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Abstract. Despite the great potential capabilities and the mature tech-
nological solutions, the smart contracts have never been used at a large
scale, one of the reasons being the lack of good methods for verification
of correctness and security of the contracts — although the technology
itself (e.g. the Ethereum platform) is well studied and secure, the ac-
tual smart contracts are human-made and thus inherently error-prone.
As a consequence, critical vulnerabilities in the contracts are discov-
ered and exploited every few months. The most prominent example of
a buggy contract was the infamous DAO attack — a successful attack
on the largest Ethereum contract in June 2016 resulting in $70 mln-
worth Ether stolen and the hard fork of the Ethereum network (80% of
Ethereum users decided to revert the transaction and hence two parallel
transaction histories exist from that event).

The main contribution of this work is the automatic method of formal
verification of randomized Ethereum smart contracts. We formally define
and implement the translation of the contracts into MDP (Markov deci-
sion process) formal models which can be verified using the PRISM model
checker — a state of the art tool for formal verification of models. As a
proof of concept, we use our tool, EthVer, to verify two smart contracts
from the literature: the Rock-Paper-Scissors protocol from K. Delmolino
et al., Step by step towards creating a safe smart contract: Lessons and
insights from a cryptocurrency lab. and the Micropay 1 protocol from R.
Pass, a. shelat, Micropayments for decentralized currencies.

Keywords: cryptocurrencies - ethereum - smart contracts - verification
- formal methods - model checking.

1 Introduction

The notion of a smart contract was first introduced in 1997 by Nick Szabo [34].
The main idea behind smart contracts is that many contractual clauses (such
as collateral, bonding, delineation of property rights, etc.) can be embedded in
the hardware and software and smart contracts are protocols that can serve as
digital agreements between the users of the network — the fulfillment of the
agreement is automatically guaranteed by the design of the system instead of
some external authority like banks, governments or courts.



The first practical implementations of smart contracts emerged together with
the introduction of Bitcoin in 2009 [27], however they gained their popularity five
years later when Ethereum [I3] was announced — the first fully operational dig-
ital platform dedicated particularly for smart contracts, much more convenient
to use and with much larger capabilities than Bitcoin.

Despite their huge potential capabilities, smart contracts have never been
adopted on a large scale, one of the reasons being the fact that it is difficult
to verify the correctness and security of the contract. As a consequence, crit-
ical vulnerabilities are discovered and exploited every few months [TJ3)2]. The
most prominent example of a buggy contract was the infamous DAO attack [18]
— a successful attack on the largest Ethereum contract in June 2016 result-
ing in $70 mln-worth Ether stolen and the hard fork of the Ethereum network
(80% of Ethereum users decided to revert the transaction and hence two parallel
Ethereum blockchains exist from that event).

Several approaches to verification of smart contracts have been proposed, in-
cluding the automatic and semi-automatic tools which analyze the contract code
and checks if it satisfies some set of predefined security properties [26/37128] or
user-defined properties [24[T423|22][8]. The other line of work focuses on provid-
ing tools to help creating smart contracts that follow some security patterns by
design [29]32136]. All these approaches suffers from the following limitation: they
focus only on the security of the contract code without analyzing the outcome
of the scenario of its usage. In other words, the traditional verification tools an-
swer the questions: Is this contract guaranteed to not “crash”? Can it end up in
an unwanted state? Will the contract function be always executed till the end?
In contrast, none of the methods answers the question: What will be the result
if I use the contract in the following way? Furthermore, we are not aware of
any solution which verifies the randomized smart contracts and its probabilistic

properties, for example: Are the chances of winning in that lottery indeed equal
to 1/27

1.1 Owur contribution

The main contribution of this work is an automatic method for verifying random-
ized protocols built on top of Ethereum smart contracts. We introduce the ETV
language which allows to easily create such protocols using the syntax of Solidity
(the main contract language of Ethereum). Furthermore, we formally define the
translation of such protocols into the Markov decision processes (MDPs) which
can be verified for security and correctness using the PRISM model checker — a
state of the art tool for formal verification of models. The formal translation is
accompanied by the implementation of FthVer — a fully operational compiler
that translates an ETV program into a MDP in the PRISM syntax. As a proof of
concept we use our tool to compile and verify two protocols from the literature:
the Rock-Paper-Scissors protocol from K. Delmolino et al., Step by step towards
creating a safe smart contract: Lessons and insights from a cryptocurrency lab.
[I7] and the Micropay 1 protocol from R. Pass, a. shelat, Micropayments for
decentralized currencies [30].



