

9 See https://wiki.polkadot.network/docs/en/learn-governance

https://wiki.polkadot.network/docs/en/learn-governance

4. V. Buterin. Ethereum Whitepaper, 2013. Available at https://ethereum.org/

en/whitepaper/.
5. J. Chen and S. Micali. Algorand: A Secure and E�cient Distributed Ledger.

Theoretical Computer Science, 777:155�183, 2019.
6. J. Feist, G. Grieco, and A. Groce. Slither: A Static Analysis Framework for Smart

Contracts. In 2nd International Workshop on Emerging Trends in Software Engi-
neering for Blockchain (WETSEB@ICSE'19), pages 8�15, Montreal, QC, Canada,
May 2019. IEEE / ACM.

7. G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce. Echidna: E�ective, Usable,
and Fast Fuzzing for Smart Contracts. In 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA'20), pages 557�560, USA,
July 2020. ACM.

8. J. Kwon. Tendermint: Consensus without Mining. Available at https://

tendermint.com/static/docs/tendermint.pdf, 2014.
9. S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Available at https:

//bitcoin.org/bitcoin.pdf, 2008.
10. G. A. Oliva, A. E. Hassan, and Z. M. Jiang. An Exploratory Study of Smart

Contracts in the Ethereum Blockchain Platform. Empirical Software Engineering,
25(3):1864�1904, 2020.

11. N. Popper. A Hacking of More than $50 Million Dashes Hopes in the World of
Virtual Currency. The New York Times, 2016-06-18.

12. J. Sedlmeir, H. U. Buhl, G. Fridgen, and R. Keller. The Energy Consumption of
Blockchain Technology: Beyond Myth. Business & Information Systems Engineer-
ing, 62(6):599�608, 2020.

13. F. Spoto. The Julia Static Analyzer for Java. In 23rd Static Analysis Sympo-
sium (SAS'16), volume 9837 of Lecture Notes in Computer Science, pages 39�57,
Edinburgh, UK, September 2016. Springer.

14. F. Spoto. A Java Framework for Smart Contracts. In 3rd Wokshop on Trusted
Smart Contracts (WTSC'19), volume 11599 of Lecture Notes in Computer Science,
pages 122�137, St. Kitts and Nevis, February 2019. Springer.

15. F. Spoto. Enforcing Determinism of Java Smart Contracts. In 4th Wokshop on
Trusted Smart Contracts (WTSC'20), volume 12063 of Lecture Notes in Computer
Science, pages 568�583, Kota Kinabalu, Malaysia, February 2020. Springer.

https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

	On-Chain Smart Contract Verification over Tendermint

