
Publicly Verifiable and Secrecy Preserving
Periodic Auctions

Hisham S. Galal and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Quebéc, Canada

Abstract. In lit markets, all the information about bids and offers in
the order book is visible to the public. With this transparency, traders
can discover prices and adjust their strategies accordingly. On the other
hand, submitting a bulk order by a financial institution will have a signif-
icant impact on the market price. Therefore, financial institutions prefer
trading on dark pools, which hide order books, to avoid potential losses
from negative market impact. However, the lack of transparency hurts
price discovery, results in poor execution of trades, and promotes illicit
behaviors such as front-running. Hence, several financial regulations have
limited trading on dark pools. Subsequently, periodic auctions, which
are considered regulation-compliant alternatives to dark pools, have wit-
nessed a surge in trading volumes. Unfortunately, similar to dark pools,
there are no guarantees that the operators will neither exploit their exclu-
sive access to the order book nor incorrectly compute the market-clearing
price. In this paper, we build a publicly verifiable and secrecy preserving
periodic auction protocol to address these challenges. We utilize aggre-
gate Bulletproofs to prove the ordering on a vector of commitments. To
alleviate the burden on traders’ computation resources and achieve pub-
lic verifiability, the protocol delegates the verification of the operator’s
work to a smart contract. We evaluate the protocol’s performance, and
the results show that it is practical and feasible to deploy.

Keywords: Periodic Auction, Zero-Knowledge Arguments, Blockchain

1 Introduction

Investors use financial exchanges to trade equities and securities. Generally, an
exchange is a continuous double-sided auction between buyers and sellers [1].
It records all outstanding limit orders in an order book. A limit order consists
of a unit price, a quantity of an asset, and a direction to indicate whether it is
a bid by a buyer or an offer by a seller. If the order book is transparent and
accessible to the public, the exchange is known as a Lit market. On the contrary,
a dark pool, which is favored by financial institutions, is an exchange that hides
its order book from traders [1].

To understand the main benefit of dark pools, it is worth considering the
problem institutional investors face in lit markets. Suppose that Bob is an in-
stitutional investor who uses a lit market to buy one million USD worth of an

arbitrary asset. The sellers will notice Bob’s bid. Hence, they anticipate the in-
creased demand and react by moving their offers to higher prices so that they
can gain higher revenue. As a result, Bob will have a hard time trying to fill
his order. Thus, he has to either accept the loss in buying the full volume at
higher prices, or divide the quantity into smaller batches and buy at different
prices. Although the latter approach may seem better, it still incurs high fees
and commissions paid to the exchange. Therefore, it is much more convenient
for Bob to trade on a dark pool where the market impact will be minimal.

While dark pools provide a better trading platform for financial institutions,
they have several issues. Most importantly, they hurt price discovery and put
traders on other exchanges at a disadvantage. Furthermore, the lack of trans-
parency could result in poor execution of trades or abuses such as front-running.
Conflicts of interest are also a possibility since the operator could trade against
pool clients. The U.S. Securities and Exchange Commission has found numerous
violations and fined some dark pool operators [2–4]. Accordingly, several re-
cent financial regulations, such as Europe’s MiFID-II [5], call for limiting trades
on dark pools. Interestingly, post enforcing MiFID-II, periodic auctions, which
are considered regulation-compliant alternatives to dark pools, have witnessed a
surge in the size of executed trading volumes.

In periodic auctions, the operator matches orders periodically, rather than
continuously. Initially, traders submit orders privately to the operator. The sub-
mission phase ends at a random time. Next, the operator determines the market
clearing price (MCP) and market clearing volume (MCV). Essentially, traders
trust the operator to correctly calculate these values since they do not have
access to the order book. To counter-balance this trust, regulators must audit
the operator’s work to reveal malicious behavior. However, the audit process is
prohibitively expensive, and it might also be infrequent.

One way to remove trust requirements and reduce costly audits is to utilize
the blockchain technology. Clearly, with the advent of the blockchain and Bitcoin
[6], mutually distrusting parties can finally make transactions without relying
on a trusted third party. Furthermore, complex types of transactions beyond
simple payment transfers have quickly emerged due to the rich capabilities of
smart contracts on blockchains such as Ethereum [7]. Smart contracts are pieces
of data and code deployed on the blockchain. The consensus layer ensures that
they execute precisely as their code dictates. Hence, a smart contract can act
as a public trusted judge that resolves disputes and verifies the correctness of
transactions.

