
The Principal–Agent Problem in Liquid Staking

Abstract. Proof-of-Stake systems require stakers to lock up their funds
in order to participate in consensus validation. This leads to capital in-
efficiency, as locked capital cannot be invested in Decentralized Finance
(DeFi). Liquid staking rewards stakers with fungible tokens in return
for staking their assets. These fungible tokens can in turn be reused
in the DeFi economy. However, liquid staking introduces unexpected
risks, as all delegated stake is now fungible. This exacerbates the al-
ready existing Principal–Agent problem faced during any delegation, in
which the interests of the delegator (the Principal) are not aligned with
the interests of the validator (the Agent). In this paper, we study the
Principal–Agent problem in the context of liquid staking. We highlight
the dilemma between the choice of proportional representation (having
one’s stake delegated to the validator of choice) and fair punishment
(being economically affected only when one’s choice is misinformed). We
put forth an attack illustrating that these two notions are fundamentally
incompatible in an adversarial setting. We then describe the mechanism
of exempt delegations, used by some staking systems today, and devise a
precise formula for quantifying the correct choice of exempt delegation
which allows balancing the two conflicting virtues in the rational model.

1 Introduction

When a validator participates in a proof-of-stake protocol, they bond
their stake, locking it up for a period of time in exchange for rewards.
This locked-up stake is slashed in case of validator misbehavior such as
equivocation. Stakeholders delegate their stake to validators to also earn
rewards. If the validator misbehaves, the funds of the delegator are also
slashed. This introduces a Principal–Agent problem [20, 32] in which the
actions of the validator (the Agent) affect the capital of the delegator (the
Principal).

However, staked assets are illiquid and cannot be used for other pur-
poses such as in DeFi applications [34] because they are locked up. Liquid
staking [24] is an attempt to solve this problem by issuing token repre-
sentations of the staked assets that can be freely traded and utilized by
stakeholders elsewhere in the blockchain ecosystem.

Liquid staking token representations are most valuable when they
are fungible. However, this fungibility exacerbates the Principal–Agent



problem of delegated stake. A liquid staking system pools together stakes
from different participants, prompting the question of whom to delegate
these pooled funds to. If the system has proportional representation, every
pool participant decides whom to delegate to in proportion to their con-
tributed shares. The crux of the issue arises from the fact that a malicious
pool participant can choose to delegate to a colluding validator who then
equivocates. This causes a portion of the pooled money to be slashed,
affecting every pool participant in proportion to their contributed stake,
even if they made no unwise delegation decisions, in a situation of unfair
punishment. This causes a drop in the price of the liquid staking tokens.
A rational attacker profits from this price drop by shorting the token.
Our contributions. Our contributions in this paper are as follows:

1. We introduce two desirable properties in the context of Liquid Stak-
ing: Proportional Representation and Fair Punishment.

2. We showcase the Principal–Agent problem in the Liquid Staking set-
ting by describing a concrete attack leveraging it.

3. We give a precise description of the market conditions that enable this
attack, and a formula for a liquid staking system configuration which
can avoid it.

Related work. Proof-of-Stake (PoS) was introduced by PeerCoin [22]
and formalized in later works [4,5,15,18,21]. Slashing [10] is a technique
used to achieve economic safety [11] in many PoS systems, among others
PoS Ethereum [12,13] and Cosmos [7–9]. Outside of centralized exchanges,
liquid staking was introduced by Felix Lutsch as Delegation Vouchers [23]
and later analyzed in a comprehensive report [24] with the help of the
Liquid Staking Working Group. Lido [1] and Rocket Pool [30] popularized
liquid staking in Ethereum, and Quicksilver [6], Stride [33] and pStake [29]
in Cosmos. Quicksilver is the first protocol to propose proportional repre-
sentation, but this is not yet implemented. Besides liquid staking, stake
rehypothecation takes the form of restaking (EigenLayer [16]) and cross
staking [3]. Exempt delegations, with one name or another, are used in
Rocket Pool, and have been proposed for Cosmos [25].