What distinguishes our work is that we model not only the smart contract
code but also the scenario of its execution. The syntax of the contract part of
ETV language is very similar to Solidity (the programming language of Ethereum
smart contracts), while the syntax of the scenario part is very similar to web3.js
JavaScript library (the library used to execute Ethereum smart contracts). This
makes the usage of ETV intuitive to anyone familiar with Solidity and web3.js.
We are not aware of any other tool that allows to verify the scenario of smart
contract execution in such a way. Also, to the best of our knowledge, our method
is the first one that allows to verify the probabilistic properties of randomized
smart contracts.

Another novel feature of the ETV language is the abstract construction
for cryptographic commitments and digital signatures — the important cryp-
tographic primitives present in many smart contracts. The EthVer compiler not
only translates these abstract objects into MDP (which allows verification) but
also provides the exact implementation of commitments and signatures in the
syntax of Solidity and web3.js. This prevents the user from implementing them
by hand, which might me cumbersome and error-prone. We are not aware of any
other extension to Solidity which offers such functionality.

The full code of the EthVer compiler, as well as the extended version of this
paper are available at the EthVer project pageﬂ

1.2 Related work

Among the existing solutions for verification of smart contracts we can distin-
guish two main groups which can be summarized as the verification approach
in which the contract is checked for compliance with some specification or secu-
rity policy and the design approach which simplify the smart contract creation
process by providing frameworks for their development. Below we analyze the
related work falling into these two categories and describe how EthVer differs
from the existing solutions.

Verification approach This group contains static analysis tools for automated
bug-finding [26/37128] that verify the code for satisfying some pre-defined se-
curity properties, such as the correct order of transactions, timestamp depen-
dency, prodigality or liveness. The other group of tools [23J822] provides semi-
automatic methods for proving the contract-specific properties. These tools re-
quire some manual interaction from the user, such as specifying the loop in-
variants in the bytecode. Another work [I2] analyzes Ethereum contracts by
translating them into a functional language F*. The language provides verifica-
tion methods and an interactive proof assistant, however the translation supports
only a part of the EVM syntax. Other solutions [2TJT5] provide dynamic monitor-
ing of the predefined security properties, such as transaction order dependency
or callback free executions, a lack of which is claimed to be the source of common
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bugs. Both of these methods provide the defense from only a tiny subset of the
possible vulnerabilities in the contracts.

All the solutions mentioned in the previous paragraph are able to analyze
only the Ethereum Virtual Machine (EVM) pre-compiled bytecode. The other
tool [24] analyzes the high-level Solidity contract code using symbolic model
checking for the user-defined policies. However the policies are restricted to
quantifier-free first-order logic, so it can only solve the state reachability prob-
lem and hence, e.g., cannot verify probabilistic properties. Another interesting
approach [I4] provides a game-theoretic framework in which the smart contract
is translated into a concurrent game and the properties of this game are fur-
ther analyzed using the novel method of abstraction-refinement. This method
offers much lower computational complexity than the exact model checking of
the whole model, however it does not provide the exact result of the verification,
but only the lower and upper bound.

There are several other tools that provide static analysis for generic properties
[35U51467]). None of them is however accompanied by a scientific paper so the
full specifications of the actual verification methods are hard to identify.

Design approach One example of a high-level language that impose secure
design of the smart contract is Simplicity [29]. It is however a general purpose
language for smart contracts with no compiler to the EVM bytecode. Another
interesting tool allows exporting the compiled code to the intermediate language
WhyMIE| which in turn can be checked for security patterns using the program
verification platform Why3 [19]. This tool however does not support the full
range of properties to verify, in particular it cannot verify probabilistic proper-
ties. A slightly different approach [36] introduces security patterns — the best
practices that must be met while developing the contract code, such as, e.g., per-
forming calls at the end of a function. This approach however does not allow to
specify custom properties to be satisfied by the contract.

