Empirical Analysis of On-chain Voting
with Smart Contracts

Robert Muth and Florian Tschorsch

Technische Universitdat Berlin, Germany
{muth, florian.tschorsch}@tu-berlin.de

Abstract. Blockchains and smart contracts promise transparency, ver-
ifiability, and self-enforcing agreements. Against this background, novel
use cases such as decentralized governance platforms that implement vot-
ing to collectively manage funds have emerged. While a number of argu-
ments against blockchain-based voting exist, we still see a relevance. In
this paper, we therefore present a quantitative analysis of the Ethereum
blockchain with respect to voting. To this end, we develop a blockchain
analysis toolchain that we use to analyze 3173 smart contracts on the
Ethereum Mainnet with voting functionality. We extract insights on the
complexity of deployed voting methods and reveal a trend towards a
centralization of funds, i.e., five smart contracts manage 98 % of funds
comprising more than four million USD. We additionally analyze the fea-
sibility of on-chain voting for Ethereum as well as other well-established
blockchains that are used for voting, i.e., Bitcoin and Dash.

Keywords: Blockchain - Analysis - Voting - Smart Contract.

1 Introduction

The blockchain’s integrity and transparent storage space make it tempting to
implement blockchain-based online voting [8, 10, 14] as everyone can verify the
correct execution. In particular, blockchains such as Ethereum [27], which pro-
vide an opportunity to implement smart contracts [24], inherently allow to verify
whether a vote was stored and counted correctly. However, it has been shown
and argued that blockchain-based online voting has fundamental issues [8, 19],
including security [18, 23] and privacy [9] problems.

While blockchain-based online voting certainly polarizes, on-chain voting
is still being used for reasons such as the decentralized governance of funds.
Most prominently, decentralized autonomous organizations (DAOs), e.g., the
DAO [11], allow fundraising and enable stakeholders to manage the distribu-
tion of funds with on-chain voting. Smart contracts render the decision-making
process transparent and self enforcing. Since its debut in 2016, the DAO raised
approximately 150 million USD, but at the same time lost about 60 million USD
due to an exploit [1]. While we distance ourselves from the idea of blockchain-
based online voting, e.g., for official elections, we argue that on-chain voting still
requires attention and further research.

2 R. Muth and F. Tschorsch

In this paper, we show the relevance of on-chain voting and derive limita-
tions in terms of scalability and transaction costs. To this end, we scan the
Ethereum Mainnet for smart contracts with voting functionality and analyze
their usage with respect to registered votes, gas costs, and fundings. In order to
understand the scalability potential of on-chain voting, we analyze past resid-
ual blockchain capacities of Ethereum and evaluate the feasibility of small and
large-scale votings. We also look beyond Ethereum and discuss other leading
blockchains, including Bitcoin [17] and the governance network of Dash [6]. We
provide a publicly available repository with the collected data sets and our anal-
ysis pipeline. Our presented database driven analysis approach is compatible
with Google BigQuery and therefore does not require any advanced setup.

In our empirical analysis, we found 3 173 deployed Ethereum smart contracts
related to voting, which currently hold 11 794 ETH, or more than 4.5 million USD
(as of October 30, 2020). From these smart contracts, we identified 88 instances of
the DAO (deployed smart contracts that are based on the original DAO source
code), which in total received 5928 votes, so far. Over the past years, voting
smart contracts in general accumulated and processed 29337 ETH. Our analysis
suggests a continuously high amount of monetary investments in and interaction
with voting smart contracts, indicating a high popularity and relevance. Besides
the relevance, we conclude that blockchain voting suffers from scalability issues
that render large-scale votings either not feasible in a reasonable time, or very
expensive, or both.

The main contributions of this paper can be summarized as follows:

— We develop an analysis pipeline to reveal voting smart contracts on the
Ethereum blockchain and present an overview of key metrics, which empha-
size the relevance of on-chain voting (see Section 3)

— We assess the limitations of on-chain voting with a model-based comparison
of blockchain specifications as well as an analysis using historic block data
(see Section 4)

— We give an outlook on other relevant blockchain with on-chain voting, i.e.,
Bitcoin and Dash (see Section 5)

In addition to our main contributions, we discuss related work in Section 2 and
conclude the paper in Section 6.

2 Related Work

There is a large body of work on blockchain-based voting, proposing various
designs to conduct votings using blockchain technologies [5, 10, 12, 16]. Most
notably, McCorry et al. [16] developed a smart contract for boardroom voting
with maximum voter privacy. Since we do not propose any new voting schemes,
these contributions are orthogonal to our work.

In this paper, we analyze the multitude of on-chain voting regardless of any
specific use case or property. A series of contributions investigate blockchain

Empirical Analysis of On-chain Voting with Smart Contracts 3

data with respect to various other aspects, including privacy [2, 22], data stor-
age [15], and smart contract metrics [20]. Moreover, model-based analysis on the
security [13] and scalability [4] of blockchains in general exist. Specific to voting,
Heiberg et al. [8] evaluate the trade-offs of blockchain-based voting on a qualita-
tive level. They discuss aspects such as complexity, costs, and scale, which go in
a similar direction as our paper. We complement their discussion however with
an empirical analysis and reveal new insights, for example, on the magnitude of
on-chain voting.