The contributions in this paper are summarized below:

1. We build a protocol to prove that the committed values for a given vector
of commitments are in descending order.

2. We utilize the above protocols to build a publicly verifiable and secrecy
preserving periodic auction protocol.

3. We implemented a basic prototype to assess the protocol’s performance, and
released its source code on Github1.

1https://github.com/Anonymousub/PeriodicAuction

2

2 Related Work

Thrope and Parkes [1] proposed a protocol for continuous double-sided auctions.
Initially, each trader sends a price, a quantity, and a direction encrypted by the
operator’s public key of a homomorphic encryption scheme to a bulletin board.
Then, the operator decrypts the orders and tries to match them. Once a match is
found, the operator executes the matched orders and publishes them in history.
The main drawback of this protocol is its heavy computation burden on the
operator since it requires ranking all orders and generating proofs of correctness
after the execution of every matched order.

Jutla [8] presented a secure five-party computation protocol for periodic auc-
tions. A small number of brokers and a regulatory authority run the protocol.
The auction starts with traders sending limit orders to brokers. Next, brokers
run the protocol to find MCP and settle matched orders. In each round of this
protocol, the regulatory authority must audit extensive computation to ensure
the correctness of MCP, which renders the protocol impractical.

Galal and Youssef [9–11] proposed three constructions to build sealed-bid
auctions on Ethereum. In the first construction, they utilize Pedersen commit-
ment scheme and an interactive zero-knowledge range argument with high-cost
transactions and limited scalability. The second construction uses zkSNARK,
which improves the protocol scalability due to the constant proof size and verifi-
cation cost. However, it requires a trusted setup to generate the proving and ver-
ification keys. Finally, the third construction utilizes Intel SGX as a trusted exe-
cution environment to determine the auction winner in a full privacy-preserving
way with high performance. However, Intel SGX technology is not mature tech-
nology yet, and it faces multiple attacks that compromise its security.

Cartlidge et al. [12] utilized SCALE-MAMBA, a multi-party computation
(MPC) framework, to emulate a trusted third party. The authors designed three
constructions to assess the feasibility of using MPC in stock markets. They argue
that it is not practical yet to run continuous double-sided auctions. On the other
hand, the periodic auctions and volume matching constructions show promising
results. Although this protocol provides strong secrecy, it requires a heavy pre-
processing phase in addition to the inherent highly interactive communications
between parties.

3 Preliminaries

3.1 Assumptions and Notations

Throughout the paper, an adversary A is a probabilistic interactive Turing Ma-
chine that runs in a polynomial time in the security parameter λ. Let G be a
cyclic group of prime order p with generators g and h. Let Z∗

p denote Zp\{0},
and x←$Z∗

p denote uniform sampling of an element from Z∗
p. We represent

vectors by bold font, e.g. a is a vector with elements (a1, . . . , an). Finally, let
H : {0, 1}∗ → Z∗

p denote a cryptographic collision resistant hash function.

3

3.2 ElGamal Encryption

We utilize ElGamal encryption scheme where messages are encoded in the ex-
ponent. It consists of the following algorithms:

• (x, y) ← K(G, p, g): it samples a secret key x←$Zp, and generates a public
key y = gx.

• c← Ency(m, r): it encrypts a message m ∈ Zp using a blinding factor r←$Zp
by the public key y, and outputs a ciphertext c = (c1, c2) = (gr, gmyr).

• gm ← Decx(c): it decrypts the ciphertext c by the secret key x, and outputs
gm ← c2 · c−x1 . One needs to brute-force the discrete log of gm to recover m
which is affordable for small values (e.g., when m is a 32-bit value).

3.3 Pedersen Commitment

Pedersen commitment [13] is a non-interactive commitment scheme that has per-
fectly hiding and computationally binding properties. It consists of the following
algorithms:

• X ← Com(x, r): it commits to a message x ∈ Zp using blinding factor r←$Zp,
and outputs X = gxhr.

