
Privacy-preserving
Resource Sharing using Permissioned Blockchains

(the Case of Smart Neighbourhood)

No Author Given

No Institute Given

Abstract. In a resource sharing system, users offer goods and service with
specified conditions of access that if met, the access will be granted. Tra-
ditional resource sharing systems use a trusted intermediary that mediates
users’ interactions. Our work is motivated by a decentralized resource sharing
platform (proposed in WTSC’19) that uses a permissioned blockchain to
allow users to share their resources with their specified attributed-based access
policies that are enforced through a set of smart contracts, and removes the
need for a trusted intermediary. The system, however, is privacy-invasive and
allows users’ accesses to be traced, and offers limited availability as access
to a resource requires its owner to be on-line. We design a decentralized
attribute-based access control system that achieves the same functionality
while preserving user’s access privacy, and automating access which in con-
sequence leads to the availability of resources. We use two cryptographic
primitives, Ciphertext Policy Attribute-Based Encryption (CP-ABE), and
ring signatures, and design smart contracts that allow specification and cryp-
tographic enforcement of the users’ specified policies for their resources. We
analyze the security and privacy of the system, provide the description of
smart contracts and implement a proof of concept implementation of the
smart contracts and cryptographic algorithms that are used in the system.
Our design and implementation are general and can be used for privacy-
preserving resource sharing with fine-grained access control in other settings
including data and information sharing among collaborating parties.

Keywords: Privacy-preserving resource sharing, blockchain, smart contract,
attribute-based access control, attribute-based encryption, anonymous au-
thentication, smart neighborhood

1 Introduction

Resource sharing platforms enable peers to acquire, provide, or share goods and ser-
vices through intermediary service providers. Sharing platforms such as Airbnb [1] and
Uber [2] are centralized online platforms that connect resource owners with resource
providers, and manage their interactions and payments. In centralized systems the plat-
form provider is a single Trusted Authority (TA) that mediates all interactions. Cen-
tralized designs have the drawback of having a single point of failure and a single TA
with full access to users’ data. This is not only highly privacy-invasive, but in the case
of compromise of TA, reveals all users information and history of their interactions.

2 No Author Given

In WTSC 2019, a decentralized resource sharing platform for smart neighbourhood
was proposed [3] that addresses some of the shortcomings of centralized systems.
Authors motivated their work by considering a smart neighbourhood application
where an initial trust among parties (and so willingness to share) exists because of the
geographic proximity, but there is a need for user control of their sharing so that they
are confident about the outcome. Authors proposed a decentralized system that uses
a permissioned blockchain that is maintained by a set of Consensus nodes (or C-nodes
for short), and enables users to specify conditions of access to their resource and be
confident that they will be enforced. Sharing will be among “registered” users of the
system that are approved by the C-nodes that use proof of authority consensus among
themselves to control access to the blockchain. C-nodes verify transactions to ensure
they are generated by registered users and publish them on the blockchain. The
system uses attribute-based access control to allow users to express fine-grained access
conditions of access to resources by specifying associated attribute-based access policies.
Resources have certificates for their properties (attributes) that can be verified by users.
A resource requester provides their (certified) attributes in their request, which will be
verified by C-nodes and resource providers to match the stated policy. If the request is
accepted, the resource owner issues an access token that allows the requester to access
the resource. Authors designed a set of smart contracts that automates and implements
the system and enforces the stated access policies, effectively removing the need for a
single TA. The system however has major drawbacks: it offers no privacy for users and
allows their attributes and accesses to be visible by the C-nodes and resource providers;
It has limited availability: for accessing a resource, the resource provider must be
online to issue the access token. Our goal is to redesign the system such that it is a
privacy-preserving decentralized attribute-based access control system that automates
users’ accesses and removes the need for the resource owner to mediate each access.

1.1 Our contributions.

We use two cryptographic building blocks, Ciphertext Policy Attribute-based En-
cryption (CP-ABE) [4] to cryptographically enforce access control, and anonymous
authentication and access using ring signature [5]. Using CP-ABE protects the need
to send the requesters’ attributes in plaintext to the blockchain, and ring signature
enables anonymous authentication and access request validation, preventing trace-
ability of the requests. Effective use of these primitives needs an overhaul of smart
contracts in [3] and design of a new set of contracts. We provide a detailed security and
analysis of our design, and provide a proof of concept implementation to demonstrate
feasibility of using advanced cryptographic primitives in real-life applications.

Although our work is motivated by sharing in smart neighbourhood, our design and
implementation are general and will have wider applications for privacy-preserving
resource sharing with fine-grained access control systems, for example, trusted infor-
mation sharing among collaborating organizations.

Proposed system. In the following, we provide an overview of the system and
highlight its new components. The system consists of a number of entities that interact
through the blockchain and smart contracts to publish and access resources according

Privacy-preserving Resource Sharing using Permissioned Blockchains 3

to the stated policies.
Entities of the proposed system. In addition to users, we consider three types of au-
thorities: (i) Blockchain Authorities (BA) that maintain the blockchain, membership
and authentication of users, (ii) Certificate Authorities (CA) that are trusted for
issuing certificates for shareable objects and attributes of users that can be verified
by BA as well as users, and (iii) CP-ABE Attribute Authority (CP-ABE AA) that
is responsible for generating CP-ABE private and public keys for registered users
(registration by BA) according to their attributes.

Smart contracts for controlling access. We use smart contracts to advertise resources
with their associated access policies, and the CP-ABE encrypted metadata. These
smart contracts provide the required information to requesters to allow them to find
items of interest and using associated policy determine if their attributes satisfy the
policy. We consider the following smart contracts:

i. User directory contract (uDir): this contract is deployed by the blockchain au-
thority (BA). It holds a table containing the pseudonym and public key of each
registered user together with its certificate (corresponding to the user’s public
key). This contract allows users to choose ring members (public keys of a group
of users) to generate their ring signature.

ii. Object directory contract (oDir): this contract is deployed by the blockchain
authority (BA). It holds a table containing the pseudonym and public key of
the resource owner, object Id, description of the objects, the link to the the
objPropRep and objACC contracts.

iii. Object property repository contract (objPropRep): this contract is deployed by
the resource owner. It holds the Id and properties of the shareable object.

iv. Object access control contract (objACC): this contract is deployed by the resource
owner. It holds the object Id along with the access policies and CP-ABE en-
crypted metadata of the resource. This contract differs from ACC contract of [3]
since we use CP-ABE for enforcing the access control, and evaluation of policies
is done off-chain.

v. Adjudicator contract (Adj): this contract is deployed by BA, and allows requesters
to report misbehaviors. The system can choose a verifier to validate the reports
and penalize the misbehaving owners.

The system uses a permissioned blockchain that is accessible to the system registered
users.

User authentication. BA runs an authentication service that uses Authentication
Servers AuthServ, that register users and provide them with certified public keys
(using public key certificate), and verify users’ accesses to the blockchain. User
accesses are transactions that are signed by the users and verified by the BAs. For
privacy, the user identity is verified through an anonymous authentication protocol,
and the signature on the transaction will be based on an anonymous signature. We
note that using only an anonymous signature on the transaction will make the system
vulnerable to replay attacks and so the transaction anonymity and user authentication
both must be ensured.

4 No Author Given

We use a challenge and response anonymous authentication system, where the response
is the ring signature [5] of the prover on the challenge sent by the verifier. The challenge
in our system is obtained from a randomness beacon service (provided by the BA) that
is broadcasted at regular intervals. The random string has length ` that is determined
by the system security level (we use `=512 bits in our implementation). A user
request (issued transaction) will include the current value of the challenge, and will
be considered valid (after verification of the signature) if it has been generated within
a defined interval. This effectively combines user authentication and transaction
validation (transaction is generated by a registered user within a close time interval).
The transaction that is sent to the BA will be encrypted using the BA’s public key.