Methodically similar to our approach, are [7, 20, 21, 26]. Victor and
Liiders [26] inspect the Ethereum blockchain for token implementations, which
are managed by the ERC-20! smart contract template. While EIP-12022 pro-
poses a similar standard for voting smart contracts, it is not as established as the
ERC-20 compatible token standards. Frowis et al. [7] search for token-related
behavior with symbolic execution analysis techniques and compare the effec-
tiveness of both methodologies. The diversity of voting schemes, features, and
privacy mechanisms make it more difficult to identify voting smart contracts
by their bytecode. We therefore propose an analysis pipeline that uses generic
voting signatures from other sources in addition to established method signa-
tures. In contrast to automated smart contract inspection, the authors of [20, 21]
present approaches that are based on manually collected exchange listings and
corresponding source code publications on CoinMarketCap and Etherscan.

3 Relevance of On-chain Voting

In this section, we reveal the magnitude of on-chain voting in Ethereum. We are
particularly interested in the diversity of voting smart contracts with respect to
cost and fundings.

3.1 Analysis Toolchain and Methodology

Typically, analyzing blockchains requires a synchronized node with all valid
transactions. With Geth, the Ethereum foundation provides such a node, which
has been optimized to save computational resources and memory. As it turns
out, the very data-efficient data structures make it difficult to quickly analyze
historic data. For this reason, we instead used Google BigQuery® as source to
Ethereum Mainnet transactions. BigQuery is a Google Cloud service for big
data analysis, which provides a public dataset with all current Ethereum trans-
actions, block details, and smart contracts in a SQL database. As shown in
Figure 1, we use BigQuery as transactions source and to execute complex SQL
queries for analysis. The advantage of SQL databases is the ability to index past
transactions and query them efficiently (at the cost of additional storage and
memory consumption which BigQuery compensates with cloud resources). We

! https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
2 https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1202.md
% https://cloud.google.com/bigquery

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1202.md
https://cloud.google.com/bigquery

4 R. Muth and F. Tschorsch

Pre-Processing Analysis Source

SQL
Sig. Hashes Jupyter Transactions | Ethereum
Notebook | “°"& Mainnet

Voting Method BigQuery/
Signatures Ethereum ETL

’ EIP-1202 Interface

’ 4byte.directory

’ Github Source Codes

Fig. 1. Our blockchain-based voting analysis toolchain with a Jupyter Notebook and
BigQuery (or Ethereum ETL) based on given pre-processed method signatures.

developed a Jupyter Notebook, which manages the analysis process, i.e., prepar-
ing input data from pre-processing, compiling SQL statements, monitoring the
execution, and preparing the results. Alternatively to our cloud-based approach,
the database can be generated locally using a full node and Ethereum ETL*
without BigQuery.

While smart contracts are generally stored publicly on the Ethereum block-
chain, only the compiled bytecode, i.e., EVM code, is available. Similar to high-
level programming languages, the original source code compiles to an assembly-
style language. To this end, compilers remove comments and substitute iden-
tifiers, which render the bytecode difficult to understand without the original
source code. In addition, method signatures of smart contracts, i.e., method
name and parameter list, are represented by a hash pointer. More specifically,
the first for 4 bytes of a method signature’s Keccak (SHA-3) hash value are used
to point to the respective stack code position. Since Keccak is a cryptographic
hash function, it is not possible to infer the method signature from the hash
value directly. Hence, it is neither straight forward to search for a certain type
of smart contract nor for a partial method signature.

In order to analyze the Ethereum blockchain, we searched for hash values of
method signatures that are usually part of voting smart contracts. As shown in
Figure 1 as part of the pre-processing, we collected the hashed method signatures
of the EIP-1202 voting interface, which provides a standardized set of methods
for voting. In addition, we used the Ethereum Function Signature Database®,
which provides a list of method signatures and their corresponding hash values
based on known smart contract source codes and user submissions. We used the
database’s RESTful API to search for methods containing ‘vote’, ‘voting’, or
‘ballot’. As a result, we get a list of method signature and hash value tuples,
which are related to voting. We use these tuples to retrieve the smart contracts
that actually implement the respective method. Finally, we analyzed the source
code of the DAO smart contract on Github for identifying transactions to the
original instance and deployed copies with them same interface methods.

4 https://github.com/blockchain-etl/ethereum-etl
® https://www.4byte.directory

https://github.com/blockchain-etl/ethereum-etl
https://www.4byte.directory

Empirical Analysis of On-chain Voting with Smart Contracts 5

Inevitably, the approach may lead to some positives as well as false negatives.
For example, generic method signatures lead to a false classification of some
smart contracts, e.g., setStatus(...) of the EIP-1202 or dropVotes(...).
We also encountered hash collisions that indicated voting methods in a smart
contract but did not belong to voting upon closer inspection. For example,
the method signatures voting var(address,uint256,int128,int128) and
totalSupply() share the same hash value 0x18160ddd and lead to false-
positives. In an attempt of manual inspection, we excluded these instances for
our analysis. In order to prioritize precision (over sensitivity), we considered
smart contracts that implement at least two method signatures related to vot-
ing only. Since the bytecode in the blockchain remains a black box, though, we
cannot exclude false classification entirely.