2 Preliminaries

Loans. For the attack we will describe in this paper, some upfront capital
is required. Sometimes a portion of this capital is needed only throughout
one transaction. Towards this purpose, a flash loan [19] is obtained, which
has zero duration and no funds at risk. We assume that a loan of duration
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∆t for capital u has an upfront cost factor β, an interest rate r and
the amount to be repaid, including both the principal and interest, is
((1+ r)∆t+β)u. The term β models the cost factor of a flash loan, which
has duration 0. In order to take a loan, a collateral in different currency
must be deposited for the duration of the loan. DeFi protocols typically
require overcollateralization. We denote by γ ≥ 1 the collateral ratio
required by the loan provider. To take a loan of z in one currency, one
must deposit the equivalent value of γz in another currency.
Proof-of-Stake. Proof-of-stake systems are secured by validators who
propose and vote on blocks. To become a validator in a slashably safe [11]
system, a stakeholder must bond their stake which locks it up for a par-
ticular period of time in return for rewards. Validators promise they will
not equivocate by signing conflicting blocks. In case of equivocation, a
percentage 0 < p ≤ 1 of the locked stake is slashed and the validator
is permanently deactivated. In the cryptographic model, validators can
be honest or adversarial. The honest validators run the prescribed pro-
tocol, and hence never equivocate, whereas the adversarial validators can
deviate from the protocol arbitrarily.
Delegation. Since not everyone has the capacity to become a validator,
a stakeholder can delegate their stake to a validator to participate in
the validation process in their stead. The voting power of the validator
accounts for the delegated stake, and delegated stake is also slashed in
case of validator misbehavior. The stake bonded by a validator themselves
and not delegated from others is known as self-delegation. Self-delegations
as well as stake delegated from others is known as delegated stake, and the
capital holder of delegated stake is known as the delegator, but will also
be referred to as the principal. A principal can undelegate or redelegate at
any time, but must wait1 for an unbonding period δ.
Liquid Staking. Delegated stake earns rewards, but remains locked and
is illiquid. Principals often wish to rehypothecate their delegated stake as
collateral, for example to take loans [19] or to, more broadly, participate
in the DeFi [34] economy. Protocols that enable this ability are known
as liquid staking protocols [24]. Some such protocols [1,33] operate in the
form of smart contracts (e.g., Lido and Rocket Pool in Ethereum) or
separate appchains2 (e.g., Stride, pStake, and Quicksilver in Cosmos).

1The waiting period may sometimes be waived and redelegations allowed instantly
if no other redelegations have happened within δ, such as in Cosmos [14]. The important
point for us is that, after redelegation has commenced, the redelegated stake is still
prone to slashing due to the old validator’s misbehavior for a period of δ.

2An appchain is a separate Cosmos zone, connected with other Cosmos zones using
IBC/ICA [35] and functions similar to a smart contract.
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Stakeholders deposit their funds into the liquid staking protocol. Upon
deposit, these contracts act as delegators and delegate the incoming funds
to their choice of validators. They collect this delegated stake into a pool
and receive staking rewards from these holdings. During the deposit, a
new derivative asset is minted, which is given to the depositor as a claim
to the delegated stake held by the liquid staking contract. Such derivative
tokens, when issued from the same liquid staking contract, are fungible
with one another3. We are only concerned with liquid staking protocols
that are fully fungible. At any time, the derivative asset holder can redeem
their derivative asset. During redemption, the contract burns the holder’s
derivative assets and returns the respective assets to the holder. In our
treatment, we consider a generic asset that we denominate in ASSET and
the respective derivative token, that we denominate in stASSET, issued
by an arbitrary liquid staking protocol. We assume a perfectly efficient
market for ASSET and stASSET, as well as a sufficiently deep loan market
with rates rA, βA, and rst, βst respectively.
Exchange rates. Initially, ASSET and stASSET are priced at a 1:1 ex-
change rate, as one can be exchanged for the other by redeeming or with-
drawing. However, the balance of the liquid staking protocol in ASSET
holdings can change with time due to two reasons. Firstly, it continu-
ously receives rewards for staking the ASSET (these rewards are auto-
compounded). Secondly, if a validator it delegates to misbehaves, a por-
tion of its ASSET can get slashed. These events do not change the supply
of stASSET in the market. The deposit and redemption operations must
adjust their price. Let b0 ASSET denote the amount of ASSET holdings
of the liquid staking protocol, and s0 stASSET denote the total market
supply of stASSET that the protocol has issued. When the user deposits
b ASSET, the protocol mints s = b s0b0 stASSET. On the other hand, when
the user burns s ASSET, the protocol returns b = s b0

s0
delegated ASSET

to the user. These delegated ASSET can be unbonded to convert them to
ASSET. Because the user can always go back to the protocol and exchange
b for s or vice versa, we assume that the price of stASSET denominated in
ASSET in the market is the same as the quoted protocol price. We refine
this assumption in Section 5. For completeness, we illustrate the basic
deposit and withdrawal functionalities of any liquid staking protocol in
Appendix B.