Processing a request. There are two types of requests, (i) non-anonymous requests
which are used to browse blockchain and obtain information about existing resources
and users, and (ii) anonymous requests, which are used for a specific resource. The
sequence of steps in making a request to access an item, and its processing are as
follows: (i) User Br authenticates itself to an AuthServ using a traditional digital
signature, and browses oDir and uDir contracts on the blockchain; (ii) Br makes
an anonymous request (using ring signature) to the objPropRep contract for an
object O that is listed in oDir; AuthServ authenticates the (anonymous) request
of Br and passes it to objPropRep contract; (iii) Br receives the properties of the
object O and the corresponding certificates, and if verified, makes an anonymous
access request for the object O to the objACC contract; (v) AuthServ authenticates
the (anonymous) request of Br and passes it to the objACC contract; (vi) Br receives
the access policies and the CP-ABE encrypted metadata, and decrypts it using
its CP-ABE private key. If the private key matches the access policy of CP-ABE
encrypted metadata, Br will obtain the link to the object O.

Security and Privacy.We use a CP-ABE scheme to ensure a requester whose attributes
satisfy the item’s stated policy is able to decrypt it (security), and use ring signature
based authentication protocol to ensure that accesses are by authorized users (security),
and the BA and the resource owner cannot link the access requests to the resource
requester. Outsiders will only see encrypted communications. A detailed security and
privacy analysis is given in Section 4.

Proof of concept implementation. We use Ganache [6] to setup the required
private (permissioned) Ethereum blockchain infrastructure. Smart contracts are
written in Solidity language using Remix IDE [7], and Truffle is used for contract
deployment and run of the experiments. We evaluate computation cost of using
cryptographic primitives namely, (CP-ABE) [4], ring signature [5] and AES symmetric
key encryption scheme [8], as well as the execution cost of the smart contract functions
in Ethereum blockchain. Our results are presented in Section 5 and show viability of
our system for real-world applications.

Organization. Section 2 reviews preliminaries, Section 3 describes the details of
our system, assumptions and security goals and user’s interaction with the system.
Section 4 gives the security and privacy analysis of the proposed system. Section 5
gives the details of the implementation and evaluation result, and finally section 6
concludes the paper.

Privacy-preserving Resource Sharing using Permissioned Blockchains 5

1.2 Related work

Anonymous access and participation in system has been used in a variety of applica-
tions including electronic voting [9], e-mail [10], and social networking [11]. Access
control models have evolved over years and new models that more efficiently capture
the requirements have been proposed [12,13]. Attribute-Based Access Control (ABAC)
is a more recent model that allows a fine-grained approach to expressing access control
requirements [14,15]. In cryptographic systems, attribute-based encryption (ABE),
first proposed by Sahai and Waters [16], are proposed to allow access control based on
attributes of decryptor. Goyal et al. [17] introduced ciphertext policy attribute-based
encryption (CP-ABE), where each ciphertext is associated with an access structure.
A user receives a secret key associated with their set of attributes and is able to
decrypt a ciphertext if and only if their attributes satisfy the access structure of the
ciphertext. Bethencourt et al. [4] proposed the first CP-ABE construction using the
generic bilinear group model [18,19]. CP-ABE is then used in many privacy-preserving
resource sharing infrastructures including [20,21,22,23,24].

Using blockchain to store and enforce access control policies are given in [25,26,27].
In [28], smart contracts are used for enforcing role-based access control policies. The
work of [29] uses smart contracts to establish an access control for IoT systems. In
[30], a blockchain-enabled decentralized capability-based access control is proposed for
propagation and revocation of the access authorization. A multi-authority attribute-
based access control scheme is proposed in [31]. The work of [31] uses Ethereum
smart contracts to develop an attribute-based access control system. Smart contracts
for access control have also been considered in [32,33,34].

2 Preliminaries

Table 8 in Appendix A summarises the notations used in this paper.

Ciphertext-Policy Attribute-Based Encryption (CP-ABE).ACP-ABE scheme
CP-ABE consists of four algorithms: (i) the setup algorithm CP-ABE.Setup(1λ) that
for a security parameter λ, generates the master secret key msk and the system’s
public key pkabe; (ii) the key generation algorithm CP-ABE.KGen(1λ) that generates
the CP-ABE private key skabe for a given attribute set attr; (iii) the encryption
algorithm CP-ABE.Enc that takes a massage m, and a policy P and produces the
ciphertext cCP -ABE; and (iv) the decryption algorithm CP-ABE.Dec that takes a
ciphertext cCP -ABE that is obtained as above and a private key skabe and outputs
m if attr, the associated attribute set of skabe, satisfies the policy P , else returns ⊥.
In our implementation we use Bethencourt et al. CP-ABE scheme [4].

Ring Signature: Ring signatures [5] is an anonymous signature scheme that hides a
user’s public key among a set of N public keys, making the signer of the message the
holder of one of theN keys. A ring signature scheme RingS consists of three algorithms:
(i) A key generation algorithm RingS.KGen(1λ) that takes the security parameter λ
and produces a set R of N public and private key pairs R={(pki,ski),i∈{1,2···N}};
(ii) Signature generation algorithm RingS.Sig signs a message m using the signer’s
private key ski, and the public keys in R, and outputs a ring signature σR; and (iii)

6 No Author Given

RingS.Vf that takes public keys in R, message m, and the signature σR as input
and verifies the signature: if valid, returns 1, else 0. A secure ring signature ensures
anonymity, unlinkability, and existential unforgeability.

Blockchain and smart contracts. A blockchain is a distributed ledger technology
which stores data (transactions) in a growing chain of ordered blocks that are securely
and irreversibly linked to each other through a cryptographic hash function. All peer
nodes who run the system use a consensus algorithm to agree on the validity and the or-
der of blocks [35]. We consider permissioned blockchains where the consensus algorithm
is run by a set of privileged computing nodes, referred to as Blockchain Authorities
(BA in this paper)1, that verify transactions of users, and if verification succeeds,
publish the result on the chain based on an agreed consensus algorithm. The consensus
algorithm is a Proof of Authority algorithm that will be defined and agreed upon by
the BAs at the time of system setup. A permissioned blockchain is only accessible to
registered members of the system. In non-permissioned blockchain such as Ethereum
[36] anyone can join the blockchain and participate in the consensus algorithm.
Smart contract is a computer program that runs in a blockchain consensus comput-
ing network [37]. Each program instruction is agreed upon through the consensus
algorithm and so the execution of the program will be trusted.

Randomness Beacon. A randomness beacon is a service that periodically generates
and publishes (broadcasts) a random string. Randomness beacons must be unpre-
dictable, unbiased and available [38]. An additional desireable property of randomness
beacon is public verifiability that ensure the claimed randomness of the beacon. An
example of a randomness beacon is the NIST randomness beacon [39] that uses
hardware-generated randomness.

3 System design

We consider three types of authorities: (i) Blockchain authorities, BA, that register
users and issue certificates for users’ public keys (for a digital signature algorithm),
authenticate users (cf. section 3.2 for more details), and manage interaction of users
with the blockchain. BA also runs a randomness beacon service that broadcasts
random numbers at regular intervals. BA publishes two public keys, one public
key is for verifying the signed certificates, and the second public key is for an
encryption algorithm that is employed by users to communicate with blockchain. (ii)
Certificate authorities, CA, verify users attributes and objects’ properties, and issue
the corresponding certificates for them. CA is also responsible for checking the legal
restrictions of the objects and only issues certificate for valid objects. (iii) CP-ABE
attribute authority, CP -ABE AA, generates a master secret key msk and a system
public key pkabe for the CP-ABE cryptosystem, and publishes pkabe on the blockchain.
It also generates private keys for users (corresponding to their certified attributes).
Let Ao be a user who owns object O, and Br denote a user who makes a request
r. The resource owner Ao can deploy contracts for their objects on the blockchain
that will be visible to all registered users. A contract can hold the information about
multiple objects, and can be updated by Ao.