The described methodology enables analyses of Ethereum smart contracts
in general and can be used to reveal a multitude statistics. We used it to an-
alyze voting smart contracts with respect to scale and gas cost in general and
the interaction with these contracts in particular. We inspected the Ethereum
blockchain for the timespan between October 16, 2017 and October 30, 2020.
Moreover, we developed a Jupyter Notebook® which connects to BigQuery, our
own local data records (e.g., historical exchange rates), and other external data
sources. A data dump of the following results, the implementation to gather the
data set independently, and our full analysis pipeline to reproduce the results is
publicly available on GitHub.”

3.2 Voting Complexity

In total, we found 1458 relevant method signatures related to voting, which are
implemented in 5 185 smart contracts. Overall, 1272059 transactions interacted
with these smart contracts and called 129 855 times one of the voting methods.
After data cleaning, 3173 voting smart contracts remain and are subject of the
following analysis.

In Table 1, we show the ten most often called voting methods and their av-
erage consumed gas. None of the deployed voting smart contracts implemented
EIP-1202 completely, but 82 of them implemented at least a subset of its stan-
dardized method signatures. While most of the method signatures in Table 1
are not surprising, methods 5, 6, and 9 let us expect a commit-and-reveal vot-
ing scheme, where voters submit their vote cryptographically concealed, e.g.,
by using a hash function, and reveal their individual vote later with another
transaction. Since such a scheme is more complex, it typically requires more gas.

Method signatures with more than one parameter mostly belong to smart
contracts that conduct multiple votings and allow to specify a proposal. For ex-
ample, most calls with method signature 7 belong to a DAO smart contract that
conducts multiple votings, where the byte32 parameter references the proposal
and the uint256 parameter encodes the user’s choice.

5 https://colab.research.google.com/drive/10IxMjJu7LQvSMnXiIgC9S_5CgGA_BA2R
" https://github.com/robmuth/blockchain-voting-analysis

https://colab.research.google.com/drive/1oIxMjJu7LQvSMnXiIgC9S_5CgGA_5d2R
https://github.com/robmuth/blockchain-voting-analysis

6 R. Muth and F. Tschorsch

Table 1. Top ten voting methods with respect to their number of calls.

Calls Hash Signature o Gas @ Gas Price

1 80676 0x0121b93f vote(uint256) 71k 2.4 Gwei

2 6996 0xb384abef vote(uint256,uint256) 31k 28.3 Gwei

3 6420 Oxfc36elbb vote(string) 32k 3.2 Gwei

4 4534 0xddb6el16 vote(uinti6) 47k 3.7 Gwei

5 2930 0x6cbf9cbe commitVote(uint256,bytes32,.. 164k 3.8 Gwel

6 2624 O0xbe8254ea commitVoteOnProposal(bytes32,.. 110k 7.0 Gwei

7 2161 0x9ef1204c vote(bytes32,uint256) 151k 9.6 Gwei

8 2124 0xcff9293a vote(uint32,uint32) 51k 12.1 Gwel

9 2009 0xb11d8bb8 revealVote(uint256,uint256, .. 62k 3.4 Gwei

10 1817 0x3850f804 castVote(uint256,uint256[],.. 139k 41.1 Gwei

Table 2. Top four smart contracts with respect to their funds.
Funds in ETH
Smart Contract Received Balance

1 N/A (Congress Contract) 5028 5010 ($ 1918k)
0x3de0c040705d50d62d1c36bdeOccbad20606515a

2 Unicorn Token (Congress Contract) 5891 4595 ($ 1760k)
0xfb6916095caldf60bb79ce92ce3ea74c37c5d359

3 HONG / hongcoin 3936 1003 (% 384k)
0x9fa8fa61a10f£892e4ebceb7f4e0fc684c2cela9

4 Dogecoin-Ethereum Bounty 6592 597 ($ 228k)

0xdbf03b407c01e7cd3cbea99509d93£8dddc8c6fb

In Figure 2, we compare the complexity of voting methods to the number
of method calls. The required gas (on the x axis) is an indicator of the com-
putational complexity. We grouped gas values in buckets of 100 - 103 gas. The
consumed gas ranges from 18 120 gas to a maximum of 4 442 268 gas with an av-
erage of 82431 gas. The figure also shows that most voting method calls consume
between 100000 and 200 000 gas (mind the log scale).

3.3 Acquired Funds

Many smart contracts combine one way or another voting with the management
of funds. In Table 2, we therefore show the top four deployed voting smart con-
tracts with respect to their funds. We differentiate between the overall received
funds and their current balance (as of October 30, 2020). For example, the Uni-
corn Token uses the Ethereum Foundation DAO Congress contract that allows
members to deposit ETH and submit proposals for fundraising; the other mem-
bers then can vote if the proposal is accepted. After the voting period ends and
a pre-defined quorum accepted the proposal, the ETH will be transferred to the
proposer automatically.