1.3 EthVer

The EthVer compiler falls somehow between the verification approach and design
approach — it is able to verify the actual code of Ethereum smart contract (and
also the scenario of its usage), however it requires the contract code to be written
in the ETV language which is a slightly modified version of Solidity. Furthermore
it allows to verify any custom property written in a dedicated language, including
the probabilistic properties.

To the best of our knowledge, none of the solutions described in this section
offers the exact model checking of the probabilistic properties of the randomized
contract. Moreover, the existing approaches focus on verifying the contract with-
out taking into account the pattern of execution of the contract by the users.
Instead, in EthVer we verify the protocol which consists of the contract and the
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scenario of usage of the contract by the users. Hence, we are able to verify not
only the correctness and security of the contract code, but also the instructions
on how to use the contract.

It is worth noting here, that the two features of EthVer described above
allows to perform the full formal verification of the rock-paper-scissors protocol
[I7] and the Micropay 1 protocol [30], which cannot be done in any of the other
tools analyzed in this section. We briefly describe this analysis in sec. [7}

2 Preliminaries

2.1 Ethereum languages

The actual code of Ethereum smart contracts is written in the machine code of
Ethereum Virtual Machine (EVM). However, the platform provides several high
level, user-friendly languages to write the code of a contract with the Solidity
language being the most popular among them. The syntax of Solidity is based
on JavaScript with some extra features added to handle the flow of money and
cryptographic operations. Calling a contract function is realized by sending a
special transaction to the contract address. There are several convenient GUI
tools to deploy and execute smart contracts, such as, e.g., a desktop applica-
tion Ethereum Wallet or a web application Remix as well as the console client
get}ﬂ Under the hood they all use the JavaScript API with the web3.js libraryﬂ
which provides the basic functions to interact with the contract as well as some
cryptographic functions widely used in smart contracts (such as hash functions
and digital signatures). The main web3.js function to interact with a contract is
the sendTransaction method which is called on a contract function object and
takes as arguments the arguments to the function and the sender address (the
from: field) as well as the value attached to the transaction. The example usage
of the sendTransaction function is listed below:

Bank.deposit.sendTransaction (1,
{from: "0x14723a09acff6d2a60dcdf7aadaff308fddc160c",
value: web3.utils.toWei("5", "finney")});

Note that the transaction value must be passed as an integer number of wei (1
wei = 10718 ether), however, the web3.utils.toWei function can be used to
easily convert from different units like finney (1 finney = 0.001 ether).

2.2 The PRISM model checker

PRISM is a probabilistic model checker, a tool originally described in [25]. It is
designed for formal modeling and analysis of systems which present random or
probabilistic behavior. Many smart contracts fit into this category, so we decided
to use PRISM as the backbone for our formal verification of Ethereum smart
contracts.

3 ethereum.org
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PRISM supports different types of models, including discrete-time Markov
chains (DTMCs), continuous-time Markov chains (CTMCs), Markov decision
processes (MDPs), probabilistic automata (PAs), probabilistic timed automata
(PTAs). In EthVer we decided to use Markov decision processes, since they allow
non-determinism and hence are the best fit for randomized protocols built on
top of smart contracts.

The PRISM model is defined as a set of states and transitions between them.
Each transition is represented with a command of form

[label]l guards -> updates;

where guards are the conditions needed to be met in order for the transition to
be enabled, updates represent the probabilistic choices in the algorithm, and label
is an optional identifier of the transition used for synchronization. The syntax
of the updates is as follows:

p1 : update; + po : updates + ... + p, : update,

The updates list reflects the situation when several transitions are possible from
the same state and the choice of the actual transition is probabilistic: the i-
th transition happens with probability p; and results in update; of the model
variables.