1 These nodes were referred to as C-nodes in [3]

Privacy-preserving Resource Sharing using Permissioned Blockchains 7

Owners will be represented by pseudonyms that can be mapped to their identities
by the BA and so are traceable by BA when they use their public keys. User
authentication to BA is through a challenge-response authentication protocol between
the user and the BA, where BA issues a random challenge, and the user response is the
signed challenge, possibly together with other transaction data. A user can use their
secret key to sign the challenge, in which case their identity will be known by the BA,
or use a ring signature for anonymous authentication. The challenge in both cases is
obtained by the latest broadcasted randomness. More details on this protocol in 3.2.

We consider five contracts in the system: User directory contract (uDir), Object
directory contract (oDir), object properties repository contract (objPropRep), and
object access control contract (objACC) and Adjudicator contract (Adj). uDir, oDir,
and Adj are deployed on the blockchain by BA when the system is set up and they
hold the information related to all users. objACC and objPropRep are deployed by
resource owners, upon sharing a resource. A user Br who makes a request may receive
an object that does not match its advertised properties. In such cases, the requester
can report misbehavior to BA that is implemented by a Adjudicator contract. The
details of contracts are given in Section 3.3.

3.1 Security goals

We consider the following entities:(i) users, (ii) BA, (iii) CA and CP-ABE AA, and
(iv) outsiders.

Trust assumptions. We assume BA is semi-honest: they follow the protocol but want to
infer information about users and their accesses. For example, BA may link requesters
and owners, or link requests of users. CA and CP-ABE AA are fully trusted: they
follow the protocol and manage the keys as required. Users can deviate arbitrarily
from the protocol: an owner may be unregistered, claim properties that the object
does not have, or provide invalid link to the object. Users may be curious about
others.

Security. The goal is to ensure that access to an object is only granted if (i) the
requester is registered, and (ii) the user’s specified access policy is satisfied.

Privacy. We consider two privacy requirements.

i. Registered users, BA, and outsiders cannot link the requester of an object O to
the object owner;

ii. Registered users, BA, and outsiders should not be able to link access requests
of users.

In our privacy analysis we consider two cases:

i. Pre-interaction case, where the system is ready to function (user registration
and advertising resources are complete) but no browsing or access requests has
been made to the BA;

ii. Post-interaction case, where some successful interactions to view or access objects
have been made.

8 No Author Given

We define information leakage (privacy breach) of the system as the difference between
the views of an entity in the above two cases and what can be inferred from it.

3.2 Authentication scheme

Let Beacon(t) denote the Beacon’s generated random value at time t. We use Beacon(t)
as the challenge value for user authentication across the system for the time pe-
riod [t, t+1]. A user response will be generated using the digital signature scheme
DS=(DS.KGen,DS.Sig,DS.Vf) and using the user’s private key, on a message that
includes Beacon(t). For anonymous authentication, a ring signature based on this
signature scheme will be used. Steps of response generation are as follows.
(i) Get auxiliary information that are required for sending message to blockchain

(e.g. list of registered users for choosing the public key set setpk, the pubic key of
AuthServ for encryption).
(ii) Use rt=Beacon(t) where current time is in [t,t+1].
(iii) Sign (pkTY P ||m||rt) where m is the request, rt is as defined above, and pkTY P

is the public key of signature type TY P ∈{S,RS}, where S andRS denote traditional
digital signature and ring signature, respectively. Let σ denote the signature value.
The response is (m,r,σ,pkTY P).
We consider two types of requests, (i) non-anonymous requests, which are used for
browsing the blockchain , and (ii) anonymous requests that target a specific resource.
Non-anonymous authentication is used by a user, a resource requester, for browsing
the blockchain 2. For such requests, pkTY P is the public key of the user3. Anonymous
authentication is used by the resource requester to access a specific resource that
must remain unlinkable to the requester. In this type of request pkTY P is equal to
a set setpk of public keys of the system that includes the public key of the user, and
will be used in the ring signature.
We require transmitted messages to the blockchain be encrypted with the BA’s (who
is also AuthServ) public key PkAS. Users will use pkAS to encrypt their message
to BA C=Enc(pkAS,(m,r,σ,pkTY P)). Then, AuthServ decrypts C, and verifies the
requester and request as follows.

(i) Verify that r=Beacon(t) for the time interval [t,t+1] that user is sending the
message.

(ii) Verify that pkTY P has been already recorded in uDir contract.
(iii) Verify σ based on the signature type specified by PkTY P , i.e., result =

DS.Vf(σ,pkTY P ||m||r,pkTY P). If result=1 send (m,pkTY P) to blockchain, otherwise
send reject to the user.

Choosing ring members. We assume setpk comprises of two subsets setpk=set1∪set2;
set1 contains public keys that are randomly chosen from the list of registered users,
and set2 is randomly selected public keys from the pkset of last request issued to BA.
We assume that the size of ring is determined based on the total number of malicious
users in the system such that it can guarantee in each randomly chosen ring at least
two parties are honest (the signer and one of the ringer members).

2 We highlight that the transactions of resource owner to blockchain are also non-anonymous.
3 We can use the ring signature with ring size equal to 1 as a regular signature

Privacy-preserving Resource Sharing using Permissioned Blockchains 9

Inheriting from the ring signature, our authentication system provides anonymity, un-
linkability, existential unforgeability, and real-time authentication (please see Appendix
B for more details).

3.3 Contracts
The details of contracts are given below (see Appendix G.1 for algorithms). Note
that all the contracts have a self-destruct method (to make the contracts inaccessible)
which can be called only by the contract owner.
User directory contract (uDir): This contract holds a table containing the
pseudonym, public key and certificate of registered users (cf. Table 1). These infor-
mation can be browsed by requesters to form the set of public keys setpk for the ring
signature. This contract has the following interfaces:

Table 1. uDir table
PId pk cert

Alice pkAo Certpk
A

BA

Bob pkBr Certpk
B

BA

– registerUser(): is used by AuthServ to set the information of registered users.
– deleteUser(): is used by Adj contract (if a user misbehaves) or AuthServ to
delete the information about the user.
Object directory contract (oDir): This contract holds a table of object Ids,
pseudonym and public key of the resource owner, description of the object, address of
the objACC contract, ABI of objACC contract, address of the objPropRep contract,
ABI of the objPropRep contract, and the state of the object (cf. Table 2). This
contract has the following interfaces:

Table 2. oDir contract
Oid pIdo pko ODesc objACC address objACC ABI objPropRep address objPropRep ABI

Mi Alice 0x456ab7.. Cartoon, 90 m,... 0xfd45322.. [setAccessInfo(Mi),...] 0xab49871.. [setPropertyInfo(Mi),...)]

–registerResource(): is used by each resource owner to register their objects and
provide information for accessing the objects.
–updateResource(): is used by resource owners to update their resources. Only the
user whose public key has been stored in the table is able to update the object.
–deleteResource(): is used by resource owners and Adj contract to delete the
information of the inaccessible objects.
– getContractInfo(): is used by requesters to retrieve the address and ABI of the
objACC and objPropRep for all objects.
– getAdvertiseInfo(): is used by objACC to get the advertisement info for a spe-
cific object including the owners information and object description.
Object property repository contract (objPropRep): This contract is deployed
by each resource owner and stores the list of objects, their properties, and certificates
(cf. Figure 3). objPropRep has the following interface:

Table 3. objPropRep table
Oid properties cert

Mi prop1,...,propν certMi
CA

10 No Author Given

– setPropertyInfo(): is used only by the resource owner to add a new object and
its properties and certificates.
– getPropertyInfo(): is used by requesters and objACC contract to retrieve the
information of a specific resource. objACC only receives the properties of the object,
whereas requesters will receive both the properties and certificates of the requested
object.
– updatePropertyInfo(): is used only by the resource owner to update the infor-
mation of a specific object.
–deletePropertyInfo(): is used by the resource owner to remove the information
of the resources which are not longer accessible.
Access control contract (objACC): This contract is deployed by each resource
owner to upload the ciphertexts (cf. Table 4) and policies that are required for
decrypting the CP-ABE ciphertext.