• {>/⊥} ← Vfy(X,x, r): it verifies whether X commits to x with blinding
factor r, and outputs > on success, otherwise, it outputs ⊥.

Pedersen commitments are additively homomorphic. For instance, given the com-
mitments Com(x1, r1) and Com(x2, r2), one can compute Com(x1 + x2, r1 + r2) =
Com(x1, r2)Com(x2, r2) without knowing the committed values.

3.4 Zero-Knowledge Proof of Knowledge

A zero-knowledge proof of knowledge is a protocol that allows a prover to con-
vince a verifier that a certain statement holds without revealing any information
beyond that fact. An argument is a proof which only holds if the prover is com-
putationally bounded and certain computational hardness assumptions hold. We
consider arguments consisting of three interactive algorithms (Setup,P,V) run-
ning in probabilistic polynomial time. The Setup algorithm takes 1λ as input,
and produces a common reference string (CRS) denoted by Σcce. The tran-
scripts produced by P and V when interacting on inputs s and t is denoted
by tr ← 〈P(s),V(t)〉. We write 〈P(s),V(t)〉 = b to denote whether the verifier
accepts b = 1, or rejects b = 0. Let R ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be a ternary
polynomial-time decidable relation. We call w a witness for a statement x if
(σ, x, w) ∈ R. Additionally, we define the CRS-dependent language

Lσ = {x|∃w : (σ, x, w) ∈ R}

as the set of statements x that have a witness w in R. Zero-knowledge arguments
have the following three properties.

1. Completeness: the verifier will always accept a proof generated by an honest
prover.

4

2. Soundness: the verifier will not accept a false proof except with a negligible
probability.

3. Zero-knowledge: the verifier does not learn any information about the witness
from the transcripts exchanged with the prover.

Fiat-Shamir heuristic [14] can transform the interactive triple (Setup,P,V) to
non-interactive zero-knowledge (NIZK) proof in the random oracle model.

3.5 Zero-Knowledge Range Proof

A zero-knowledge range proof allows a prover to convince a verifier that a com-
mitted value falls within a given range. One of the recent constructions is Bullet-
proofs [15], which has a short logarithmic proof size O(log(n)) in the bit-width
of the range. The proof generation and verification times scale linearly with n.
More importantly, it does not require a trusted setup. In particular, given a
commitment X = gxhr ∈ G for a witness x ∈ Zp, Bulletproofs allows a prover
to generate the following NIZK argument:

{(g, h ∈ G, X;x, r) : X = gxhr ∧ x ∈ [0, 2n − 1]}

Bulletproofs allows the generation of an efficient aggregate argument for a
vector of commitments. Specifically, given a vector of m commitments, the ag-
gregate argument is smaller than the total size of m simple arguments. We refer
to the protocol generating aggregate range arguments as BP = (Setup,P,V),
which consists of the following probabilistic polynomial-time algorithms:

1. σ ← BP.Setup(1λ, n,m): it takes λ as the security parameter, n as the range
bit-width, and m as the vector cardinality; and outputs Σcce as the CRS.

2. π ← BP.P(σ,X,x, r): it takes a vector of commitments X along with the
opening vectors x and r; and generates an argument π to prove

{(X;x, r) : Xi = gxihri ∧ xi ∈ [0, 2n − 1]}
3. {>/⊥} ← BP.V(σ,X, π): it returns > if it accepts π; otherwise, it returns ⊥.

3.6 Evaluator-Prover Model

The evaluator-prover (EP) model [16] provides a practical framework for se-
crecy preserving proofs of correctness. Involved parties secretly submit input
values (x1, . . . , xn) to the EP entity. The EP privately computes a function
y = f(x1, . . . , xn), outputs the value y, and generates a proof of the correctness.
Parties accept the result on successful verification of the proof of correctness.
The EP model is secrecy preserving if the proof does not reveal any information
about the inputs beyond what is implied by the result.

Note that the EP model does not maintain strong secrecy [17], which man-
dates that the EP cannot disclose information about the inputs. However, the
notion of secrecy preserving is still useful in the context of periodic auctions.
More specifically, at the end of each round, information about the MCP and
MCV are published, which gives more hints about the inputs. Hence, the main
requirement here is to ensure that the operator cannot exploit this information to
its advantage. In particular, the operator must not have access to the submitted
orders until the end of the submission phase.