3The exact fungibility constraints depend on the protocol. For example, stATOM in
Stride [33] and stETH in Lido [1] are fully fungible. However, in the proposed Liquidity
Staking Module [2] of Cosmos, derivative tokens are only fungible when they have been
delegated to the same validator in the same batch.
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Governance. The choice of which validator the liquid staking protocol’s
assets are delegated to depends on the particularities of the protocol. In
centralized protocols, the decision is taken by a central party or central
committee of parties, who may not be the liquid stake holders themselves.
Some protocols allow the principals to vote. During the voting process,
anyone can propose for a proportion of the protocols’s assets to be dele-
gated to a validator of their choosing. Each principal can then vote yes
or no to the proposal. Decisions are often taken by weighted majority.

3 Representation

In a staking protocol, whether liquid or not, each principal has an opinion
about which validator they wish to delegate to.

Definition 1 (Delegation Wish). For each principal, we define their
delegation wish to be a particular validator of their choice.

It will generally be desired that these delegation wishes point to honest
validators. We formalize this in the notion of wisdom.

Definition 2 (Wisdom). A principal is wise if their delegation wish
points to an honest validator. Otherwise, the principal is unwise.

In the liquid staking protocols described in Section 2, the decision of
which validators to delegate to is up to the majority of the stakeholders.
This creates a problem. A stakeholder holding a minority of the stake
may wish to delegate this stake to a particular validator, but the rest of
the stakeholders can overturn him by a majority vote. Hence, in these
protocols we have a situation of only the majority being represented,
instead of everyone being equally represented [27].

On the contrary, in a proportional representation system, the majority
of the stakeholders decide where to delegate the majority of the stake, but
the minority of the stakeholders also decide where to delegate the minority
of the stake.

Definition 3 (Proportional Representation). In a proportionally
represented liquid staking protocol, each validator is delegated a propor-
tion of the liquid staking pool’s ASSET equal to the sum of the proportions
of stASSET held by the principals who wish to delegate to that validator.

To achieve this, the process of liquid staking becomes different: Each
principal must signal their intent indicating which validator they wish the
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pool to delegate to. This election mechanism was introduced by Quick-
Silver [6] even though it has not yet been implemented, at the time of
writing.

First, the principal deposits ASSET into the protocol and signals dele-
gation intent to the validator of their choice. Then, the protocol delegates
the deposited ASSET to that validator. The principal is now a holder of
tradable stASSET representations of the delegated ASSET. This stASSET
can now be transferred to a different owner.

At some later time, the stASSET holder may wish to redelegate their
underlying ASSET to a new validator. The stASSET holder can resignal
their delegation intent and the protocol will redelegate the underlying
ASSET to the new validator. The goal is for all stASSET holders to be
represented proportionally to their stake.

Note that proportional representation may not be instant. Redelega-
tion speeds are limited by the underlying blockchains’ unbonding period.
Hence, a stASSET holder may have to wait δ before their corresponding
ASSETs are redelegated to the validator of their choice.

4 The Principal–Agent Problem

In the proof-of-stake systems described in the previous sections, principals
grant permission of their funds to validators so they can participate in
consensus on their behalf. Hence, principals have ownership of the stake,
but validators have control over it. The stakeholders rely on validators to
act according to their best interest: Stay online and follow the protocol.
However, validators (the agents) may have extrinsic motivation to misbe-
have and plot against principals. This creates a conflict of interest that
is known as the Principal–Agent problem.

For example, a malicious validator can equivocate, which causes the
principal’s funds to be slashed. If the malicious validator has limited self-
delegation and no reputation to lose, the validator may be able to profit
from the principal’s loss. However, a validator with a larger self-delegation
will themselves be affected by the slashing. This is why self-delegation
offers a layer of protection against the Principal–Agent problem.

In traditional staking protocols, principals have the responsibility to
delegate their funds wisely. When a malicious validator misbehaves, only
the stake of unwise principals is slashed. No wise principal gets unfairly
punished.
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Definition 4 (Fair Punishment). A staking protocol has Fair Punish-
ment if no wise principal’s stake gets slashed as a result of a malicious
validator’s actions.