Table 4. objACC table
Oid Ciphertext access policies

Mi cCP−ABE(M(cO)) Age>6, Preference=local∨international, clubmembership=Club2

–addAccessInfo(): is used only by the resource owner to add a CP-ABE encrypted
metadata and its access policies.
–updateAccessInfo(): is used by the resource owner to update CP-ABE encrypted
metadata and policy for an object.
– deleteAccessInfo(): is used by the resource owner only to remove the informa-
tion of objects that are not accessible anymore.
– getAccessInfo(): is used by requesters to get the CP-ABE encrypted metadata
and the access policies for decrypting CP-ABE metadata.
– setContactAddress(): is used by the owner to set the address of the objPropRep

and oDir contracts.
– getRequestHistory(): is used by the resource owner only to retrieve the history
of the requests that has been made to the contract. Each objACC contract stores
the requests, i.e. the authentication information provided by the requester, the Oid
of the accessed object, and the time of the request.
Adjudicator contract (Adj): This contract is used to record misbehaviors. It keeps
a table containing the Oid of the resource, the public key of the resource owner,
the misbehavior, time of report, and state of the complain. Note that since we are
ensuring anonymity for requesters Adj cannot be used to record the misbehavior of
requesters (unlike [3]). However, if a resource owner provides invalid link, a requester
can anonymously complain about it for further checks by a trusted entity (verifier)
that is determined by BA. (cf. 5)

Table 5. Adj table
Oid pko Misbehavior Time state

Mi 0x4598abc678... Incorrect link 10:05 12/9/2020 Unchecked

–registerVerifier(): is used by BA to set a verifier(s) who can check the complains.
– reportMisbehavior(): is used by requesters to complain about a resource owner

Privacy-preserving Resource Sharing using Permissioned Blockchains 11

and object information.
– setMisbehaviorState(): is used by the specified verifier to set the result of check-
ing the misbehavior. Adj contract calls deleteResource(Mi) of oDir contract to
delete the information about the resources that are proved to be incorrect and calls
deleteUser(pko) of uDir contract to delete the resource owners who are misbehav-
ing.
–getLatestMisbehavior(): is used by users to get the information of the latest
misbehavior for a specific resource owner.

3.4 Interactions of users with system

There are three stages in our scheme (cf. Appendix C for the algorithm).

1. Registration:
(a) Each user with IdAo

(or similarly IdBr for requester) chooses their pseudonym
pIdAo

and present it to the blockchain authority (BA) at the time of reg-
istration and gets the public-private key pair (PkAo, SkAo) and a certificate
certBAPkAo

(corresponding to user’s public key). Once the registration is com-

plete, the BA publishes the list (pIdAo
, PkAo

, certBAPkAo
) to blockchain.

(b) User Ao contacts the certification authorities and gets certificates for his set
of attributes and the properties of the objects.

(c) The user contacts CP-ABE AA and uses his certificate of BA to authenticate
himself, and obtain attribute private keys attached to his pIdAo (or PkAo).

2. Advertising resource (see Figure 2 in Appendix D for the flow of the protocol):
(a) User Ao who is the resource owner wants to advertise a digital object O. Ao

encrypts the object O using a symmetric key, cO = Enc(k, O) and uploads
cO to cloud.

(b) Next, Ao creates CP-ABE metadata (M(cO)). M(cO) consists of (i) addi-
tional resource content description, (ii) symmetric key k, and (iii) download
link to resource content (link to encrypted file). Ao then encrypts the M(cO)
with policy PO using CP-ABE encryption scheme and gets the encrypted
metadata cCP -ABE(M(cO)).

(c) Ao deploys two contracts to share his objects: (i)objACC, and (ii)objPropRep.
(d) The blockchain authority (BA) deploys three contracts. (i) uDir, (ii) oDir,

and (iii) Adj.
(e) When Ao adds an object, or updates an object in objACC contract, objACC

retrieves the information of the objects, including objects descriptions and
properties, as well as Ao’s information, including its pseudonym and public
key from the oDir and objPropRep contracts and issues an event to all
registered users containing the advertisement information.

3. Requesting an access (see Figure 1 for the flow of requesting an access):
(a) User Br browses uDir to obtain the list of registered users and chooses

the ring members according to Section 3.2. Then, he browses oDir to find
an object O that he wants to get access to that. User Br forms a request
(either for getting data from objPropRep contract or objACC contract) that
includes (Oid), signs it using a ring signature and sends it to BA.

12 No Author Given

(b) BA runs an authentication service (AuthServ). AuthServ verifies the signed
request, and if valid the respective contract (objPropRepO or objACCO) re-
turns requested data to requesterBr,O is the object.Br decrypts the CP-ABE
metadata using his own CP-ABE private key and gets access to the object.

Fig. 1. Sequence diagram of requesting access from a resource requester.

4 Security and privacy analysis

For security we need to show that only registered users whose attributes match the
specified access policies of their requested object can obtain access. For privacy we
only consider post-interaction phase, and show that (i) no registered user or BA is
able to link a request to an existing resource owner, and (ii) no registered user or BA
is able to link the access requests of a resource requester to their previous requests.
(iii) no outsider can link the requests. For pre-interaction phase, published contracts
can be used to develop a profile of a resource owner’s resources. Protection of this
profile is not a design goal of the system.
Security. We consider three cases, (i) outsiders are not able to access the object, (ii)
requesters with attributes different from the access policies cannot get access to the
object, (iii) requesters who were a registered user in some point of time but they have
been removed from the system (for e.g. because of misbehaving) are not able to get
access to any object that matches their attributes later, and (iv) honest requesters
with attributes specified in access policies of an object can get access to the object.
Case (i) is true since any entity who issues a request proves to BA that they are a
registered user, through the ring signature-based anonymous authentication scheme.
Due to the unforgeability of this scheme, an outsider adversary cannot generate
a valid ring signature for a new request. If the outsider adversary can successfully
capture one of honest user’s requests in time tm (by eavesdropping the communication
channel), it cannot use it in a later time tr>tm. The reason is that the beacon value
at time of request tr is different from the beacon value at time tm and BA will reject
the requests with stale random value.
Case (ii) is ensured because of the security of CP-ABE scheme. All registered users

Privacy-preserving Resource Sharing using Permissioned Blockchains 13

can retrieve the CP-ABE encrypted metadata, but only the users with valid CP-ABE
private keys can decrypt it and get access to the object. The CP-ABE private keys
are issued by CP-ABE AA who is trusted, and generates private keys after verifying
the attribute certificates (which have been issued by trusted CA).
Case (iii) is guaranteed because of the use of beacons in our authentication scheme.
Note that we assume the private/public keys never expire, and a CP-ABE encrypted
metadata can be decrypted with any valid CP-ABE private key. If we do not use
beacon in our authentication scheme, any user who has been removed from the
system can capture other users’ messages (by eavesdropping on their communication
channel to BA) and send it later in time. As the authentication passes, attacker
can get access to CP-ABE encrypted metadata (which it can decrypt). However, we
protect against this attack by using fresh randomness. The copied requests will not
pass the authentication, because we assume the time duration for pulsating a new
random value is less than the time required for the attacker to copy a request, and
hence the request contains a stale random value, which will be rejected by BA.
Case (iv) is ensured because of the correctness property of the anonymous authen-
tication and CP-ABE scheme. The registered users can pass the authentication and
retrieve the CP-ABE encrypted metadata. Users who hold a valid CP-ABE private
key can decrypt the CP-ABE encrypted metadata correctly and obtain the link to the
object (if the resource owner is malicious and the link is not correct, the requesters can
report misbehavior to Adj contract which can be checked by verifiers of the system).

