Standardized crypto-loans on the Cardano blockchain

Dmytro Kondratiuk, Pablo Lamela Seijas, Alex Nemish, Simon Thompson: IOHK and Kent

WTSC'21, 5 March 2021

Overview

Finance and ACTUS ACTUS + Cardano
Marlowe ... Executable specification
... language, Contract generation

... and design Assurance

Finance

Loans

notional
Lender advances notional to borrower.
Borrower will pay charges and
interest, and repays on a given date.
Simplest possible example, zero notional

<

+ Interest

coupon bond: repay with interest.

Beyond the zero coupon bond 2 == e

Make scheduled interest payments during the life of the contract.

Interest rate can vary during the life of the contract: a risk factor.

The first option is entirely static ...

... the second requires (re)calculation during contract execution..

."/:’/i“’“v . '
- notiona o
oliatera - S
JM W, Finterest B8 T L

In the case of trustless blockchain, why should the lender ever repay?

Collateral: can be crypto-asset e.g. ADA used against fiat / stable-coin loan, e.g. USDT.
Borrower gains liquidity without selling their crypto-asset, and pays for that in interest.

Risk lies in the variable valuation of the collateral ...

ACTUS: Algorithmic Contract Types Unified Standards

www.actusfrf.org

Financial Contracts Credit Enhancement

Different degrees of dynamism:] —
¢ StC]tiC Fixed |I nnnnn IndexIBased | i 'I 'I' i CI:EC

Symmetric Options Securitization MAR

¢ VG ri d b | erd t es Mat”:”“es N°“'M%"‘”"“es Plain \|lanilla J~ Ex<|)tic Cerit J— MaTket -
o O'FF S C h ed u | e pq ym e n t S A.\:,N unlnp C(I)M SWI:DPV CA:PFL o Tns;wp sc;aca
Tradeoff between guarantees and b

dynamic behaviour.

ACTUS state machines /\/> >

Contract terms

Scheduled events

Schedule (list of days and events)

date+

event

dateo

evento

datep event,

State transformation function

payoff. = POF(state;)
state; = path (INIT(c?))

path. = STF(ct, evy) o STF(ct, ev,) o ... o STF(ct, ev;)

Marlowe

® & 6 0 0 0 0 06 0 0 0 0 0 0 O 0 O 0 O O O O 0 O O O O O O O O O 0 O O O O O O O O 0 O O 0 O O O O O O O O 0 O 0 O O O O 0 O O O O 0 O 0 O O O O 0 O 0 O 0 0 O O O 0 O 0 O O 0 O 0 O O 0 O 0 O 0 O 0 0 O 0 O 0 0 0 O 0O 0 O 0 0 O 0 O 0 O 0 0 O 0 O O O 0 O 0 O 0O 0 0O 0 0 0O 0 0 0 O 0 0 0 0 0 0 0

sell

stick

sell

stick

sell

stick

sell

stick

Design

But a contract could ...

... run forever.
... wait for an input forever.
... terminate holding assets.

... "double spend" assets.

Design

Contracts are finite.
Contracts will terminate ...

... with a defined lifetime.

No assets retained on close.

Conservation of value.

No recursion or loops (in Marlowe).
Timeouts on actions: choice, deposit, ...
Read off from timeouts.

(Local) accounts for refund on close.

Underlying blockchain + defined constructs.

Design

Contracts are finite.
data Contract = Close

| Pay Party Payee Value Contract

| If Observation Contract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let ValueId Value Contract

| Assert Observation Contract

Contracts will terminate ...

... with a defined lifetime.

Conservation of value.

Design

Contracts are finite.
data Contract = Cm

| Pay Party Payee Value Contract

| If Observation Contract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let ValueId Value Contract

| Assert Observation Contract

Contracts will terminate ...

... with a defined lifetime.

Conservation of value.

Design

Contracts are finite.
data Contract = Close \

| Pay Party Payee Value Contract

| If Observation Contract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let ValueId Value Contract

| Assert Observation Contract

Contracts will terminate ...

