
Standardized crypto-loans on the Cardano blockchain

Dmytro Kondratiuk, Pablo Lamela Seijas, Alex Nemish, Simon Thompson: IOHK and Kent

WTSC'21, 5 March 2021

Overview

Finance and ACTUS

Marlowe …

 … language,

 … and design

ACTUS + Cardano

Executable specification

Contract generation

Assurance

Finance

Loans

Lender advances notional to borrower.

Borrower will pay charges and
interest, and repays on a given date.

Simplest possible example, zero
coupon bond: repay with interest.

notional

notional
+ interest

Beyond the zero coupon bond

Make scheduled interest payments during the life of the contract.

Interest rate can vary during the life of the contract: a risk factor.

The first option is entirely static …

 … the second requires (re)calculation during contract execution..

Collateral

In the case of trustless blockchain, why should the lender ever repay?

Collateral: can be crypto-asset e.g. ADA used against fiat / stable-coin loan, e.g. USDT.

Borrower gains liquidity without selling their crypto-asset, and pays for that in interest.

Risk lies in the variable valuation of the collateral …

ACTUS: Algorithmic Contract Types Unified Standards

www.actusfrf.org

Different degrees of dynamism:
• Static
• Variable rates
• Off schedule payments

Tradeoff between guarantees and
dynamic behaviour.

contract
terms SCHED

P
O

F

date1 date2 daten

Schedule (list of days and events)

event1 event2 eventn

st1 st2STF STF stn

P
O

F

P
O

F

st0 STFINIT

payoff1 payoffnpayoff2

ACTUS state machines

Contract terms

Scheduled events

State transformation function

payoffi = POF(statei)

statei = pathi(INIT(ct))

pathi = STF(ct, ev1) ∘ STF(ct, ev2) ∘ … ∘ STF(ct, evi)

Marlowe

sell

stick

sell

stick

sell

stick

sell

stick

Design

But a contract could …

 … run forever.

… wait for an input forever.

… terminate holding assets.

… “double spend” assets.

Design

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

No recursion or loops (in Marlowe).

Timeouts on actions: choice, deposit, …

Read off from timeouts.

(Local) accounts for refund on close.

Underlying blockchain + defined constructs.

Design

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Design

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Design

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Design

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Design

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Design

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Design

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Design

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Design

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Design

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Design

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Design

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Haskell

Cardano node

Plutus

Marlowe
Real world Desktop+wallet

Assurance

Quick Check: random-based
testing of system and
contract properties.

Static analysis: automatic
verification of properties of
individual contracts.

Verification: machine-
supported proof of system
and contract properties.

ACTUS standard: generate
contracts from high-level
specs, using Haskell or Agda.

ACTUS + Cardano

ACTUS in Cardano

Executable specification of ACTUS in Haskell.

Generation of ACTUS contracts in Marlowe from contact terms.

ActusLabs interface for composing contract terms in Blockly.

ACTUS in Cardano

Executable specification of ACTUS in Haskell.

Generation of ACTUS contracts in Marlowe from contact terms.

ActusLabs interface for composing contract terms in Blockly.

Executable specification in Haskell

Respect naming conventions.

Use Haskell type classes for overloading:
a single description gives both …
 … cash flows for an instrument and 
 … syntax describing the same instrument.

Generate Marlowe or Haskell code from these
descriptions …

Contract terms

Unified type of conditions to fit all kinds
of ACTUS contracts.

Requires analysis of applicability of terms
to contracts …

 … and mechanism for combining the
effect of multiple term instances.

contract
terms SCHED

P
O

F

date1 date2 daten

Schedule (list of days and events)

event1 event2 eventn

st1 st2STF STF stn

P
O

F

P
O

F

st0 STFINIT

payoff1 payoffnpayoff2

Contract generation

contract(ct) =
collaterals(ct) ∘ INIT(ct) ∘ ∏

t∈SCHED(ct)
chainlink(t)

chainlink(t) =
receiveData(t) ∘ calculatePayoff(t) ∘ processPayoff(t)

contract
terms SCHED

P
O

F

date1 date2 daten

Schedule (list of days and events)

event1 event2 eventn

st1 st2STF STF stn

P
O

F

P
O

F

st0 STFINIT

payoff1 payoffnpayoff2

Generation: under the hood

Different generation mechanisms for fixed and variable rates … 
 … pre-computed payments vs computation in the contract.

Language extension: conditional expressions.

Dealing with unbounded contracts.

Numbers: fixed-point vs integers.

Representing records in Marlowe.

Native tokens in Cardano

Represent ownership of roles in
running contracts by custom tokens.

Possibility of securitising through
multiple tokens per role.

Assurance

QuickCheck the Haskell
implementation vs Java.

QuickCheck properties of contracts
expressed via Assert.

SMT solving checks for potential
failed payment: with c/exes.

ACTUS-specific: add a check for
potential auto refund on Close.

For the future

Extend the coverage of ACTUS within
ActusLabs.

ACTUS contracts onto Cardano itself:
onto the Marlowe Dashboard.

Verification supported by the Isabelle
Marlowe embedding.

Collisions of events, causality,
hedging: all contracts have a dual.

https://alpha.marlowe.iohkdev.io