Privacy. We use the users’ and the BAs’ views to determine the privacy breach. For
pre-interaction privacy analysis, a registered user can see uDir, oDir, and owners
contracts objPropRep and objACC and can develop a profile of the resource owner
only by analyzing the advertisement that is published by the resource owner. As stated
earlier we do not seek a solution for owners. We show the privacy only for the post-
interaction regime; (i) no registered user and BA are able to link a request to an existing
resource owner, (ii) no registered user and BA are able to link the access requests of a
resource requester to their previous requests, and (iii) no outsider can link the requests.
Case (i) is guaranteed because resource requesters use anonymous authentication
to prove that they are registered users. Due to the anonymity of our authentication
scheme (described in section 3.2), the public key of the requester will not be revealed
to BA. Additionally, BA only publishes the request of the requester and its ring
information to the blockchain. Therefore, other users cannot determine who is the
requester. Even if other users know the real identity of a set of public keys in a given
ring, since at least two honest parties exist in each ring, for an honest requester the
level of anonymity is equal to 1

2 in the worst case. Malicious users are not able to
choose invalid private/public keys in order to break anonymity of the scheme, since
we have a registration stage that validates the generation of public keys.
Case (ii) is guaranteed because (a) the attributes of requester are not revealed to
BA (requester decrypts the CP-ABE encrypted metadata off-chain), and (b) the
unlinkability property of our anonymous authentication scheme (described in section
3.2). BA only sees a set of public keys (a ring) which consists of a subset of public keys
chosen from previous requests (rings have intersection) that provides unlinkability
for consecutive requests made by a requester.

14 No Author Given

Case (iii) is ensured since outsiders cannot see the contents of messages sent to BA
(the messages are encrypted using the public key provided by BA). Although, an
outsider can see the messages coming from BA to a user and they can observe the
ring used for authentication if the resource owner makes a request to see the access
request history, they cannot determine the member who has issued the request.

5 Implementation

In this section, we give details of our implementation for resource sharing in a permis-
sioned Ethereum network. The goal of our proof-of-concept implementation is to ana-
lyze the practicality of our proposed model by measuring the cost (in time) of the cryp-
tographic operations in our system and the cost (in gas) for the blockchain operations.

5.1 System Setup

Actors: We consider users (e.g., resource owner and resource requester), a blockchain
authority, a certificate authority and a CP-ABE attribute authority.
Blockchain setup: For proof of concept implementation, we use a private (per-
missioned) Ethereum blockchain to set up the required blockchain infrastructure
that will be maintained by the blockchain authorities (BA). BA deploys the smart
contracts (uDir, oDir and Adj) and Ao deploys the smart contracts (objPropRep
and objACC), in the blockchain.
Crypto tools: We use OpenSSL library [40] for creating certificates, object identifier
(Oid) (using SHA256), and generating public-private key pairs. In addition, for the
symmetric key encryption scheme, we use OpenSSL library supported AES-256-CBC
encryption scheme. For the ring signature we use implementation of the original
algorithm by Rivest et. el [5] and for CP-ABE we use CP-ABE toolkit supported
by advanced crypto software collection service [41].
Device specification: We evaluate the performance of our system on Windows 10
with a 3.60 GHz Intel Core i7 CPU and 8 GB RAM.
Smart contracts in the system: We consider the five smart contracts proposed
in Section 3.3. All the smart contracts are written in Solidity language and developed
using the remix IDE. Algorithms of these contracts are given in the Appendix G4.

5.2 Evaluation

To show the practicality of our proposed scheme, we measured the user’s cost in
different phases: (i) registration, (ii) resource advertising and (iii) resource request.
We implemented an example scenario of a movie sharing for our evaluation (see
Appendix F for the example details). We used Ganache [6], as a private (permissioned)
Ethereum blockchain, Remix IDE [7] for writing the smart contracts in Solidity and
Truffle to deploy and run experiments.
For registration, we measure the cost in terms of time. Table 6 shows the average
time required for each user to generate the RSA keys along with the (fixed) size of
the keys.
For resource advertising, we used AES-256-CBC encryption scheme on the object

4 The codes for our smart contracts can be found in [42].

Privacy-preserving Resource Sharing using Permissioned Blockchains 15

‘Tom’s Trip to Moon” of size 16MB and used CP-ABE encryption scheme to get
the CP-ABE metadata. Note that the size of the CP-ABE encrypted metadata
depends only on the size of the access policies and it is independent of the object
size. The reason is that the CP-ABE encrypted metadata contains the symmetric
encryption key (e.g., AES 256-bit key) and the link to the object.The encryption and
key generation times are shown in Table 6 with size of the outputs for each of these
operations. Using the CP-ABE toolkit, it takes 0.023 seconds to generate master and
CP-ABE public key. The size of master key is 156 bytes and the size of public key is
888 byte (in total 1044 byte). Moreover, each Ethereum operation is associated with
an explicit cost which is expressed in gas [37]. We measure the cost (in terms of gas)
of program execution in Ethereum blockchain by the resource owner for deploying two
smart contracts and for executing different functions (e.g., add, update or delete) in
the smart contracts. Table 7 shows the gas required for each of the mentioned tasks.

Table 6. Cost of cryptographic operations

Algorithm
Time
(ms.)

Size
(bytes)

Actor

Public Key Generation (RSA) 0.055 451 Ao,Br

AES Encryption 10.704 6361840 Ao

AES Decryption 5.266 6361816 Br

CP-ABE Private Key Generation 1.526 71353 Ao

CP-ABE Private Key Generation 2.526 119227 Br

CP-ABE Encryption 75.177 4024 Ao

CP-ABE Decryption 0.107 496 Br

Ring Signature Generation 2.834 4981 Br

Ring Signature Verification 1.513 - BA
Certificate Generation 25.23 1009 BA

Table 7. Cost of blockchain oper-
ations (by resource owner)

Tasks
objACC
(gas)

objProRep
(gas)

oDir
(gas)

deployment 1070938 1064347 NA
add 1307190 1243438 NA
update 437233 418354 NA
delete 159076 151414 NA
registerResource NA NA 614273

In case of a resource request, the costs includes the CP-ABE key generation, ring
signature generation and CP-ABE decryption which are shown in Table 6. During
this phase, for authentication, the BA sends a challenge (i.e., a random string) of size
512 bits to the requester, and the requester responds with a transaction (signed using
ring signature with ring size 10) that includes this challenge value. The requester
also needs to make calls to smart contract functions in order to get the required
object information (e.g., CP-ABE encrypted metadata, object access policy etc.).
Since these function calls does not alter the state of the blockchain (i.e., does not
change any variable’s value in the contract), there is no cost associated to these calls.
In summary, our proof of concept implementation results in Table 6 shows that the over-
head for the cryptographic operations are not high. In addition, it should be noted that,
although we measured the gas cost of the smart contract function execution in Table
7, for our model, this cost is not vital as we consider a permissioned blockchain setting.
The goal is to estimate the complexity of operations performed on blockchain, provide
a benchmark for possible future comparisons, and show the concrete cost in case the
smart contracts are deployed on a public blockchain. Overall, the values in the tables
indicate that our proposed model is feasible for developing real-world applications.

6 Concluding remarks

We designed and provided a proof of concept implementation of a blockchain-based
privacy-preserving resource sharing platform that enforces user defined attribute-

16 No Author Given

based access policies. Our design uses cryptographic algorithms to provide privacy
and direct enforcement of access policies. By leveraging these primitives one needs
to balance security and efficiency. For example increasing the level of anonymity will
decrease the efficiency of system, since generating and verifying ring signatures will
increase with the size of the anonymity set.