For more detailed introduction to PRISM please refer to appendix A of the
extended version of the papelﬂ

2.3 Cryptographic commitments

A cryptographic commitment scheme is a protocol which consists of two phases:
commit and open (the second phase is also referred to as the reveal phase). In
the most common implementation during the commit phase the user chooses a
value r to which they will be committed, chooses a random value s and computes
¢ = H(r,s) where H is a hash function (a collision-resilient function that is hard
to invert). Then the user publishes the hash ¢ while keeping r and s secret.

In the open phase the user reveals the chosen values 7 and s and anyone can
use ¢ to verify if the author of the commitment didn’t change r. The crypto-
graphic commitments are hiding and binding in the sense that:

— the value of ¢ reveals no information about 7,
— once the values of r and c are fixed, it is infeasible to come up with another
value of r which matches the same c.

Ethereum provides a convenient way to implement the cryptographic com-
mitments using SHA-3 function (also known as keccak256):

5 Recall that the extended version of the paper as well as the code of EthVer and
example contracts are available at |github.com/lukmaz/ethver
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hash = web3.utils.sha3(web3.utils. uint8 r; string s; bytes32 c =
toHex (r).substr (2)+web3.utils.toHex(s)) keccak256 (abi.encodePacked (48+r,s))

Listing 1.1. Computing the commitment in Listing 1.2. Computing the commit-
web3.js v1.0.0 ment in Solidity v0.5.2

Note the different names of the hash function and the subtle differences in passing
the arguments. These differences follow from different APIs used by Solidity and
web3.js, but the underlying hash function is the same.

2.4 Digital signatures

Ethereum supports digital signatures based on elliptic curve cryptography im-
plementing the SECP-256k1 standard as described in [I6]. The web3.js library
provides two useful functions: web3.eth.accounts.sign(m, sk) for signing and
web3.eth.accounts.recover(m, signature) for recovering the public key of
the author of the signature. Solidity provides the function ecrecover (hash, v,
r, s) which takes the hash of the messages and (v, r,s) values, which are the 3
parts of the signatureﬂ In the most common scenario the signatures are cre-
ated off-chain in web3.js and then they are later verified by the contract. Due to
different APIs of Solidity and web3.js, a special care is needed for the format of
numbers passed to the sign and recover functions. Listings and show
an example code for signing a message in web3.js and verifying the obtained
signature in Solidityﬂ

r2_ = web3.utils.toHex(r2).substr (2); string header = "\x19Ethereum
concat = ¢ + web3.utils.padLeft(r2_, 2) Signed Message:\n69msg0Ox";

+ a.toLowerCase ().substr(2); bytes data = hexToBytes(keccak256(
msg = "msg" + web3.utils.sha3(concat); abi.encodePacked(c,r2,a)));
s = web3.eth.accounts.sign(msg, privKey);||bytes32 msgHash = keccak256(

abi.encodePacked (header, data));
Listing 1.3. Signing a message in Web3.js return ecrecover (msgHash,
v1.0.0 s_v, s_r, s_s) == a))

Listing 1.4. Verifying the signature in
Solidity v0.5.2

3 Interacting with the contract

The code of a smart contract does not carry all the information needed for
verification. Consider a simple Bank contract written in Solidity:

5 Note that we don’t describe here how to sign messages in Solidity. In fact, Solidity
does not provide convenient API for this. The reason is that a private key is required
to sign and we rarely want to do this in the contract code, because we do not want
to reveal the private keys to public.

" This is the actual code of computing and verifying the signature o = sig(c, T2,a)
from the Micropay 1 protocol (cf. sec. [7).



contract Bank {
uint balance;

function deposit () public payable {
balance = balance + msg.value;}

function withdraw(uint amount) public {
if (amount <= balance) {
balance = balance - amount;
msg.sender.transfer (amount);}}}

Listing 1.5. A simple Bank contract

Is this a secure smart contract? The answer to this question depends on how
we want to use the contract and what behavior of the contract is expected. For
example, this contract can be considered secure if we want a bank in which
anyone can deposit money and then anyone can withdraw it. On the other hand,
if we define the security of a bank with the rule that only the person who has
deposited the money can withdraw it, then of course this contract is not secure.