5

4 Basic Protocols

In this section, we present two zero-knowledge arguments protocols that are
utilized to build the periodic auction.

4.1 Zero-Knowledge Proof of Consistent Commitment Encryption

We design an honest-verifier zero-knowledge Σcce, which is shown in Fig. 1,
to prove that an ElGamal ciphertext hides the committed value of a Pedersen
commitment. To motivate the need for this protocol, suppose that Alice has
sent Bob a commitment X = gxhr for an arbitrary value x. Later, she reveals
the committed value x to Bob by encrypting it in a ciphertext c = (c1, c2) =
(gr, gxyr) using Bob’s public key y with the same blinding factor r. Alice wants
to convince Carol that she has encrypted the committed value x in the ciphertext
c using Bob’s public key. More precisely, Alice wants to generate the following
argument:{(g, h, c,X, y;x, r) : c1 = gr ∧ c2 = gxyr ∧X = gxhr}

P(c,X, y;x, r) V(c,X, y)

x′, r′ ←$Zp

a1 = gr
′
, a2 = gx

′
yr

′

A = gx
′
hr′ a1, a2, A

z1 = x′ + xe e←$Zp

z2 = r′ + re z1, z2 Accept if and only if

gz2 = a1c
e
1

gz1yz2 = a2c
e
2

gz1hz2 = AXe

Fig. 1: Σcce protocol

We utilize Fiat-Shamir heuristic to convert the Σcce protocol into NIZK
argument by using a hash function to get the challenge e← H(c, X, y, a1, a2, A).
We define the following two PPT algorithms for this protocol:

1. π ← Σcce.P(c,X, y, x, r). It generates a proof π to prove that the ciphertext
c is an encryption of the opening value x for the commitment X.

2. {0, 1} ← Σcce.V(c,X, π). It returns 1 if it has successfully verified the proof
π for a ciphertext c and a commitment X; otherwise, it returns 0.

4.2 Zero-Knowledge Argument of Ordering

We build a protocol ProveOrder to prove that the committed values for a vector
of Pedersen commitments are in descending order without revealing any infor-

6

mation beyond that fact, as shown in Fig. 2. More specifically, given a vector of
commitmentsX of size m+1 to a vector of elements x in [0, 2n−1], we say that x
is in descending order if the differences between successive elements xi, xi+1 are
non-negative values. Furthermore, since Pedersen commitments are additively
homomorphic, one can compute the commitments vector X̂ to the differences
between successive elements xi, xi+1 given their commitments Xi, Xi+1. Now,
we can utilize aggregate Bulletproofs to prove that the commitments in X̂ are
commitments to elements in the range [0, 2n − 1]. Note that we can also prove
ascending order by simply reversing the elements in the vectors.

ProveOrder.P(σ,X;x, r) ProveOrder.V(σ,X)

X̂ = (Xi ·X−1
i+1)mi=1

x̂ = (xi − xi+1)mi=1

where x′i ∈ [0, 2n − 1]

r̂ = (ri − ri+1)mi=1

π ← BP.P(σ,X ′,x′, r′)

π

X̂ = (Xi ·X−1
i+1)mi=1

Accept if and only if:

BP.V(σ, X̂, π) = 1

Fig. 2: ProveOrder Protocol

By default, this protocol inherits the completeness and zero-knowledge prop-
erties of Bulletproofs [15]. To ensure the soundness, we have a condition on the
value of 2n. Specifically, as the operation xi − xi+1 is carried out in Zp, then,
the condition 2n < p

2 must hold to ensure that negative differences do not fall
in the range [0, 2n − 1].

It is worth mentioning that the implementation of Fiat-Shamir heuristic can
compromise the security of Σcce and ProveOrder protocols. More precisely, these
protocols are susceptible to replay attacks by the adversary when they are used
with blockchain. For example, the adversary can replay an arbitrary trader’s
proof to the smart contract without knowing any witness, yet her proof will
be successfully accepted. To prevent this attack, we include the address of the
transaction sender as one of the inputs to the hash function that computes the
verifier challenges. Consequently, the adversary’s proof will be rejected because
the verifier challenges computed by the smart contract will be different from
those computed for the replayed proof.