... with a defined lifetime.

Conservation of value.

Design

Contracts are finite.
data Contract = Close \

| Pay Party Payee Value Contract

| If Observation Contract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let ValueId Value Contract

| Assert Observation Contract

Contracts will terminate ...

... with a defined lifetime.

Conservation of value.

Design

Contracts are finite.
data Contract = Close \

| Pay Party Payee Value Contract

| If Observation Contract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let ValueId Value Contract

| Assert Observation Contract

Contracts will terminate ...

... with a defined lifetime.

Conservation of value.

Design

Contracts are finite.
data Contract = Close

| Pay Party Payee Value Contract

| If Observation Contract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let ValueId Value Contract

| Assert Observation Contract

Contracts will terminate ...

... with a defined lifetime.

Conservation of value.

Design

Contracts are finite.
Contracts will terminate ...
... with a defined lifetime.
No assets retained on close.

Conservation of value.

data Contract

= Close

' Pagy Party Payee Value Contract

| I&ervation Contract Contract

| When [Case Action Contract]
Timeout Contract

| Let Valueld Value Contract

| Assert Observation Contract

Design

Contracts are finite.
data Contract = Close

| Pay Party Payee Value Contract

| If Obsemion Contract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let ValueId Value Contract

| Assert Observation Contract

Contracts will terminate ...

... with a defined lifetime.

Conservation of value.

Design

Contracts are finite.
data Contract = Close

| Pay Party Payee Value Contract

| If Observation tract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let ValueId Value Contract

| Assert Observation Contract

Contracts will terminate ...

... with a defined lifetime.

Conservation of value.

Design

Contracts are finite.
data Contract = Close

| Pay Party Payee Value Contract

| If Observation Contract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Les JalueId Value Contract

| Assert Observation Contract

Contracts will terminate ...

... with a defined lifetime.

Conservation of value.

Design

Contracts are finite.
data Contract = Close

| Pay Party Payee Value Contract

| If Observation Contract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let ValueId Jalue Contract

| Assert Observation Contract

Contracts will terminate ...

... with a defined lifetime.

Conservation of value.

Design
y

Contracts are finite. R
data Contract = Close
| Pay Party Payee Value Contract
| If Observation Contract Contract
| When [Case Action Contract]
Timeout Contract
No assets retained on close. | Let ValueId Value Contract

| Assert Observation Contract

Contracts will terminate ...

... with a defined lifetime.

Conservation of value.

Haskell

Marlowe
Real world Desktop+wallet

Plutus

Cardano node

Assurance

Quick Check: random-based
testing of system and

contract properties.

Static analysis: automatic
verification of properties of
individual contracts.

Verification: machine-
supported proof of system
and contract properties.

ACTUS standard: generate
contracts from high-level
specs, using Haskell or Agda.

ACTUS + Cardano

I

Options

Maturities Non-Maturities

ACTUS in Cardano

1 1
RRRRRRRRRR
1

Executable specification of ACTUS in Haskell.
Generation of ACTUS contracts in Marlowe from contact terms.

ActusLabs interface for composing contract terms in Blockly.

I

ACTUS in Cardano
Executable specification of ACTUS in Haskell.
Generation of ACTUS contracts in Marlowe from contact terms. I

;;;;;;;;

ActusLabs interface for composing contract terms in Blockly.

Haskell Editor

lllllll

lllllll

W1 MARLOWE PLAYGROUND & newraureer

@ Generate reactive contract Generate static contract

l Contracts

Simulation
| Values CONTRACT
I Periods
Principal At Maturity
JS start date * | year ElZi) month §1) day ED
JS Editor maturity date * | . year [PLEED month §) day D

notional * | decimal B[}
) premium/discount (, decimal E[)

interest rate

Haskell Editor purchase date
initial exchange date

termination date

.
‘ _A_] rate reset cycle
- interest payment cycle
Blockly _ _
observation constraints
_ payoff analysis constraints
Labs