In order to concretize the requirements for the contract we must formulate
the scenario and the properties which we want to be satisfied. In case of the
Bank contract they can be as follows:

Scenario:

— User A deposits 10 ﬁnneyﬁ
— User A withdraws 10 finney.

Properties:
— User A gets back his deposited 10 finney.

Of course this property is not always satisfied, which can be shown using the
counterexample scenario in which user A deposits 10 finney and then user B
withdraws the same 10 finney. After that the user A no longer can withdraw 10
finney, since the contract account is already empty.

Although this scenario of using the Bank contract may look artificial (why
not to use the contract in a different way?), in case of many contracts, the
scenario of the proper usage is obvious and well defined. Consider, e.g., a simple
lottery in which user A bets 10 finney and wins 20 finney with probability 1/2
(otherwise loses). In such case, the scenario and the properties are as follows:

Scenario:

— User A deposits 10 finney.
— User A waits for the result of the lottery.

Properties:

— With probability 1/2: the user A receives the reward of 20 finney.
— With probability 1/2: the user A receives nothing.

8 Recall that 1 finney = 0.001 ETH is a denomination of Ether, the currency of
Ethereum. For simplicity, we neglect the transaction fees, unless stated otherwise.




4 The ETV language

To model in a verifiable way the contract together with the scenario of its usage
we introduce the ETV language. The ETV program consists of two parts: the
first part is a slightly modified code of the actual Solidity smart contract, while
the second one represents the scenario using web3.js commands.

4.1 Bounded integers

The main issue with the verification of smart contracts in PRISM is the usage of
bounded integers in PRISM. The reason for it is that a new state in the PRISM
model is created for every valuation of the variables, and thus increasing the
range of variables increases the number of states in the model in the exponential
way. On the other hand, in Solidity /web3.js the smallest type for storing integers
is uint8 which is capable of storing numbers from the range [0, 255]. Frequently
we use such type to store the variables which can have only a small number of
different values (e.g., only 0, 1 or 2) and we do not need the whole range of
uint8.

Because of this limitation we introduce in ETV the bounded integer type
uint (N) which in practice is the main difference between the syntax of ETV
and Solidity /web3.js.

4.2 Communication

A protocol can contain some operations that are performed directly between the
parties of the protocol (without interaction with the blockchain), for example
exchanging hashes. We define a dedicated communication section for such op-
erations in the ETV language. Such approach allows us to properly model the
adversarial behavior by allowing the malicious party to execute the commands
from the communication section.

4.3 Cryptographic primitives

The other important feature of the ETV language is the abstract syntax for
cryptographic primitives, such as hashes, commitments and signatures. Such
primitives can be (a) translated into PRISM which allows to verify the proper-
ties of the contract and (b) translated into the actual implementation in Solidity
and web3.js which reduces the probability that the user implements it incor-
rectly. The last feature is especially important because the current versions of
Ethereum programming languages (Solidity v0.5.2 and web3.js v1.0.0) present
large differences in the API for the cryptographic functions and a special care
must be taken to make sure that the Solidity part and the web3.js part of the
code operates on the same numbersﬂ

9 Examples of the syntax of commitments and signatures in Solidity and web3.js have
already been presented in sec. 23] and 2]



5 The compiler

The main practical result of this work is the implementation of EthVer — a
compiler written in Haskell that takes as the input an ETV file (let us call it
example.etv) and produces:

— example.sol — the contract code in Solidity which can be directly deployed
to the Ethereum blockchain,

— example.scen — the scenario of the execution of the contract containing the
exact JavaScript web3.js commands which can be directly used to execute
the contract,

— example.prism — the PRISM Markov decision process (MDP), which can
be directly used in the PRISM model checker.

While translating ETV code to Solidity and web3.js is straightforward, the
translation from ETV to PRISM MDP is highly nontrivial and was the main
challange during creation of EthVer. In the next section we describe the core
concepts behind this translation and their implementation in Eth Ver.