Empirical Analysis of On-chain Voting with Smart Contracts 7

)
»wg 100 & B
5 o8¢
_L;U) [fe) N
2 SINGE:
85 10°| o &)
=t |:|mr\“'
9 o — o I
- — i
o O 7o) ~ D \q © o ® ~
= DDHD* DolDoson0s0actan-aa-g
1001 oolO00oe000c0ee0en 88 0o |
rr 11T+ 1111111+ 1© T© 11T 11T T T T T T
[elole]lo) o)
OCOO0OOO0OO0OO0OO0OO0OO0OCOOOOOOOOO0OOOOOOOOOOOO0OOO
HAMSTOONMNOODOAANMNMTOOONOOODOTANMNSTLOOONOANMN S O
HreArA A A A A A A AN ANANANANANANNANDN OO S <
Maximum Gas -10°

Fig. 2. Complexity of voting methods (measured in gas) in comparison to the number
of calls (in _total 110361 calls).

Received
- 104 L H eceived | |
- Balance
A
5.2
N “l” |
o0
o
=
10° | ‘II“H"I"||
T T T T T T T T

T T T T T
0 20 40 60 80 100 120 140 160 180 200 220 240

Found Voting Smart Contract Instance

Fig. 3. Received and current balance of ether per voting smart contract, limited to 247
of 3173 smart contracts in total (as of 2020-10-30).

In Figure 3, we show the distribution of funds (limited to 247 of 3173 vot-
ing smart contracts which have received ETH). We can clearly observe a long
tail distribution (log scale). However, many of the originally acquired funds are
already withdrawn. From the overall received funds, 0.05 % are still deposited.
That is, all analyzed voting smart contracts together have a balance of more
than 11941 ETH, which equals more than 4.8 million USD2. The amount of ac-
quired funds can be considered an indicator for the relevance of on-chain voting.

3.4 Trend

In order to get an understanding of the trend, we analyzed the transactions
as a time series over the past five years since Ethereum’s release in 2015. We
particularly focus on the interest and relevance of votings in Ethereum over time.

In Figure 4, we show the number of voting method calls (left y axis) as
well as the number of deployed smart contracts related to voting (right y axis).
Once deployed, smart contracts remain active and are not counted again in the
following years, i.e., the figure shows deployment of new smart contracts. In

8 Exchange rate at the time of writing was 407 USD per ETH (source: coinbase.com)

coinbase.com

8 R. Muth and F. Tschorsch

| | —@— Deployed voting contracts — 1 600 g
é 338 888 | —Jl— Transactions to contracts — 1 400 g
11200 &
3 160000 | 11000 ¢
F 120000 |- 1800 g
2 80000 - B 288 2
£ 40000 | 1200 3
oL | \ \ \ \ \ 10 8

2015 2016 2017 2018 2019 2020

Year

Fig. 4. Number of newly deployed voting smart contracts and transactions to them by
year (2015-09-06 —2020-10-30).

1010 T I
—@— Deposits
—~
% —— Withdrawals
A — — — Balance (cumulative)
=
@ - 51 B
<€ 10
s -1 /) e —-====—_"_______—
w s
i
|
)
o
-
=
10° L .

| ! ! ! ! !
2015 2016 2017 2018 2019 2020

Year

Fig. 5. Ether deposits and withdrawals to voting smart contracts and corresponding
balances of voting smart contracts per year (2015-09-06 —2020-10-30).

addition, we analyzed the deposits, withdrawals, and corresponding balances of
each voting smart contract over time, which are shown in Figure 5.

We generally observe that with the debut of the DAO [11] in 2016, the number
of smart contracts with voting functionalities as well as the number of transac-
tions that interact with voting contracts increases with a peak in 2018. After
2018, we observe a decline of both metrics. While the trend might suggest a de-
cline in interest, the balances remain stable over time. Upon closer examination,
comparing Figure 3 and Figure 5, the total balance in 2020 is almost entirely
contributed by the top five voting contracts (with more than 500 ETH). That
is, while previously the balances were distributed over many smart contracts,
we can infer that funds are more centralized now. We conclude that the dynam-
ics and interactions of voting smart contracts declined over time, but on-chain
voting has in terms of funding still a relevance.

4 Feasibility Analysis

In the following, we present a feasibility analysis of on-chain voting. In particular,
we analyze scalability limitations using a model-based analysis as well as an
empirical analysis based on historical blockchain data.

Empirical Analysis of On-chain Voting with Smart Contracts 9

& Block Generation Rate

£ " (A "
E ' --------------------- r > Transactions
§ (Gas)
3 Block #1 Block #2 Block #3 Block #4
Time

Fig. 6. Blockchain partially filled with transactions, leaving residual gas.