7

5 Periodic Auction Protocol Design

5.1 System Model

In this protocol, there are three entities, namely, traders, an operator, and a
smart contract. The operator and traders interact indirectly through the smart
contract using their accounts on the blockchain.

1. Traders are the buyers and sellers who want to exchange their assets through
the auction.

2. An operator is the EP entity that privately receives orders and evaluates the
MCP and MCV, and proves their correctness to the smart contract.

3. A smart contract publicly verifies the zero-knowledge proofs submitted by
traders and the operator, as well as serves as a secure bulletin-board.

5.2 High-Level Flow of the Protocol

The operator deploys the smart contract and initializes it by a set of public
parameters. In Appendix A, we show the pseudocode for the smart contract.
Each operation performed by the traders or the operator results in a piece of
data and zero-knowledge proof, which will be submitted to the smart contract.
The smart contract verifies the proof, and upon success, it stores the associated
data. A single round of the periodic auction protocol consists of the following
three phases:

1. Traders commit to their orders, and utilize Bulletproofs to generate an ag-
gregate range proof.

2. Traders encrypt their orders by the operator’s public key, and utilize Σcce
protocol to prove the consistency between ciphertext and commitments.

3. The operator does the following:
(a) Access price and quantity values in orders.
(b) Determine the MCP and MCV.
(c) Generate proof of correctness for MCP and MCV.

6 Protocol Design

6.1 Smart Contract Deployment and Parameters Setup

The protocol starts by the operator Alice generating the public parameter σ
by running the setup algorithm of Bulletproofs for a security parameter λ, a
bit-width n, and number of commitments m. Then, she generates a key-pair
x, y as the secret and public keys for ElGamal encryption scheme, respectively.
Additionally, she defines the time-window of each phase by the vector t.

σ ← BP.Setup(1λ, n,m)
x, y ← K(G, p, g),
t = (t1, t2, t3)

Next, she deploys the smart contract and initializes it with the parameters
(σ, y, t) and locks a fixed collateral deposit D.

8

6.2 Phase One: Submission of Orders

Traders submit their orders before the block-height t1. For example, a trader
Bob wants to buy v units of the auctioned asset at a price u. He creates his
order as follows:

r ←$Z2
p

U ← Com(u, r1)
V ← Com(v, r2)
π ← BP.P(σ, (U, V), (u, v), r)

First, he creates the commitments U and V for the price and quantity, respec-
tively. Subsequently, the trader generates an aggregate range proof π to assert
that the price and quantity values are within the range, i.e. u, v ∈ [0, 2n−1]. It is
worth mentioning that in the prototype, this phase uses a different Bulletproof
setup where m = 2 since there are two commitments only. Finally, he sends
a transaction that includes the parameters (dir, U, V, π) where dir indicates
whether the order is a bid or an offer.

Upon receiving the transaction, the smart contract checks whether the cur-
rent block-height is less than t1, and the transaction has a collateral deposit D.
Then, it verifies the aggregate range proof π for the commitments U and V .
Finally, it stores the commitments in either the list of Bids or the list of Offers
based on the value of dir.

It is worth mentioning that front-running has a little impact in periodic
auctions in contrast to continuous mainly because orders will be settled at a
single MCP regardless of orders sequence. Still, this protocol provides protection
against front-running for three main reasons. First, the commitments U and V
are perfectly hiding. Second, the aggregate range proof π is zero-knowledge,
hence, π does not reveal any information about the witness u and v beyond the
fact that they are in range [0, 2n− 1]. Third, there is an idle period between the
first and second phases to consider the possibility of revealing orders on minor
blockchain forks that will be discarded.

6.3 Phase Two: Revealing Orders

Traders utilize ElGamal encryption to reveal their orders to Alice before the
block-height t2. Therefore, Bob retrieves Alice’s public key y from the smart
contract and encrypts the opening values (u, r1) and (v, r2) as follows:

cu ← Ency(u, r1), πu ← Σcce.P(cu, U, y, u, r1)
cv ← Ency(v, r2), πv ← Σcce.P(cv, V, y, v, r2)

Then, he utilizes Σcce protocol to generate the proofs πu and πv to prove that
the ciphertext cu and cv encrypt the opening values (u, r1) and (v, r2) of commit-
ments U and V using Alice’s public key y, respectively. Subsequently, he sends
a transaction which includes the parameters (cu, cv, πu, πv).