Furthermore, in the extended version of the paper we formally define the
full syntax and the semantics of the ETV language (appendices B and C). In
appendix D we formally define the translation from ETV to MDP and prove
that it preserves the semantics of ETV.

6 Modeling the protocol as Markov decision process

In this section we present the core concepts of EthVer — the way in which we
translate an ETV program into a Markov decision process (MDP).

6.1 Modeling the contract execution

We model the honest execution of the contract using 4 PRISM moduled}
player0, playerl, contract, blockchain. We show the role of each module
on the example of the simple Bank contract (cf. listing and the following
scenario of its usage:

— User A deposits 10 finney.
— User A withdraws 10 finney.

We model the honest execution of the scenario with the following commands in
the player0 module:

module player0

[broadcast_deposit] (state0 = 1) -> (state0’ = 2)
& (deposit_valueO’ = 10);

[broadcast_withdraw] (state0 = 2) -> (state0’ = 3)
& (withdraw_amountO0’ = 10);

endmodule

10° A PRISM model can consists of several modules, each corresponding to a different
part of the system and each with a separate set of variables.




Each command sets the value as well as all the arguments of the function call
and then triggers the corresponding commands in contract and blockchain
modules using the PRISM synchronization mechanism — the command with a
non-empty label (the string in square brackets) can be executed only in parallel
with the corresponding function with the same label in other modules (as long
as such command exists in other modules).

The actual process of calling the contract function consists of two phases: in
the first phase, in parallel to [broadcast_*] command from playerO module,
PRISM executes the synchronized command from the blockchain module which
stores the information that this function call is now in the broadcast state. Then
at some later point PRISM can take one of the function calls from the broadcast
state and actually execute the corresponding contract code. This is accomplished
by another pair of synchronized commands from blockchain and contract

moduled™]

6.2 Modeling the adversary

Although the verification of the honest execution of the protocol is important,
we frequently face vulnerabilities in the contracts which reveal themselves only
when one (or more) of the participants misbehave, i.e., deviate from following
the scenario. In order to model the adversarial player, we decided to give them
the ability to interact with the contract in an arbitrary way. More concretely, the
adversary can call any function of the contract, in any order, with any
arguments, as many times as wanted. With such definition of the adversary
we can model any 2-player contracﬂ in one of the 3 following modes:

— honest mode — honest player 0 vs honest player 1
— adversarial player 0 mode — malicious player 0 vs honest player 1
— adversarial player 1 mode — honest player 0 vs malicious player 1

6.3 Modeling the communication

As it was already discussed in sec. some protocols contain phases in which the
players do off-chain computation and exchange the computed numbers without
calling the contract. Since these procedures do not involve the actual execution of
the contract code, they should not be handled in the same way as the contract

11 The same pattern of a two-phase function execution could be accomplished using only
the player0O and contract modules, however because of visibility of the variables
in PRISM, the blockchain module is needed to correctly pass the arguments of the
call.

The current version of EthVer is limited to 2-players protocols only. However, all
the security claims as well as the formal translation defined in appendix D of the
extended version of the paper hold also for protocols with larger number of players.
Note that although FEthVer accepts only 2-player protocols, it verifies the contract
also against the attacks in which more adversarial players join the protocol at the
same time.

12



calls are. On the other hand, we do not want to limit the capabilities of an
adversarial player, and hence we need to give the adversary the possibility of
performing these procedures at any time, with any arguments (like in case of
contract calls). We model every such action as a communication function that
are called during honest scenario execution and can also be freely called by the
adversary.

These communication functions are stored in the separate communication
section of the ETV code. The syntax of such functions is very similar to the
syntax of contract functions, with the only difference that it cannot handle the
money transfers. These functions translate to the communication module in the
PRISM code which can be triggered using the PRISM synchronization mecha-
nism from the player modules in a similar fashion to the contract function (but
without going through the broadcast state and without involving the blockchain
module).