4.1 Block Capacities

One of the central scalability parameters is the maximum number of transactions
per block interval, i.e., transaction throughput, which eventually also limits the
possible number of votes. Ethereum aims for a block generation rate of 15 seconds
and continuously allows miners to agree on a block gas limit [27] that limits the
size of new blocks. The notion of gas was introduced to measure computational
complexity of transactions. Ethereum accordingly charges transaction fees based
on the transaction’s complexity. The sender of a transaction sets a price in ether
(ETH), which determines the amount she is willing to pay per computational
unit, i.e., the gas price.

Depending on the number of transactions per block and their complexity,
transactions might not make use of the available block gas limit and leave residual
gas. In Figure 6, we visualize the concept of the gas consumption and residual
gas. The residual gas determines the space for additional transactions on top of
the baseline activities of Ethereum. Later, we make use of the notion of residual
gas to evaluate feasibility and scale of on-chain voting.

4.2 Model-based Scalability Analysis

Our analysis is based on overly optimistic model-based assumptions to re-
veal upper limits, which enables us to make fundamental statements on the
(in)feasibility of on-chain voting. To this end, we start with a number of votes p
that we would like to cast. We are then interested in the number of blocks n
that are necessary to cast p votes. Given the block generation rate, we can ap-
proximate the time it takes to mine n blocks, which we denote with A. For a
block i with a blockGasLimit(i) and a certain gasCost per vote, we can calculate
the maximum number of votes per block by blockGasLimit(i)/gasCost.

Based on our blockchain analysis results from Section 3, we evaluate two dif-
ferent scales of voting. Since our measurements show that most voting methods
were called between 2k-7k times, we consider y = 2000 to be a small-scale
voting, and g = 100000 to represent future large-scale votings. Moreover, we
introduce three on-chain voting “schemes”, which are either overly simple or
taken from our previous analysis. Please note that these simple voting schemes
are not meant to facilitate general voting principles, e.g., anonymity and secrecy.

10 R. Muth and F. Tschorsch

Table 3. Required blocks n and duration A [HH:MM] for different voting implemen-
tations; median and median absolute deviation (MAD) are based on residual block
capacities (monthly intervals between 2015-12-28 and 2020-10-30).

. Blocks n Duration A
Implementation

Model Median MAD Model Median MAD
o Ethereum Naive 4 18 5 00:01 00:04 00:02
S Ethereum Minimal Voting 7 37 14 00:02 00:09 00:05
:({J Ethereum The DAO 25 118 43 00:07 00:30 00:13
g Bitcoin Naive 1 3 2 00:10 00:29 00:29
9 Dash 1 1 0 00:02 00:02 00:00
g Ethereum Naive 175 783 299 00:44 03:24 01:22
S Ethereum Minimal Voting 350 1634 677 01:28 06:46 02:56
ﬁ Ethereum The DAO 1250 7320 3232 05:13 33:46 14:19
%0 Bitcoin Naive 3 25 20 00:30 05:12 04:38
H Dash 10 10 0 00:25 00:21 00:05

The naive voting provides different addresses, each representing a voting
option. Voters can transfer coins to the respective address until the voting ends,
where the balances determine the final voting result. This naive approach can
basically be implemented in every cryptocurrency. In Ethereum, the gas costs
are 21 000 gas.

The minimal voting uses a smart contract for counting votes. To this end,
we implemented a synthetic voting smart contract that only consists of a single
method for counting votes (available in our Github repository). We are aware,
though, that the Solidity compiler does not generate perfectly optimized byte-
code. While an optimized voting smart contract with a completely assembly-style
built bytecode would need less gas, we consider the Solidity compiler the most
prevalent way to compile smart contract code. After deployment, the minimal
voting requires at least 41 897 gas per method call.

For the purpose of more realistic statements, we also analyzed the median gas
costs of votes to the DAO. To this end, we used our analysis pipeline described in
the previous section, which yields 150k gas per DAO voting call. As expected,
this is more complex than our minimal voting as it also manages funds and
quorum regulations.

In Table 3, we show the minimum duration of small-scale and large-scale
votings for the various voting schemes (see “Model” columns). For Ethereum,
we assumed a block gas limit of 12 - 10 gas and a block generation rate of
15 seconds. For comparability, we also included the naive voting for Bitcoin and
Dash, which we discuss later in Section 5. Based on this initial evaluation, we can
expect that small-scale on-chain voting is generally feasible in reasonable bounds.
At the same time, large-scale votings require under idealistic circumstances more
than four hours for the naive voting scheme, or even about 34h for the DAO
voting smart contract.

Empirical Analysis of On-chain Voting with Smart Contracts 11

4.3 Residual Capacities Analysis

In the following, we enrich our model-based evaluation with historic block-
chain data to determine the residual gas limits in Ethereum. This approach
provides a more realistic assessment of limitations. More specifically, we define
residualGas(i) = blockGasLimit(i) — usedGas(i) for a block i. Please note that
in Ethereum the block gas limit is block specific and changes over time. The
residual gas is therefore determined by the used gas at a certain point in time.