Initially, the smart contract checks if the transaction is sent within the right
time window between t1 and t2. Then, it searches for the commitments (U, V)
corresponding to transaction sender in either Bids or Offers. Subsequently,

9

it verifies the proofs πu and πv. Alice can monitor the transactions submitted
to the smart contract during this phase to recover the ciphertext cu and cv.
In practice, Alice can efficiently retrieve the ciphertext by listening to events
triggered on the smart contract.

6.4 Phase Three: Matching Orders

At the beginning of this phase, Alice instructs the smart contract to find un-
revealed orders, remove them, and penalize their owners. Accordingly, she has
access to the price and quantity values of revealed orders. She performs the
following tasks to determine the MCP and MCV before block-height t3:

1. Sort the bids descendingly and the offers ascendingly by price.
2. Compute the cumulative quantity in bids and offers.
3. Finds the MCP that clears the highest cumulative quantity, i.e. MCV.
4. Send the MCP and MCV along with proofs of correctness to the smart

contract.

She can generate proof of correctness by creating an order with the MCP and
MCV values. Then, she inserts that order in the sorted lists of bids and offers
consisting of prices and cumulative quantities. Finally, she utilizes ProveOrder

protocol to prove the sort on price and cumulative quantity commitments. Note
that cumulative quantity commitments can be easily computed since Pedersen
commitments are additively homomorphic.

Let B and S denote the lists of bids and offers where the numbers of orders
in each list are M and N , respectively. Each order in B and S is encoded as
a tuple (U, V, Vc, u, r1, v, r2, vc, rc) of price, quantity, and cumulative quantity
commitments and their opening values. Note that, at the beginning, Vc, vc, rc
are empty. Alice performs the first task as follows:

Sort(B, DESCENDING), Sort(S, ASCENDING)

The Sort function sorts the elements in the input list according to the specified
criteria on the price values. For example, the elements in B and S are relocated
such that:

∀i ∈ [1,M − 1], Bi.u > Bi+1.u

∀j ∈ [1, N − 1], Sj .u < Sj+1.u

Next, for each order in B and S, she computes the cumulative quantities as:

∀i ∈ [1,M], Bi.(Vc, vc, rc)← B.(
i∏

k=1

Vk,
i∑

k=1

vk,
i∑

k=1

r2,k)

∀j ∈ [1, N], Sj .(Vc, vc, rc) ← S.(
j∏

k=1

Vk,
j∑

k=1

vk,
j∑

k=1

r2,k)

Subsequently, she finds the intersection range between prices in B and S. Then,
for this range, take the middle point as MCP denoted by p, and the lowest

10

cumulative quantity as MCV denoted by l. After that, she generates an order
M with commitments to p and l as follows:

P ← Com(p, 0), L← Com(l, 0)
M = (P, 0, L, p, 0, 0, 0, l, 0)

Note that, the blinding values in commitments of M are set to zero as we want
the commitments to be binding only. Moreover, p and l will be posted on the
smart contract eventually, we just need them in commitment form to be utilized
in the ProveOrder protocol. Finally, she inserts M in both B and S while
preserving the ordering:

B.Insert(M), S.Insert(M)

Now, Alice utilizes ProveOrder protocol to prove the correctness of MCP p
and MCV l as follows:

π1 ← ProveOrder.P(B.(U ,u, r1), DESCEND)
π2 ← ProveOrder.P(B.(Vc,vc, rc), ASCEND)
π3 ← ProveOrder.P(S.(U ,u, r1), ASCEND)
π4 ← ProveOrder.P(S.(Vc,vc, rc), ASCEND)
π = (π1, π2, π3, π4)

In the smart contract, the indices of orders in Bids and Offers depend entirely
on their arrival time. Hence, Alice creates two positioning vectors χ and γ that
will be used by the smart contract as proxies to access Bids and Offers in their
sorted order, respectively. Finally, Alice sends a transaction which contains the
parameters (p, l,χ,γ,π) to the smart contract.