6.4 Modeling the cryptographic commitments

Recall that in the standard implementation of random commitments (sec.
during the commit phase two random numbers (r and s) are generated and then
they are later revealed during the open phase. Since all variables in PRISM are
public, we cannot just store r and s as PRISM variables, because it will break
the hiding property of the commitment. It follows from the fact that MDPs are
non-deterministic and for MDPs we always compute the maximal (or minimal)
probability Pmax/Pmin, where the probability is computed over all the random
choices, while the maximum (minimum) is taken over all the non-deterministic
choices of the model and hence the non-deterministic choices must be done before
the random choices..

To best illustrate the problem, consider a simple game in which A creates a
commitment by choosing r and s at random and then B tries to guess r before
the revealing phase. If we store the value of r in a variable right after the commit
phase, then the automaton that models B can non-deterministically choose the
correct value of r (since now there is no more randomness in the protocol) and
win the game. Hence, in order to properly model the real behavior of keeping
r secret, we need to not store the final value of r during the commit phase and
postpone the actual random choice until the open phase.

In our implementation each commitment in PRISM can be in one of the fol-
lowing states: init, committed, or revealed. All the commitments start in the init
state. During the honest scenario, when the player creates a random commit-
ment, the appropriate variable switches to the committed state, but no actual
choice of the value is made. During the open phase, the player needs to call a
separate revealCmt method which performs the actual random choice. After this
call, the commitment variable switches from the committed state to the revealed
state.

Using the same mechanism the adversary can either commit to a random
value (by switching to the committed state and postponing the actual choice
until the revealing phase) or he can immediately commit to the value of his choice



by switching directly to the revealed state. In both cases he cannot later change
the chosen value. This models the real implementation of the commitments in
which the chosen value also cannot be changed after the commitment is created.

This approach is realized in EthVer by providing the cmt_uint type and
functions randomCmt and verCmt which implement directly the described func-
tionality.

6.5 Modeling the digital signatures

We introduce a templated type for the signatures: signature(T1, T2, ...).
The types T1, T2, ... are the types of the fields of the signature — the values that
we want to sign (when we want to sign more than one value, we usually concate-
nate them before signing). For the signature type we provide two constructions
to create and to verify the signature:

sigma = sign(c, r2, a);
verSig(verAddress, sigma, (c, r2, a));

We model the signatures in PRISM in the following way:

— each signature is initially in the init state,

— there is a separate PRISM variable for each field of the signature as well as
for the address of the author of the signature,

— whenever a signature is created, the fields are assigned with the values be-
ing signed (and the author’s address); these fields’ values cannot be later
changed.

The adversary is not allowed to change any field of the existing signature. How-
ever to not limit their ability to interact with the contract in any way at any
time, we allow them to freely create new signatures, i.e., to sign any data at any
time with their own key.

6.6 Modeling the time

Solidity natively supports creating contracts dependent on time using the now
variable. Moreover, we introduce in ETV the wait(condition, time) state-
ment which implements the conditional wait: after reaching that point of the
scenario, the party pauses the execution of the protocol until the condition is
satisfied or a particular time has passed.

We model the time in PRISM using the time_elapsed variable and the
synchronized commands labeled [time_step]. The time_elapsed counter is
increased in either of the two cases:

— all the honest parties have finished all of their allowed scenarios steps and
are waiting on the wait statement,

— the honest party has finished all of their allowed scenarios steps while the
adversary decides to not execute any step.




This reflects the assumption that the honest parties always follow the protocol
and execute every scenario step within a given time limit while the adversary can
interrupt the protocol at any time and refuse to execute a scenario step within
the time limit.

7 Case study: verification of two protocols from the
literature

As a proof of concept we use the Eth Ver compiler to formally verify two protocols
from the literature: The Rock-Paper-Scissors protocol from K. Delmolino et al.,
Step by step towards creating a safe smart contract: Lessons and insights from a
cryptocurrency lab. [IT], and The Micropay 1 protocol from R. Pass, a. shelat,
Micropayments for decentralized currencies [30]. The results of verification of
these protocols are broadly described in appendices E and F of the extended
version of this paper.