With the introduction of liquid staking protocols, the principal is no
longer directly delegating to the validator of their choice. Instead, the
protocol is now responsible for the delegation process and stake alloca-
tion to validators. Although the principal can express their delegation
wish, ultimately the protocol decides where funds are delegated based on
its delegation strategy. All liquid staking tokens are fungible, hence all
validators delegated to by the protocol become agents for all principals.
The Principal–Agent problem is exacerbated. The principal’s funds are
now effectively delegated to validators he has not necessarily chosen, some
with mischievous intentions.

5 Attack

We now describe an attack an adversary can conduct which leverages
the Principal–Agent problem of liquid staking. First, we observe that fair
punishment in the class of liquid staking protocols we are concerned about
is impossible.

Claim. Any fungible liquid staking protocol with Proportional Represen-
tation deployed over any proof-of-stake consensus protocol which slashes
equivocating validators by a rate of p > 0 cannot have fair punishment.

A first attack attempt. To see why the above claim holds, consider the
following simplistic attack illustrated in Figure 1. Let b0 be the amount
of delegated ASSET in the protocol’s delegation pool, and s0 be the total
amount of stASSET tokens outstanding before the attack commences. The
initial quoted price of stASSET is b0

s0
.

Initially, the adversary A creates a new validator V under her control4.
We do not require any of the existing protocol participants to delegate to
this validator for the attack to work, i.e., we assume all participants are
wise and all other validators are honest. At time t2, the adversary deposits
b ASSET to the protocol, signalling delegation intent to V. Due to pro-
portional representation, the protocol respects this intent and delegates
b ASSET to V. The protocol now holds b delegated ASSET to V. Through

4To do so, she uses a fresh identity to suppress potential suspicions. Most validators
have a real-world presence and can be held legally accountable [24, p. 29], but this
validator is pseudonymous.
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this deposit, the adversary obtains s = s0
b0
b stASSET, and the quoted price

remains b0+b
s0+s = b0

s0
. Lastly, at time t4 > t2, validator V equivocates. This

causes a proportion p of the capital b to be slashed. However the amount
of stASSET circulating in the market remains s0 + s = s0 + b s0b0 . The new
quoted price is now b0+(1−p)b

s0+s = b0
s0
(1− p b

b0+b) <
b0
s0

.

ASSET reserves:
stASSET supply:

b0
s0

▼b0+(1−p)b
s0+s

▲b0+b
▲s0+s

t2

Liquid stakes
t4

Equivocates

Fig. 1: Timeline of the simplistic attack.

Because stASSET is fungible, every stakeholder is negatively affected,
proportionally to their holdings. As everyone else was wise, this consti-
tutes unfair punishment.

The above attack requires the adversary to expend capital b to cause
harm to others, and is irrational. In the remainder of this section, we
explore how to make this attack profitable for protocols with an unbonding
period δ > 0.
Making the attack profitable. The profitable version of the attack
(Figure 2) works similarly to the above irrational attack, but with some
extra steps. As before, the adversary, initially holding a capital of b, be-
gins by spawning the colluding validator V, delegates b at time t2, and
equivocates at time t4.

During equivocation, the adversary does not want to be holding any
stASSET of her own, as the price of stASSET is about to drop. Therefore,
at time t3 (where t2 < t3 < t4) the adversary sells the acquired s stASSET
for b ASSET in the market. The adversary has now managed to add b
ASSET delegated to validator V in the protocol’s delegation pool while
not currently holding any stASSET. The loss has been averted. At this
time, even though the stASSETs have changed hands, the liquid staking
protocol cannot redelegate its ASSETs instantly due to δ > 0.

A small extra trick will allow her to profit. Before forcing the price
of stASSET to drop, at time t0 < t4 the adversary shorts stASSET: She
takes a loan of z stASSETs and sells5 them for b∗ = z b0

s0
ASSET in the

5Instead of selling, the adversary can redeem, but this may incur an unbonding
delay, which can be rectified by taking a loan. See Section 5.
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market. If z approaches s0, the loan market will not be sufficiently deep,
and the adversary may have to split the attack into multiple iterations.

Lastly, at time t5 > t4 after the price drop, the adversary closes her
short position by repaying the stASSET loan. The duration of the loan was
∆z = t5−t0, so the total loan amount to be repaid, including the principal
and interest, is ((1+rst)∆z +βst)z stASSET. We let f = ((1+rst)∆z +βst)
be the cost factor of the loan. To recover this amount of stASSET, the
adversary deposits b′ = b0

s0
(1 − p b

b0+b)fz ASSET into the protocol, which
allows her to issue the exact required stASSET to be paid back. This
concludes the attack.