There are limitations in our design that can be addressed in future work. Firstly,
using CP-ABE for enforcing policies requires users to obtain their private keys
from CP -ABE AA which results in a single point of trust for the system (allowing
CP -ABE AA to be able to access all the resources). Distributing this role among mul-
tiple authorities using multi-authority ABE schemes [43,44] can significantly improve
this limitation. A second challenge in using CP-ABE is the change in the user attributes
that will affect their private keys. Efficient updating of users’ private keys to reflect
their current attribute sets, will be an interesting direction for future research also.

Our work can be extended in a number of ways including, providing anonymity for
the resource provider, developing the platform into a marketplace by linking it to
a cryptocurrency, providing an effective support for adjudication and handling of
complaints, and formal analysis of the system’s security and privacy.

References

1. I. Airbnb, “Vacation rental company.” https://www.airbnb.com, 2020.
2. U. T. Inc, “Transport company.” https://www.uber.com, 2020.
3. K. M. Venkateswarlu, S. Avizheh, and R. Safavi-Naini, “A blockchain based approach

to resource sharing in smart neighbourhoods,” in International Conference on Financial
Cryptography and Data Security, pp. 550–567, Springer, 2020.

4. J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryption,”
in 2007 IEEE symposium on security and privacy (SP’07), pp. 321–334, IEEE, 2007.

5. R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,” in International
Conference on the Theory and Application of Cryptology and Information Security,
pp. 552–565, Springer, 2001.

6. Ganache, “Ganache one click blockchain.” https://www.trufflesuite.com/ganache,
2019.

7. remix, “Remix-solidity ide.” https://remix.ethereum.org, 2019.
8. N.-F. Standard, “Announcing the advanced encryption standard (aes),” Federal

Information Processing Standards Publication, vol. 197, no. 1-51, pp. 3–3, 2001.
9. F. Baiardi, A. Falleni, R. Granchi, F. Martinelli, M. Petrocchi, and A. Vaccarelli, “Seas,

a secure e-voting protocol: design and implementation,” Computers & Security, vol. 24,
no. 8, pp. 642–652, 2005.

10. D. L. Chaum, “Untraceable electronic mail, return addresses, and digital pseudonyms,”
Communications of the ACM, vol. 24, no. 2, pp. 84–90, 1981.

11. Q. Xie and U. Hengartner, “Privacy-preserving matchmaking for mobile social
networking secure against malicious users,” in 2011 Ninth Annual International
Conference on Privacy, Security and Trust, pp. 252–259, IEEE, 2011.

12. R. S. Sandhu and P. Samarati, “Access control: principle and practice,” IEEE
communications magazine, vol. 32, no. 9, pp. 40–48, 1994.

13. R. S. Sandhu, “Role-based access control,” in Advances in computers, vol. 46,
pp. 237–286, Elsevier, 1998.

https://www.airbnb.com
https://www.uber.com
https://www.trufflesuite.com/ganache
https://remix.ethereum.org

Privacy-preserving Resource Sharing using Permissioned Blockchains 17

14. V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M. Cogdell, A. Schnitzer,
K. Sandlin, R. Miller, K. Scarfone, et al., “Guide to attribute based access control (abac)
definition and considerations (draft),” NIST special publication, vol. 800, no. 162, 2013.

15. T. Ahmed, R. Sandhu, and J. Park, “Classifying and comparing attribute-based and
relationship-based access control,” in Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy, pp. 59–70, 2017.

16. A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pp. 457–473,
Springer, 2005.

17. V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for
fine-grained access control of encrypted data,” in Proceedings of the 13th ACM
conference on Computer and communications security, pp. 89–98, 2006.

18. D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical identity based encryption with
constant size ciphertext,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 440–456, Springer, 2005.

19. V. Shoup, “Lower bounds for discrete logarithms and related problems,” in International
Conference on the Theory and Applications of Cryptographic Techniques, pp. 256–266,
Springer, 1997.

20. S. Narayan, M. Gagné, and R. Safavi-Naini, “Privacy preserving ehr system using
attribute-based infrastructure,” in Proceedings of the 2010 ACM workshop on Cloud
computing security workshop, pp. 47–52, 2010.

21. Z. Wan, R. H. Deng, et al., “Hasbe: a hierarchical attribute-based solution for flexible
and scalable access control in cloud computing,” IEEE transactions on information
forensics and security, vol. 7, no. 2, pp. 743–754, 2011.

22. T. Jung, X.-Y. Li, Z. Wan, and M. Wan, “Privacy preserving cloud data access with
multi-authorities,” in 2013 Proceedings IEEE INFOCOM, pp. 2625–2633, IEEE, 2013.

23. S. Belguith, N. Kaaniche, A. Jemai, M. Laurent, and R. Attia, “Pabac: a privacy
preserving attribute based framework for fine grained access control in clouds,” in
SECRYPT 2016: 13th International Conference on Security and Cryptography, vol. 4,
pp. 133–146, SciTePress, 2016.

24. B. Waters, “Ciphertext-policy attribute-based encryption: An expressive, efficient, and
provably secure realization,” in International Workshop on Public Key Cryptography,
pp. 53–70, Springer, 2011.

25. G. Zyskind, O. Nathan, et al., “Decentralizing privacy: Using blockchain to protect
personal data,” in 2015 IEEE Security and Privacy Workshops, pp. 180–184, IEEE, 2015.

26. D. D. F. Maesa, P. Mori, and L. Ricci, “Blockchain based access control,” in
IFIP international conference on distributed applications and interoperable systems,
pp. 206–220, Springer, 2017.

27. A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman, “Fairaccess: a new blockchain-
based access control framework for the internet of things,” Security and communication
networks, vol. 9, no. 18, pp. 5943–5964, 2016.

28. Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart contract-based access
control for the internet of things,” IEEE Internet of Things Journal, vol. 6, no. 2,
pp. 1594–1605, 2018.

29. J. P. Cruz, Y. Kaji, and N. Yanai, “Rbac-sc: Role-based access control using smart
contract,” Ieee Access, vol. 6, pp. 12240–12251, 2018.

30. R. Xu, Y. Chen, E. Blasch, and G. Chen, “Blendcac: A blockchain-enabled decentralized
capability-based access control for iots,” in 2018 IEEE International Conference
on Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), pp. 1027–1034, IEEE, 2018.

18 No Author Given

31. H. Guo, E. Meamari, and C.-C. Shen, “Multi-authority attribute-based access control
with smart contract,” in Proceedings of the 2019 International Conference on Blockchain
Technology, pp. 6–11, 2019.

32. D. D. F. Maesa, P. Mori, and L. Ricci, “Blockchain based access control services,” in
2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1379–1386, IEEE, 2018.

33. D. D. F. Maesa, P. Mori, and L. Ricci, “A blockchain based approach for the definition
of auditable access control systems,” Computers & Security, vol. 84, pp. 93–119, 2019.

34. N. Tapas, F. Longo, G. Merlino, and A. Puliafito, “Experimenting with smart contracts
for access control and delegation in iot,” Future Generation Computer Systems, 2020.

35. M. Raikwar, D. Gligoroski, and K. Kralevska, “Sok of used cryptography in blockchain,”
IEEE Access, vol. 7, pp. 148550–148575, 2019.

36. V. Buterin et al., “A next-generation smart contract and decentralized application
platform,” white paper, 2014.

37. G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

38. J. Bonneau, J. Clark, and S. Goldfeder, “On bitcoin as a public randomness source.,”
IACR Cryptol. ePrint Arch., vol. 2015, p. 1015, 2015.