=

Wallets

N1 MARLOWE PLAYGROUND #& neurfoureu

@ %) DEMOS: Escrow ZeroCouponBond Option Swap CFD Empty
1 When [
Simulation 2 (Case
3 (Deposit
4 (Role "counterparty")
5 (Role "counterparty")
.jss 6 (Token "' ")
7 (Constant 1000))
JS Editor 8 (Pay
9 (Role "counterparty")
10 (Party
11 (Role "party"))
) \— 12 (Token "™ ")
13 (Constant 1000)
Haskell Editor 14 (When [
15 (Case
16 (Deposit
17 (Role "party")
: 18 (Role "party")
19 (Token "™ ")
BIOCkly 20 (Constant 1100))
21 (Pay
22 (Role "party")
23 (Party
‘é 24 (Role "counterparty"))
25 (Token "™ ")
Labs 26 (Constant 1100) Close))] 1601510300 Close)))] 1633046300 Close

=

Wallets

Executable specification in Haskell

Respect naming conventions.

Use Haskell type classes for overloading:
a single description gives both ...
... cash flows ftor an instrument and

... syntax describing the same instrument.

Generate Marlowe or Haskell code from these
descriptions ...

-- Definitions/ContractState.hs
data ContractStatePoly a b = ContractStatePoly
{
tmd b
- NE a
, lpnr :: a
s1pac i a
, feac :: a
= fdc s a
, hsc a
s 1SC a
, prf C
, sd b
, prnxt :: a
, 1pcb :: a
} deriving (Show)

:: ContractStatus

-- Ops.hs

class ActusOps a where
_min :: a->a->a
_max :: a->a ->ad
_zero :: a
_onhe :: a

class ActusNum a where

(+) ::a->a ->a
(-) ::a->a ->a
(*) ::a->a ->a
(/) ::a->a ->a

class YearFractionOps a b where
y ::DCC ->a->a->a->b

class DateOps a b where
_Llt :: a -> a -> b --returns pseudo-boolean

class RoleSignOps a where
r .. ContractRole -> a

Contract terms

Unified type of conditions to fit all kinds
of ACTUS contracts.

Requires analysis of applicability of terms
to contracts ...

... and mechanism for combining the
effect of multiple term instances.

Linear Amortizer
start date *
maturity date
notional *
premium/discount
interest rate *
purchase date
purchase price
initial exchange date
termination date
termination price
periodic payment amount
rate reset cycle
interest payment cycle
principal redemption cycle *
observation constraints

payoff analysis constraints

contract

terms L --------- » SCHED)y------------ .
T N :
1
1
1

Contrq Ct generqtion i Schedule (list of days and events)
: date+ eventq dateo evento datep, event,
v
-------- > INIT >—> STF >—>
contract(ct) =
collaterals(ct) o INIT(c?) o H chainlink(t) payoft et payofi

tcSCHED(ct)
chainlink(?) =
receiveData(?) o calculatePayoft(t) o processPayoff(t)

Generation: under the hood

Different generation mechanisms for fixed and variable rates ...
... pre-computed payments vs computation in the contract.

Language extension: conditional expressions.
Dealing with unbounded contracts.
Numbers: fixed-point vs integers.

Representing records in Marlowe.

Schedule (list of days and events)

eeeeeeee

eeeeeeee

eeeeeeee

Native tokens in Cardano

Represent ownership of roles in
running contracts by custom tokens.

Possibility of securitising through
multiple tokens per role.

Assurance

QuickCheck the Haskell SMT solving checks for potential
implementation vs Java. failed payment: with c/exes.
QuickCheck properties of contracts ACTUS-specific: add a check for

expressed via Assert. potential auto refund on Close.

For the future

Extend the coverage of ACTUS within Verification supported by the Isabelle
ActuslLabs. Marlowe embedding.
ACTUS contracts onto Cardano itself: Collisions of events, causality,

onto the Marlowe Dashboard. hedging: all contracts have a dual.

https://alpha.marlowe.iohkdev.io