In Table 3, we show the median number of blocks n as well as the duration A
for historic data in addition to our model-based evaluation. We calculated n
and A starting with the last mined block of 2020-10-30 and repeated the process
for each preceding month until the genesis block of Ethereum (2015-07-30). In
general, our measurements yield values under the (unlikely) condition that all
voters submit their votes in a perfectly aligned and coordinated order. We use
this approach to provide an (optimistic) understanding for the minimum gas
needed to deploy and cast a single vote. Since we repeated the evaluation multiple
times by shifting starting points in monthly intervals, we present the median
absolute deviation (MAD).

The results show that simple small-scale and large-scale voting yield reason-
able performance with approx. 30 minutes or less for 2k votes, and between
30-90 minutes for 100k votes. The exception is the more complex DAO imple-
mentation, which takes more than 5 hours.

4.4 Economic Analysis

Since gas cost can be directly translated to ETH, we can also estimate the eco-
nomic efficiency of on-chain voting. As a first impression, we consider a median
gas price 2.0 chff; (SD = 5.92) for the 121 980 voting method calls from our data
set. We used an exchange rate of 407 USD per ETH as before. Hence, we can ap-
proximate the price of a vote for our minimal voting scheme that approximately
yields 0.03 USD per vote. For more realistic gas cost, i.e., the most called voting
methods require between 100-200 gas, our price approximation ranges between
0.08 USD and 0.16 USD per vote.

Voting costs are a relevant factor for high reachability and inclusive partici-
pation. While fees for casting a vote might serve as Sybil protection, they might
also deter voters. In general, fees set a higher participation threshold. In order
to maximize participation, transaction costs should be as low as possible for
submitting votes—or just not be charged, at all. Unfortunately, smart contracts
in Ethereum are not able to pay the transaction fees for the senders, e.g., for
calling chosen voting methods. It is possible to implement smart contracts that
refund transaction fees within the same transaction, but it still requires voters
to own initial ETH for paying the transaction fee in advance. Voters who do not
own any ETH hence face a greater hurdle to participate.

Interestingly enough, we want to point out an approach that is able to store
and release gas to cover some of the gas costs itself. Projects like the GasToken”

9 https://github.com/projectchicago/gastoken

https://github.com/projectchicago/gastoken

12 R. Muth and F. Tschorsch

exploit gas reserving opcodes (i.e., SSTORE and CREATE/SELFDESTRUCT) for sav-
ing gas when the gas price is low and releasing it when gas is more expensive.
Unfortunately, releasing reserved gas requires gas itself. That is, the transac-
tion costs can be reduced but not covered completely, which leaves us back to
the original problem that voters need an initial ETH fund. For enabling future-
oriented use cases that require broad involvement, e.g., participatory budgeting
or crowd funding, we believe new solutions are required to open on-chain voting.

5 Voting Beyond Ethereum

In the following, we consider other well-established cryptocurrencies, namely
Bitcoin [17] and Dash [6], that can also be used for voting one way or another.

5.1 Bitcoin

Several proposals for Bitcoin-based voting exist [3, 25, 28]. Unfortunately, due
do the lack of a full-fledged scripting language, Bitcoin heavily relies on external
infrastructure to conduct votings, which makes it difficult to inspect the block-
chain and reliably extract information with respect to voting. While we have
found indications for on-chain voting, infrastructures have been shut down and
therefore prevent analysis. Regardless, it is worth mentioning that Bitcoin min-
ers implement voting functionality directly in the blockchain protocol to agree
on improvement proposals.®

We can however assume that voting would have at least the same trans-
action requirements (w.r.t. transaction size and cost) as transferring coins. On
this basis, we analyze residual transaction capacities of past blocks and derive
the maximum of possible votes over that time span. To this end, we need to
consider the specifics and changes of the segregated witness proposal,'’ which
tackles signature malleability issues and therefore separates signature data from
the transaction’s hashes. As a result, the maximum block size is then limited by
the notion of block weight, i.e., block weight < 4-10°, which corresponds approx-
imately to a block size of 4 MB. A standard Bitcoin transaction for transferring
coins from one address to another (P2WSH) with segregated witness (inputs and
outputs) requires a block weight of approximately 110 (median over all corre-
sponding transactions until Oct 2020 with a standard deviation of 0.069). Other
parameters include a target block generation rate of 10 minutes.

Evaluation. Similar to our Ethereum analysis, we analyzed Bitcoin for small-
scale and large-scale scenarios with minimal transaction weights, which corre-
sponds to our naive voting implementation. In addition to a model-based eval-
uation, we also investigated the residual block capacities.

Table 3 shows the minimum amount of blocks as well as the time span it would
take to cast u votes. We assumed a transaction weight of 110 per vote. While

10 https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
" https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

Empirical Analysis of On-chain Voting with Smart Contracts 13

140 000 | | —@— Proposals —| 175
120000 | —l— Votes (yes and no) —150
» 100000 - -1 125 TE
£ 80000 |- 100 g
Z 60000 | 175 &
40000 |- 150
20000 |- 125
L | | ! | | | -0
2015 2016 2017 2018 2019 2020
Year

Fig. 7. Number of Dash governance proposals and the number of votes, grouped by
year (2015-08-27—2020-10-26).