39. J. Kelsey, L. T. Brandão, R. Peralta, and H. Booth, “A reference for randomness
beacons: Format and protocol version 2,” tech. rep., National Institute of Standards
and Technology, 2019.

40. The OpenSSL Project, “OpenSSL: The open source toolkit for SSL/TLS.”
www.openssl.org, April 2003.

41. J. Bethencourt, “Advanced Crypto Software Collection.” http://acsc.cs.utexas.

edu/cpabe/, December 2006.
42. Code, “Privacy-preserving resource sharing.” https://anonymous.4open.science/r/

e2d9b071-52d8-4dff-80ea-9fd78d4aaf55/, 2021.
43. M. Chase, “Multi-authority attribute based encryption,” in Theory of cryptography

conference, pp. 515–534, Springer, 2007.
44. M. Chase and S. S. Chow, “Improving privacy and security in multi-authority

attribute-based encryption,” in Proceedings of the 16th ACM conference on Computer
and communications security, pp. 121–130, 2009.

45. A. Bender, J. Katz, and R. Morselli, “Ring signatures: Stronger definitions, and
constructions without random oracles,” in Theory of Cryptography Conference,
pp. 60–79, Springer, 2006.

www.openssl.org
http://acsc.cs.utexas.edu/cpabe/
http://acsc.cs.utexas.edu/cpabe/
https://anonymous.4open.science/r/e2d9b071-52d8-4dff-80ea-9fd78d4aaf55/
https://anonymous.4open.science/r/e2d9b071-52d8-4dff-80ea-9fd78d4aaf55/

Privacy-preserving Resource Sharing using Permissioned Blockchains 19

A Notations

Table 8 shows the notations that are used throughout the paper.

Table 8. Table of notations

Notation Description

uDir user directory contract

oDir object directory contract

objACC object access control contract

objPropRep object property repository contract

Adj Adjudicator contract

BA Blockchain authority

AuthServ authentication service

CA certificate authority

CP-ABE AA CP-ABE attribute authority

PropO Property of object O

accO access policy for object O

Oid object identifier

ODesc object description

pIdA pseudonym of user A

IdA identity of user A

pkA public key of user A

Certij certificate issued by j for i

M(co) metadata for the encrypted object

cCP−ABE(M(cO)) CP-ABE metadata

Ao resource owner

Br resource requester

B On the security of anyonymous authentication

We consider a ring signature that provides basic anonymity, unlinkability, and ex-
istential unforgeability (for the formal definitions please see [45]). Because we have a
registration authority which checks the validity of generated keys, and we assume that
there are at least two honest members in the ring, the ring signature is not vulnerable
to adversarially-chosen key attacks and basic anonymity is sufficient for our system.
Choosing part of the ring randomly prevents the BAs from finding a pattern for the
ring used by a particular requester in multiple requests and ensures that anonymity
is preserved even in multiple executions of the protocol. Additionally, We assume
that the random challenge that is concatenated with the message is unpredictable
and unbiasable, and it can provide real-time authentication for users. However, in our
authentication scheme, all users that are making request in the same time interval use
the same random challenge, this is different from existing point to point authentication
schemes. The question is whether the multicast of the challenge random value can give
an opportunity to the attacker to break the security of the scheme, specifically, to an

20 No Author Given

outsider to replay the message of an honest user. However, we assume that the time
interval for generating a beacon is less than the time that is needed for the attacker to
capture and resend the message to BA. So, if attacker sends the copied message the
authentication fails. For unlinkability, we consider that the chosen rings by different
(or even same) requesters has intersection with each other and provides some level
of mixing. This prevents the BAs to link the consecutive requests from a requester.

C Interactions in different phases

The interactions between different entities of our system are shown in the following Al-
gorithm 1 where the highlighted lines represent the interactions that involve blockchain.

Algorithm 1 Interactions in proposed resource sharing system.
(Registration) */

1: User A chooses pseudonym pidA and (pkA, skA)
2: A→BA: pidA, (PKA, SKA)

3: BA→A: certpkABA
4: BA: deploy contract uDir

5: BA→uDir: registerUser (pidA, pkA, cert
pkA
BA)

6: A→CA: request certificates
7: CA→A: certificate for user attribute and propO . propO: properties of object O
8: A→CP−ABEAA: register(certBA

pkA
)

9: CP -ABEAA→A: (pkACP−ABE, skACP−ABE)

(Advertising resource) */
10: A: get cO = Enc(k, O) and upload cO to cloud

11: A: create CP-ABE metadata (M(cO)), and encrypt it to cCP−ABE(M(cO))

12: A: deploy objPropRep contract with (O, propO, certCA
O)

13: A: deploy objACC contract with (O, accO, cCP−ABE(M(cO)))
14: BA: deploy user directory contract (uDir) and object directory contract (oDir)
15: A→oDir: registerResource(Oid, pid, pkA, ODesc, address and ABI of objACC and objPropRep)

Requesting an access */
16: A→oDir: Oid
17: oDir→A: (object description, address of objACC/objPropRep)
18: A→objACC/objPropRep: Oid
19: objPropRep→A: (properties, certificate)
20: objACC→A: encrypted metadata (cCP−ABE(M(cO))), policies (accO)

21: A: decrypt cCP−ABE(M(cO)) using its secret key skACP−ABE

D Advertising an object

Please see Figure 2 for the sequence diagram of advertising an object by a resource
owner.

Privacy-preserving Resource Sharing using Permissioned Blockchains 21

Fig. 2. Sequence diagram of advertising an object by resource owner

E Requesting an access.

Resource requester Br searches its local database that contain the list of advertised
resources and finds the identifier of the resource they want to get access to. Then user
A retrieves the address and ABI of objACC and objPropRep contracts. If resource
is available user A retrieves the properties and certificates of the resource from
objPropRep contract. Then, they send a request to objACC contract to gets policies
and CP-ABE metadata. BA perform the authentication and replies to the requests of
user accordingly. When user gets CP-ABE metadata, he decrypts it using his private
key. If the decrypted link does not provide the resource that user wants, he make
a complain to Adj contract for further checks.

Br→oDir: Oid
oDir→Br: pIdAo,pkAo, ODesc, objPropRep address, objPropRep ABI, objACC address,
objACC ABI
Br→objPropRep: Oid
objPropRep→Br: Propo, CertoCA
Br→objACC: Oid
objACC→Br: c

CP−ABE(M(cO)), acco

F A case study.

In this section, we present an example of a digital object sharing using CP-ABE to
describe the application of our blockchain based resource sharing scheme. Suppose, Ao
owns a movie “Tom’s Trip to Moon” that he wants to share. We assume that the at-
tribute universe of each user is {Age, Preference, Club membership}, where Age∈ [5,80]
is an integer value, Preference ∈ {local, international}, and club membership is real-
ized by a (possibly empty) subset of three clubs, club1,club2, and club3 corresponding
to Fan-club of cartoon movies, Fan-club of adventure movies and Fan-club of horror
movies, respectively. Objects (shareable data) are associated with a title and a set of

22 No Author Given

properties from the {Type,Quality,Size} universe, where Type∈{Movie,e-book,image},
quality∈{SD,HD,UHD}5, and 1MB≤size≤10GB.
Based on this description, we have the following setup for our use case scenario: (i) at-
tributes of user Ao, attrA = {31, local, club2} and user Br, attrB = {20, international,
{club1, club2}}, (ii) movie properties, propO = {Movie, HD, 16 MB}, (iii) metatdata, McO

= “Tom’s Trip to Moon is a story of a child who dreams to travel to moon someday.”,
256-bit symmetric key, “https://onedrive.com”, and (iv) access policy, accO ={“Age” >6
∧ “Preference” = (local ∨ international) ∧ “club membership” = club2}.