ASSET reserves:
stASSET supply:

b0
s0

▼b0+(1−p)b
s0+s

▲b0+b
▲s0+s

t0

Shorts
t2

Liquid stakes
t3

Sells
t4

Equivocates
t5

Closes

z stASSET
loan

Fig. 2: Timeline of the profitable attack.

Her total profits from the attack are b∗ − b′ = b0
s0
z(1− (1− p b

b0+b)f).
This will be profitable if (1−p b

b0+b)f < 1, i.e., the cost factor f of money
borrowing (which is always > 1) is sufficiently cheap that she can make
up for it by the price movement 1− p b

b0+b she has caused.
Realizing profits in USD. If the attacker wants to do bookkeeping in a
more stable reference currency, such as USD, the attack is still profitable.
The attacker begins by buying ASSET for USD. At the end of the attack,
the attacker sells ASSET for USD. Because the attack concerns a partic-
ular liquid staking protocol, and not the whole ASSET network, the price
of ASSET will likely not be significantly affected by the attack at all. This
attack decreases the market confidence in stASSET, but not in ASSET. In
fact, because the attack causes slashing of ASSET, the supply of ASSET is
decreased and the price of ASSET with respect to the reference currency
may even increase. Lastly, any price fluctuations of ASSET with respect
to USD will likely be minor, as the attack has a short duration of a couple
of seconds.
The Market price of stASSET. Let us consider the price k of stASSET
denominated in ASSET in the market. Because the option always exists
to mint at a rate of s0

b0
by depositing, the price of stASSET denominated
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in ASSET in a perfectly efficient market is b0
s0

at maximum. Otherwise, no
rational buyer would use the market. Hence, the market rate is k ≤ b0

s0
.

There are two options to convert s stASSET to ASSET: either sell at
the market rate to obtain b = ks ASSET, or use the redemption mech-
anism. Using the redemption mechanism, the ASSETs become available
after time δ. Initially, using s stASSET, a redemption is made of b′ = s b0

s0
delegated assets. To get b ASSET immediately (and avoid having to wait
for the unbonding period), a loan of b ASSET is taken [24, p. 13] and
repayed after duration δ. The amount of ASSET that needs to be paid
back, including principal and interest, is ((1 + rA)δ + βA)b ASSET. We
set this amount to be equal to b′, the amount of ASSETs that will be un-
bonded after δ time. Solving for b, we get b = s b0

s0((1+rA)δ+βA)
. Therefore,

in an efficient market k ≥ b0
s0((1+rA)δ+βA)

. We deduce that the bounds for
an efficient market of ASSET and stASSET are

b0
s0((1 + rA)δ + βA)

≤ k ≤ b0
s0

.

The longer the duration δ, the larger the potential price deviation
(c.f. the empirical analysis in Liquid Staking: Basis Determinants and
Price Discovery [31]). The process of the loan is automated in some pro-
tocols [28, §5] [26].

It is also possible to use the principle of remittances (matching) [28,
§5] [26] to match depositing and redeeming parties, so that the redeem-
ing party does not have to incur any unbonding delay. If the redeemed
amounts exceed the deposited amounts, some amounts will necessarily
incur a delay. However, the above bounds may effectively be tighter than
δ due to a shorter effective unbonding duration.

6 Exempt Delegations

Exempt delegations (proposed in LSM [2]) are a mechanism to allevi-
ate the Principal–Agent problem in liquid staking. An exempt delegation
amount c, measured in ASSET, is associated with each validator. It is a
measure of the validator’s trustworthiness. The liquid staking protocol
is now redesigned to impose restrictions on how much of the protocol’s
pooled moneys can be delegated to a particular validator based on the
validator’s exempt delegation. The restriction is parameterized by a fac-
tor ϕ (in practice, ϕ > 1) and is given by the inequality b ≤ ϕc: Only up
to b ASSETs are allowed to be delegated by the liquid staking protocol to
a validator with c ASSETs in exempt delegations.
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t0

Shorts

t1

Exempt
delegates

t2

Liquid
stakes

t3

Sells

t4

Equivocates

t5

Closes

b ASSET
flash loan

z stASSET
loan

Fig. 3: Timeline of the exempt delegation attack.