Ethereum requires at least 4 minutes, Bitcoin requires 29 minutes for small-scale
votings. Please note that Bitcoin indicates very high MAD for n and A. Hence,
Bitcoin’s residual capacities fluctuate significantly compared to Ethereum, which
makes it more difficult to make predictions. For large-scale voting, Bitcoin re-
quires significantly less blocks (due to the larger block size) and despite its slower
block generation rate is faster than Ethereum.

5.2 Dash Governance Platform Analysis

Dash [6] was released in 2014, initially named Xcoin and later Darkcoin. Dash
does not support smart contracts in the same way as Ethereum, but implements
dedicated governance mechanisms directly in its protocols. During the mining
process new coins will be split and distributed over three stakeholders: master
nodes and miners receive each 40 %, and the remaining 20 % go to Dash’s De-
centralized Governance by Blockchain (DGBB) funding platform. Master nodes
then can vote on public proposals for distributing the collected funds.

The Dash Governance Platform (DGP) is natively implemented in Dash’s
application protocols and therefore can be monitored by all nodes that have
joined the network. After a pre-defined voting phase, the number of yes-votes
minus the no-votes must exceed 10 % of the total number of master nodes for a
proposal to pass. Otherwise, the proposal will be rejected. For better accessibility,
DashCentral'? provides an overview of all proposals and a public API.

Evaluation. In order to get a first impression, we analyzed 577 proposals be-
tween 2015-08-27 and 2020-10-26. During that time, 379 proposals were funded.
In Figure 7, we show the total number of votes and corresponding number of
proposals per year. Dash’s governance proposals started at the same year as the
first voting smart contracts on the Ethereum blockchain in 2015. Dash shows
an increase and peak of newly created proposals and votings between 2016 and
2018, and similar to Ethereum, a steady decrease of interest afterwards. Dash’s

12 https://www.dashcentral.org

https://www.dashcentral.org

14 R. Muth and F. Tschorsch

number of proposals at the peak is approximately 8 times is lower compared to
Ethereum (c.f. Figure 4). Note that the analysis of Dash is more precise and does
not suppress any false-positives, which means that the difference to Ethereum
is probably even higher. The number of votes at peak times is approximately
1-3 times smaller, when compared to Ethereum. All successful proposals col-
lected 131453 DASH, which equals approximately 14.7 million USD according
to the corresponding exchange rates at the time of funding.'® Even though the
presented votings were not conducted on-chain, the blockchain’s protocol auto-
matically pays out fundings with Dash’s cryptocurrency and therefore supports
the role of on-chain voting.

Additionally, we evaluated the residual capacities of the Dash blockchain.
While Dash is based on Bitcoin, it does not support segregated witness and
aims for a block generation rate of 2.5 minutes with a maximum block size of
2 MB. As shown in Table 3, Dash does not have such a high transaction load
as Bitcoin or Ethereum, which directly leads to high residual capacities and
therefore better performance for small-scale and large-scale voting. Our mea-
surements show even better results than our model approximation, because the
proof-of-work consensus generated new blocks faster than expected. We never-
theless would expect higher durations with the same general load, i.e., residual
capacity, as in Bitcoin.

6 Conclusion

In this paper, we have shown that on-chain voting has become a relevant use case
in Ethereum, most often, to collectively manage funds. To this end, we presented
our blockchain analysis toolchain, that we used to identify and analyze voting
smart contracts with respect to their popularity, complexity, and funds. On the
one hand, our benchmark of transactions to voting smart contracts and their
respective fundings confirm a high relevance. On the other hand, we observed a
trend of centralization due to the popularity of DAO contracts.

We further used these insights to assess the feasibility of future large-scale
voting on blockchains. Therefore, we also evaluated other well-established block-
chains, i.e., Bitcoin and Dash. While small-scale voting scenarios seem feasible
on all analyzed blockchains, large-scale voting suffers from severe scalability is-
sues. Although our model-based calculations indicate that large-scale votings
can theoretically be conducted in reasonable times under perfect conditions, our
measurements on well-established public blockchains show that minimum dura-
tions increase significantly due to the limited transaction throughput.

Despite all the flaws of blockchain-based voting, We have shown that on-chain
voting has a relevance, e.g., for governance aspects of blockchains. We therefore
believe that improving on-chain voting schemes with respect to security, privacy,
inclusiveness, and fairness is still necessary and relevant at the same time.