G Smart contracts in our system

We have five smart contracts in our system. The abstract of these contracts are given below
(cf. Algorithms 2 to 6) and details of their implementation are given in the next section G.1.

Algorithm 2 Abstract uDir smart contract.
contract uDir {
constructor (address Adjudicator);
modifier (onlyAuthServ, onlyAdjAuth, onlyBA);
function registerUser (string pseudonym, string pk, string certificate) onlyAuthServ public
function deleteUser(string pk) onlyAdjAuth public
function selfDestruct() onlyBA public
}

Algorithm 3 Abstract oDir smart contract.
contract oDir {

constructor (address Adjudicator);
modifier (onlyObjectOwner, onlyOwnerAdj, onlyBA);
function registerResource (bytes32 Oid, string pid, string pk, string Desc, address ACC addr,

string ACC abi, address PR addr, string PR abi) public
function updateResource(bytes32 Oid, string desc) onlyObjectOwner public
function deleteResource(bytes32 Oid) onlyOwnerAdj public
function getContractInfo(bytes32 Oid) public
function getAdvertiseInfo(bytes32 Oid) public
function selfDestruct() onlyBA public

}

Algorithm 4 Abstract objPropRep smart contract.
contract objPropRep {
constructor (address objACC);
modifier (onlyOwner);
function setPropertyInfo (bytes32 Oid, string properties, string certificate) onlyOwner public
function updatePropertyInfo(bytes32 Oid, string properties, string certificate) onlyOwner public
function deletePropertyInfo(bytes32 Oid) onlyOwner public
function getPropertyInfo(bytes32 Oid) public
function selfDestruct() onlyOwner public
}

5 corresponding to standard definition(SD), high definition (HD) and ultra high definition (UHD)
qualities

Privacy-preserving Resource Sharing using Permissioned Blockchains 23

Algorithm 5 Abstract objACC smart contract.
contract objACC {

constructor ();
modifier (onlyOwner);
function addAccessInfo (bytes32 Oid, string CM, string[] policy) onlyOwner public
function updateAccessInfo(bytes32 Oid, string CM, string[] policy) onlyOwner public
function deleteAccessInfo(bytes32 Oid) onlyOwner public
function getAccessInfo(bytes32 Oid) public
function setContractAddress(address oPropRep, address oDir) onlyOwner public
function getRequestHistory(bytes32 Oid) onlyOwner public
function selfDestruct() onlyOwner public

}

Algorithm 6 Abstract Adj smart contract.
contract Adj {

constructor ();
modifier (onlyBA, onlyVerifier);
function registerVerifier (address verifier) onlyBA public
function reportMisbehavior(bytes32 Oid, string pk, string misbehaviour, uint time) public
function setMisbehaviorState(string state, bytes32 Oid, string pk) onlyVerifier public
function getLatestMisbehavior(string pk) public
function selfDestruct() onlyBA public

}

G.1 Details functionality of the contracts

Algorithm 7 User directory contract functions.
1: function constructor(address Adjudicator)
2: set AuthServ = msg.sender; index=0; Adj=address Adjudicator;

3: set modifier ownerOnly {if (msg.sender == AuthServ) };
4: function registerUser(pseudonym, public key, certificate) ownerOnly public
5: set pid[index]=pseudonym; pk[index]=public key; cert pk[index]=certificate;
6: update index=index+1;

7: function deleteUser(pk) public .
can be called by Adj contract (if a user misbehaves) or AuthServ to delete user information

8: require (msg.sender == Adj || msg.sender == AuthServ);
9: find index of user pk
10: delete pid[index], pk[index], cert pk[index];

Algorithm 8 Object directory contract functions.
1: function constructor(address Adjudicator)
2: set BA = msg.sender; Adj=address Adjudicator;

3: set modifier ownerOnly {if (msg.sender == BA) };
4: function registerResource(objId, pseudonym, pub key, desc, ACC addr, ACC abi, PR addr,
PR abi) public

5: set Oid[objId]=objId; pid[objId]=pseudonym; pk[objId]=pub key; oDesc[objId]=desc;
6: set objACC address[objId]=ACC addr; objACC abi[objId]=ACC abi;
7: set PropRep address[objId]=PR addr; PropRep abi[objId]=PR abi;

8: function updateResource(Oid, desc) public
9: Check msg.sender is in the list . user whose pk is stored in the table
10: update oDesc[Oid]=desc

11: function deleteResource(Oid) public .
can be called by Adj contract (if a user misbehaves) or resource owner (RO) to delete resource

12: require (msg.sender == Adj || msg.sender == RO);
13: delete (Oid[Oid], pid[Oid], pk[Oid], oDesc[Oid], objACC address[Oid], objACC abi[Oid],

PropRep address[Oid], PropRep abi[Oid]);

14: function getContractInfo(Oid) public
15: returns (objACC address[Oid], objACC abi[Oid], PropRep address[Oid], PropRep abi[Oid]);

16: function getAdvertiseInfo(Oid) public
17: returns (pid[Oid], pk[Oid], oDesc[Oid]);

24 No Author Given

Algorithm 9 Object access control contract functions.
1: function constructor(oACC addr)
2: set RO = msg.sender;

3: set modifier ownerOnly {if (msg.sender == RO) };
4: function addAccessInfo(Oid, CM, policy) ownerOnly public
5: set CP−ABE metadata[Oid]=CM; access policy[Oid]=policy;

6: function updateAccessInfo(Oid, CM, policy) ownerOnly public
7: update CP−ABE metadata[Oid]=CM; access policy[Oid]=policy;

8: function deleteAccessInfo(Oid) ownerOnly public
9: delete CP−ABE metadata[Oid], access policy[Oid];

10: function getAccessInfo(Oid) public
11: require (msg.sender==valid requester)
12: return (CP−ABE metadata[Oid], access policy[Oid]);

13: function setContractAddress(oPropRep addr, oDir addr) ownerOnly public
14: set objPropRep=oPropRep addr; oDir=oDir addr;

Algorithm 10 Object Property Repository contract functions.
1: function constructor(oACC addr)
2: set RO = msg.sender; objACC address=oACC addr

3: set modifier ownerOnly {if (msg.sender == RO) };
4: function setPropertyInfo(objId, properties, certificate) ownerOnly public
5: set Oid[objId]=objId; prop[objId]=properties; cert obj[objId]=certificate;

6: function updatePropertyInfo(objId, properties, certificate) ownerOnly public
7: update prop[objId]=properties, cert obj[objId]=certificate;

8: function deletePropertyInfo(objId) ownerOnly public
9: delete Oid[objId], prop[objId], cert obj[objId];

10: function getPropertyInfo(objId) public
11: require (msg.sender==valid requester || msg.sender==objACC address)
12: return (prop[objId], cert obj[objId]);

Algorithm 11 Adjudicator contract functions.
1: function constructor
2: set BA = msg.sender; index=0;

3: set modifier onlyBA {if (msg.sender == BA) };
4: set modifier onlyV erifier {if (msg.sender == verifier) };
5: function registerVerifier(verifier address) onlyBA public
6: set verifier[index]=verifieraddress;
7: update index=index+1;

8: function reportMisbehavior(Oid, pk, misbehaviour, time) public .
called by requester to report a misbehaviour

9: set mis object[pk]=Oid; mis type[pk]=misbehaviour;
10: set mis time[pk]=time; mis state[pk]=“Unchecked”

11: function setMisbehaviorState(state, Oid, pk) onlyV erifier public
12: require (msg.sender==verifier)
13: set mis state[pk]=“Checked”
14: if mis status=true then . misbehaviour detected
15: call oDir.deleteResource (Oid);
16: call uDir.deleteUser (pk);

17: function getLatestMisbehavior(pk) onlyBA public
18: return (mis object[pk], mis type[pk], mis time[pk],mis state[pk])

	Privacy-preserving Resource Sharing using Permissioned Blockchains