The smart contract checks that the transaction is sent by Alice between
block-heights t2 and t3. Then, it checks whether p, l ∈ [0, 2n − 1]. After that, it
appends the orderM in Bids and Offers. Finally, it verifies the proofs π before
accepting and storing p and l.

Upon successful verification, the smart contract refunds the collateral de-
posits to Alice and owners of unsettled orders. On the other hand, the smart
contract keeps the collateral deposits of owners of executed orders locked for the
settlement of the assets exchange phase off-chain. Conversely, if the verification
was not successful or the Alice failed to send the proofs π before block-height
t3, then the smart contract slashes her deposit and refunds the traders.

7 Performance Evaluation

In this section, we evaluate the performance measurement of the proposed pro-
tocol and assess its feasibility.

7.1 Evaluation

We report the measurements of the two main building blocks that constitutes
the periodic auction protocol, namely, Σcce and ProveOrder protocols n Table
1. The proof size is measured by the number of elements in G and Zp. For

11

the verifier, we report the number of elliptic curve operations required to verify
proofs.

Table 1: Performance of ProveOrder and Σcce protocol.

Performance # ProveOrder Σcce Protocol

Proof size
G 2(log2(n) + log2(m)) + 4 3
Zp 5 2

Verifier operations
mul 11 + 2n+m 8
add 7 + 2n+m 5

In Ethereum, the point addition and point multiplication operations cost 150
and 6000 gas, respectively. Hence, we can measure the transaction gas cost of ver-
ifying the submitted proofs. In Fig.3, we report the performance measurements:
proof size, prover time, and gas cost of proof verification by the smart contract
with respect to the total number of orders for the transactions: SubmitOrder,
RevealOrder, and ClearMarket. Obviously, the transaction SubmitOrder and
RevealOrder have constant measurements as opposed to ClearMarket transac-
tion which scale linearly with the number of orders.

10 20 30 40 50 60 70 80 90100

103

104

105

Orders

B
y
te

s

Proof Size

10 20 30 40 50 60 70 80 90100

105

106

Orders

G
a
s

Verification Gas Cost

10 20 30 40 50 60 70 80 90100
101

102

103

104

105

Orders

m
il
li
se

co
n
d
s

Prover Time

10 20 30 40 50 60 70 80 90100

103

104

105

Phase Length

#
T

ra
n
sa

ct
io

n
p

er
P

h
a
se

Prover Time

SubmitOrder RevealOrder ClearMarket

Fig. 3: Performance measurements of the periodic auction protocol

12

The current block gas limit on Ethereum is roughly 10M gas. Hence, we can
estimate the number of transactions that fit in a single block. More importantly,
we can estimate the theoretical number of SubmitOrder and RevealOrder trans-
actions that the smart contract can receive during the first and second phases for
different phase lengths as shown in Fig 3. The SubmitOrder transaction incurs
the cost of verifying ProveOrder proof where n = 16 and m = 2. Similarly, the
RevealOrder transaction incurs the cost of verifying Σcce proof. Accordingly,
the transaction cost of SubmitOrder and RevealOrder are roughly 276150 and
48750 gas, respectively. Note that, in practice, the gas cost for each transaction
is higher since there are additional operations involving data access and control
flow.

Furthermore, we can estimate the highest number of orders that can be
processed by a single ClearMarket transaction before exceeding the 10M gas
block limit. Typically, the ClearMarket transaction requires verification of two
ProveOrder proofs for M bids and two ProveOrder proofs for N offers. For con-
venience, assume that we have an equal number of bids and offers M = N , hence,
the ClearMarket transaction incurs the verification cost of four ProveOrder

proofs of M commitments. Accordingly, the ClearMarket transaction can the-
oretically process up to ≈ 728 orders before exceeding the block gas limit. Cer-
tainly, in practice, this number is lower due to the gas cost associated with
operations other than proof verification.

8 Conclusion

We presented publicly verifiable secrecy preserving periodic auction protocol.
The protocol depends on two zero-knowledge proofs, namely, proof of consistent
commitment encryption and proof of ordering. Furthermore, we implemented a
prototype and evaluated its performance to assess its feasibility. Based on the
result, we believe that the periodic auction protocol is a feasible and secure
alternative to dark pools.