A new validator begins its lifecycle with c = 0. They can then raise
their own exempt delegation amount by locking aside a chosen amount
of ASSET, and marking it as exempt. Those assets are delegated to the
validator as usual. However, the exempt marking means that those dele-
gated assets cannot be part of the liquid staking protocol pool, but must
remain locked aside. Additionally, these specially marked delegations are
slashed6 at a potentially higher rate q ≥ p. Exempt delegated assets can-
not be undelegated in a way that would cause a violation of the inequality
b ≤ ϕc.

Principals, whether wise or unwise, do not participate in exempt del-
egations; instead, it is the validator who exempt delegates to themselves
(or someone who trusts the validator for extrinsic reasons). This means
that, in case of validator misbehavior, the exempt delegation slashing qc
is a penalty that only affects the validator.

This raises the cost of the attack described in the previous section. The
adversary must first, at time t1 (where t0 < t1 < t2), exempt delegate
a sufficient amount c ≥ b

ϕ ASSET to V before she can liquid stake b
ASSET. Whereas the stASSETs corresponding to those b ASSETs can be,
as before, sold at t3 to separate the agent from the principal, the c amount
remains with the agent, holding her financially liable to misbehavior.
After equivocation at t4, in addition to any other costs, the adversary
loses qc ASSET. At the conclusion of the attack, the adversary undelegates
the unslashed (1 − q)c exempt delegation. The timeline of the attack is
illustrated in Figure 3 (the flash loan indication is explained when we
introduce the cost of borrowing).

The attack may remain profitable despite exempt delegations. The ra-
tional adversary should not waste any unnecessary resources on c; there-

6We abstract some of the irrelevant implementation details here. See Appendix A
for how the real protocol works in the context of Cosmos.
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fore, she can set c = b
ϕ . The profit of the attack now becomes b∗− b′− q

ϕb.
The intuition for why exempt delegations protect the system is that, for
the adversary to profit from the short, she must cause a significant shift
in the price. The shift in the price is determined by the factor p b

b0
, so the

adversary aims for a large b. But because b ≤ ϕc must be respected, this
incurs a large penalty qc = q

ϕb.
The cost of borrowing. So far, we have allowed the adversary to take
a loan indiscriminately without any concern for collateral. In practice,
loan platforms require a collateral, so the attack impact will be limited
by the adversary’s initial capital. Let u ASSET be the initial capital of the
adversary, and let γst be the collateral ratio of a standard stASSET loan.
The adversary uses the whole initial capital of u ASSET as collateral to
obtain a loan of z = u

γst
s0
b0

stASSET. The loaned z stASSET are converted
to b∗ = u

γst
ASSET and utilized by the adversary in the next steps of the

attack.
It was also previously assumed that the adversary has c ASSET to

exempt delegate (t1) and b ASSET to deposit in the protocol (t2) at her
disposal. Instead of requiring these as extra assets set aside, we will make
them part of the loan obtained by the adversary. That way, all the initial
capital of the adversary can be used to maximize her shorting leverage.

Notice that the adversary deposits b ASSET in the protocol at t2 and
gets them back at t3 after selling the stASSET obtained from the deposit.
These two actions can be performed in a single transaction. Hence, a flash
loan can be used to obtain the required b ASSET at t2 and be repaid,
including a βAb ASSET flash loan cost, at t3, after the adversary gets b
ASSET back. The flash loan is illustrated in Figure 3.

To perform the attack, part of the b∗ funds are used to exempt delegate
c = b

ϕ ASSET to V at t1, and another part to pay βAb ASSET for the flash
loan cost at t3. Hence c + βAb ≤ b∗ and the adversary may use up to
b ≤ u

( 1
ϕ
+βA)γst

to move the price.
Taking into consideration the flash loan cost as well, the final profit of

the attack is now α = b∗−b′−qc−βAb. Solving for dα
db = 0 gives the optimal

b =

√
ufpb0

(βA+
q
ϕ
)γst

− b0, which maximizes the adversary’s profit, subject to

the constraints 0 ≤ b ≤ u
( 1
ϕ
+βA)γst

. In non-extreme market conditions, if
the attack is profitable, the bound b ≤ u

( 1
ϕ
+βA)γst

will not be reached, and

the adversary will use the value b =

√
ufpb0

(βA+
q
ϕ
)γst

− b0.
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What would it take to disincentivize the adversary from attacking
the protocol? As protocol designers, we need to carefully parametrize the
liquid staking protocol to ensure the adversarial profit is not positive. This
will render the attack irrational and the protocol secure in the rational
model. To achieve this, we must select the parameter ϕ

q in a way that
α ≤ 0. Plugging in the optimal value for b in the inequality α ≤ 0 and
solving the resulting equation for ϕ

q yields

ϕ

q
≤ b0γst

fpu+ fu− b0βAγst − 2u
√
fp(f − 1)− u

. (∗)