In the first work [I7] the authors analyze the actual smart contract for the
Rock-Paper-Scissors game which was created by undergrad students during the
cryptocurrency lab. The authors point out several typical mistakes that were
made during designing this contract and present a few good programming prac-
tices to avoid such bugs in the future. Using EthVer we were able to automat-
ically find all the contract bugs and fix all of them. The case study is iterative
— after each bug fix we rerun the verification and every time the EthVer shows
us the next bug of the protocol. Using this iterative method we implement the
total of 6 bug fixes which finally lead us to the correct version of the contract.

It must be stressed, that in the original paper the authors analyze the contract
and fix all the bugs by hand. In contrast, in our experiment the only manual
action is that we rewrite the original contract to the ETV language (which
requires only a few minor tweaks) and then EthVer automatically finds all the
bugs and provides the witness for each of them which make it easy to fix the
bugs.

In the second paper [30] the authors present the Micropay 1 protocol — a
smart contract which can serve as a platform for micropayments — fast and
cheap off-chain transactions which only occasionally require the interaction with
the blockchain. In the original version of the paper [30] (published on the 22nd
ACM CCS ’15 conference) the authors describe a buggy version of the protocol
— the contract is vulnerable to so called front-running attack. After the pub-
lication we discovered the bug (it was also discovered independently by Joseph
Bonneau) and contacted the authors with our findings. As a result, they pub-
lished the corrected version of the paper [31]. In case of this protocol we also
were able to find and fix the bug using EthVer. Again, the EthVer has found the
bug automatically, which means that if the authors verified the protocol before
publication using EthVer or a similar tool, they would discover the attack and
the buggy version of the contract would never be published.



Our case study involved 9 tested models in total (7 versions of the RPS
contract and 2 versions of the Micropay contrac@. The table |1| shows the
performance of all the test runs. Each test was performed on a laptop with Intel
Core i7-4750HQ CPU @ 2.00 GHz and 8 GB RAM.

protocol number of states|model checking time
rps vl 1.6M 130s

rps vla 1.2M 72s

rps vlb 1.9M 75s

rps v2 0.8M 66s

rps v3 6.6M 470s

rps v3a 5.3M 264s

rps v4 5.2M 238s
micropay vl 16M 24min
micropay v2 490M 124min

Table 1. Performance of all the test runs

8 Conclusions

In this work we present the Eth Ver compiler — a novel tool for formal verification
of Ethereum smart contracts. We have developed a dedicated ETV language for
designing secure and verifiable contracts. We have formally defined and proved
the correctness of the translation of this language to Markov decision process
(MDP) models in PRISM. This translation has been implemented in Haskell and
works as a standalone computer program.

The novelty of our approach lies in the three features: (1) the verification of
the whole cryptographic protocol consisting of a smart contract and a scenario
of its execution, (2) the verification of the probabilistic properties of the ran-
domized contracts, and (3) the abstract language construction for cryptographic
commitments and signatures, which can be automatically translated into the ac-
tual Ethereum code and into the PRISM model. To the best of our knowledge,
no other verification approach offers any of these 3 functionalities.

The automatic verification of the model generated by EthVer is possible due
to our original method of modeling the contract as MDP. Our technique allows
to verify the correctness and security of the honest execution of the protocol and
also verifies the protocol against the attacks of the adversarial user. Moreover,
in case the vulnerability of the protocol is found, our tool returns the witness —
the execution path which leads to the undesired state of the protocol.

As a proof of concept we used EthVer to verify two smart contracts from
the literature. In both cases EthVer was able to automatically find the bugs

13 The ETV code of all tested models is available in the project repository, github.
com/lukmaz/ethverl


github.com/lukmaz/ethver
github.com/lukmaz/ethver

that were claimed to be found manually by the authors. This means that the
vulnerable contracts would not have been created if the authors had used EthVer
for their verification.

The experiments results show that the verification is practical — it can be
performed on a medium-class PC within a reasonable time frame. However, the
experiments revealed also the inherent limitation of our method — the size of the
model (and hence the verification time) grows exponentially with the number
of parameters of the contract. Therefore our method is most suitable for the
contracts of a limited size — for larger models the exact model checking is not
possible and other verification methods must be used.
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