'3 https://coinmarketcap.com/en/currencies/dash/historical-data/ (Accessed:
2020-11-16)

https://coinmarketcap.com/en/currencies/dash/historical-data/

Empirical Analysis of On-chain Voting with Smart Contracts 15

Bibliography

1]

Atzei, N., Bartoletti, M., Cimoli, T.: A Survey of Attacks on Ethereum
Smart Contracts (SoK). International Conference on Principles of Security
and Trust, Springer (2017)

Béres, F., Seres, I.A., Benczur, A.A., Quintyne-Collins, M.: Blockchain is
Watching You: Profiling and Deanonymizing Ethereum Users. CoRR (2020)
Bistarelli, S., Mantilacci, M., Santancini, P., Santini, F.: An End-to-end
Voting-system Based on Bitcoin. In: SAC, ACM (2017)

Croman, K., Decker, C., Eyal, 1., Gencer, A.E., Juels, A., Kosba, A.E.,
Miller, A., Saxena, P., Shi, E., Sirer, E.G., Song, D., Wattenhofer, R.: On
Scaling Decentralized Blockchains - (A Position Paper). In: Financial Cryp-
tography Workshops, Lecture Notes in Computer Science, Springer (2016)
Dimitriou, T.: Efficient, Coercion-free and Universally Verifiable
Blockchain-based Voting. Computer Networks (2020)

Duffield, E., Diaz, D.: Dash: A Payments-Focused Cryptocurrency (2018),
URL https://github.com/dashpay/dash/wiki/Whitepaper, accessed:
2020-10-26

Frowis, M., Fuchs, A., Béhme, R.: Detecting Token Systems on Ethereum.
In: International Conference on Financial Cryptography and Data Security,
Springer (2019)

Heiberg, S., Kubjas, I., Siim, J., Willemson, J.: On Trade-offs of Applying
Block Chains for Electronic Voting Bulletin Boards. E-Vote-ID (2018)
Henry, R., Herzberg, A., Kate, A.: Blockchain Access Privacy: Challenges
and Directions. IEEE Security & Privacy (2018)

Hjalmarsson, F.P., Hreioarsson, G.K., Hamdaqa, M., Hjalmtysson, G.:
Blockchain-based E-Voting System. In: IEEE CLOUD (2018)

Jentzsch, C.: Decentralized Autonomous Organization to Automate Gover-
nance. White paper (2016)

Killer, C., Rodrigues, B., Matile, R., Scheid, E.J., Stiller, B.: Design and Im-
plementation of Cast-as-Intended Verifiability for a Blockchain-based Vot-
ing System. In: SAC, ACM (2020)

Kroll, J.A., Davey, I1.C., Felten, E.-W.: The Economics of Bitcoin Mining, or
Bitcoin in the Presence of Adversaries. In: Proceedings of WEIS (2013)
Kshetri, N., Voas, J.M.: Blockchain-Enabled E-Voting. ITEEE Software
(2018)

Matzutt, R., Hiller, J., Henze, M., Ziegeldorf, J.H., Millmann, D., Hohlfeld,
O., Wehrle, K.: A Quantitative Analysis of the Impact of Arbitrary Block-
chain Content on Bitcoin. In: Financial Cryptography, Lecture Notes in
Computer Science, Springer (2018)

McCorry, P., Shahandashti, S.F., Hao, F.: A Smart Contract for Board-
room Voting with Maximum Voter Privacy. In: International Conference on
Financial Cryptography and Data Security, Springer (2017)

Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
National Academies of Sciences, Engineering, and Medicine and others: Se-
curing the Vote: Protecting American Democracy pp. 103-105 (2018)

https://github.com/dashpay/dash/wiki/Whitepaper

16

[19]

[20]

[21]

R. Muth and F. Tschorsch

Park, S., Specter, M., Narula, N., Rivest, R.L.: Going from Bad to
Worse: From Internet Voting to Blockchain Voting (2020), URL https://
people.csail.mit.edu/rivest/pubs/PSNR20.pdf, accessed: 2020-11-24
Pinna, A., Ibba, S., Baralla, G., Tonelli, R., Marchesi, M.: A Massive Analy-
sis of Ethereum Smart Contracts Empirical Study and Code Metrics. IEEE
Access (2019)

Reibel, P., Yousaf, H., Meiklejohn, S.: Short Paper: An Exploration of Code
Diversity in the Cryptocurrency Landscape. In: Financial Cryptography,
Lecture Notes in Computer Science, Springer (2019)

Reid, F., Harrigan, M.: An Analysis of Anonymity in the Bitcoin System.
In: SocialCom/PASSAT, IEEE Computer Society (2011)

Specter, M.A., Koppel, J., Weitzner, D.: The Ballot is Busted Before the
Blockchain: A Security Analysis of Voatz, the First Internet Voting Applica-
tion Used in U.S. Federal Elections. In: 29th USENIX Security Symposium
(2020)

Szabo, N.: Formalizing and Securing Relationships on Public Networks.
First Monday, Vol. 2, Nr. 9 (1997)

Tian, H., Fu, L., He, J.: A Simpler Bitcoin Voting Protocol. In: Int. Con-
ference on Information Security and Cryptology, Springer (2017)

Victor, F., Liiders, B.K.: Measuring Ethereum-based ERC20 Token Net-
works. In: Financial Cryptography, Lecture Notes in Computer Science,
Springer (2019)

Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction
Ledger, Byzantium Revision 7TE819EC (2019-10-20)

Zhao, Z., Chan, T.H.H.: How to Vote Privately using Bitcoin. In: Int. Con-
ference on Information and Communications Security, Springer (2015)

https://people.csail.mit.edu/rivest/pubs/PSNR20.pdf
https://people.csail.mit.edu/rivest/pubs/PSNR20.pdf