References

1. Thorpe, C., Parkes, D.C.: Cryptographic securities exchanges. In: International
Conference on Financial Cryptography and Data Security. pp. 163–178. Springer
(2007)

2. Sec charges citigroup for dark pool misrepresentations. https://www.sec.gov/

news/press-release/2018-193 (2018)

3. Sec charges itg with misleading dark pool subscribers. https://www.sec.gov/

news/press-release/2018-256 (2018)

4. Barclays, credit suisse charged with dark pool violations. https://www.sec.gov/
news/pressrelease/2016-16.html (2016)

5. Markets in financial instruments directive ii. https://www.esma.europa.eu/

policy-rules/mifid-ii-and-mifir (2018)

6. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

7. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151, 1–32 (2014)

8. Jutla, C.S.: Upending stock market structure using secure multi-party computa-
tion. IACR Cryptology ePrint Archive 2015, 550 (2015)

13

9. Galal, H.S., Youssef, A.M.: Verifiable sealed-bid auction on the Ethereum
blockchain. In: Financial Cryptography and Data Security. pp. 265–278. Springer
(2019)

10. Galal, H.S., Youssef, A.M.: Succinctly verifiable sealed-bid auction smart contract.
In: Data Privacy Management, Cryptocurrencies and Blockchain Technology. pp.
3–19. Springer (2018)

11. Galal, H.S., Youssef, A.M.: Trustee: Full privacy preserving vickrey auction on top
of Ethereum. In: Financial Cryptography and Data Security Workshop on Trusted
Smart Contracts, to appear. Springer (2019)

12. Cartlidge, J., Smart, N.P., Talibi Alaoui, Y.: MPC joins the dark side. In: Pro-
ceedings of the 2019 ACM Asia Conference on Computer and Communications
Security. pp. 148–159. ACM (2019)

13. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Annual International Cryptology Conference. pp. 129–140. Springer
(1991)

14. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM conference on Computer and
communications security. pp. 62–73 (1993)

15. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy (SP). pp. 315–334. IEEE (2018)

16. Micali, S., Rabin, M.O.: Cryptography miracles, secure auctions, matching problem
verification. Communications of the ACM 57(2), 85–93 (2014)

17. Parkes, D.C., Thorpe, C., Li, W.: Achieving trust without disclosure: Dark pools
and a role for secrecy-preserving verification. In: Proceedings of the Third Confer-
ence on Auctions, Market Mechanisms and Their Applications (2015)

Appendix A Smart Contract Pseudocode

1: function SubmitOrder(dir, U, V, π)
2: require(msg.value = D)
3: require(msg.blockNumber < t1)
4: require(BP.V(σ2, (U, V), π))
5: if dir = BUY then
6: Bids[msg.sender]← (U, V)
7: else
8: Offers[msg.sender]← (U, V)
9: end if

10: end function

1: function RevealOrder(cu, cv, πu, πv)
2: require(t1 < msg.blockNumber < t2)
3: (U, V)← FindOrder(msg.sender)
4: require((U, V) 6= NULL)
5: require(Σ.V(cu, U, y, πu))
6: require(Σ.V(cv, V, y, πv))
7: emit RevealEvent(msg.sender, cu, cv)

14

8: end function

1: function ClearMarket(p, l,χ,γ,π)
2: require(t2 < msg.blockNumber < t3)
3: require(msg.sender = Alice)
4: RemoveUnrevealedOrders()
5: require(p ∈ [0, 2n − 1] ∧ l ∈ [0, 2n − 1])
6: O = (gp, gl)
7: Bids[Alice]← O
8: Offers[Alice]← O
9: Relocate(Bids,χ)

10: Relocate(Offers,γ)
11: U1 ← Bids.U
12: V1 ← CumulativeQuantity(Bids.V)
13: U2 ← Offers.U
14: V2 ← CumulativeQuantity(Offers.V)
15: require(ProveOrder.V(σ, U1, π1))
16: require(ProveOrder.V(σ, V1, π2))
17: require(ProveOrder.V(σ, U2, π3, ASCEND))
18: require(ProveOrder.V(σ, V2, π4))
19: Store p, l
20: end function

15