Plugging the appropriate values into p, βA, f , b0, γst and u designating
the conditions the protocol operates under, the protocol designers can
calculate a secure value ϕ

q . A higher exempt delegation slashing rate q
makes the attack more expensive. This is because a larger portion of the
exempt delegation c, holding the adversary accountable, is slashed. A
lower exempt delegation factor ϕ also makes the attack more expensive
since a larger exempt delegation is required to liquid stake the same b
ASSET. Hence, a lower ϕ

q makes the protocol less vulnerable to the attack.
We recommend always setting q = 1 if possible, as this allows for larger
values of ϕ, increasing liquidity, without any harm to anyone besides the
adversary.

The cost of borrowing money increases when the collateral ratio γst,
the flash loan cost factor βA or the loan cost factor f increase. While
the cost of borrowing money goes up, the attack becomes less profitable
for the adversary. Thus, the protocol can afford to increase ϕ

q and still
remain secure. This is illustrated in Figure 4 for an adversary with 30%
market domination u

b0 , and an adversary with 50% market domination u
b0 .

While f increases, the safe parameter ϕ
q can increase with it. The black

line indicates where the attack becomes unprofitable for the adversary
(α = 0). The white area under the black line represents the configuration
in which the protocol is secure in the rational model.

As an illustration, we consider a blockchain with slashing percent-
age p = 0.5 and market conditions7 with ASSET flash loan cost factor
βA = 0.0009 and collateral ratio γst = 146%. In Figure 4 we plot the
dependencies between f and adversarial profit. At the time of writing, if
the attack duration is 20 sec, we have f = 1 + 10−8.
Free money borrowing. We saw that, in practice, f ≃ 1, and money
borrowing is almost free for short durations. Free money borrowing makes

7Lido stETH borrowing rates on Aave [17] as of 27 Jan, 2023.
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Fig. 4: Cost of borrowing and attack profitability.

the adversary more powerful and her attack more profitable. Hence, if a
parameter ϕ

q keeps the protocol secure when money borrowing is free
(f = 1, βA = 0, γst = 1), the same parameter ϕ

q keeps the protocol secure
even when money borrowing is not free. This is illustrated in Figure 5b.
Safe values of parameter ϕ

q for f = 1, indicated by the black line, are also
safe for f > 1 under any adversarial market domination u

b0
.

Hence, we can greatly simplify the above calculations by assuming
that money borrowing is free. Concretely if flash loans are free (βA = 0),
interest rates are zero (f = 1), and the collateral ratio is γst = 100%,
equation (∗) simplifies to:

ϕ

q
≤ b0

pu

This equation can be used in practice to calculate the appropriate
value of ϕ

q that can withstand an adversary with a market presence of u
b0

(due to the very short duration of the attack, the cost of money borrowing
does not alter the final result by much). Note that, even though the
attack might be profitable for a large p, a lower value of p may make
the attack unprofitable. Additionally, protocols with more liquidity b0
are less prone to attack, because a larger capital u is required to achieve
the required market domination u

b0
. For example, if the liquid staking

protocol has b0 = 1000 ASSET in deposits, and the adversary can use
a capital of u = 100 ASSET to attack the protocol ( u

b0
= 10% market
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Fig. 5: Adversarial market domination and attack profitability.

domination), if p = q = 100% is the slashing rate, then ϕ ≤ b0
u = 10 is a

safe protocol parametrization. Attack profitability for different adversarial
market dominations u

b0
, assuming free money borrowing and p = 50%,

are illustrated in Figure 5a. The white area under the black line (α = 0)
consists of safe values of the parameter ϕ

q .
Repeating the attack. If the adversary finds herself in a situation where
the attack is profitable, the attack can be repeated in quick succession
to siphon off almost all of the money in the liquid staking protocol. This
corresponds to moving across the x axis in Figure 5a. As the attack re-
peats, b0 decreases and u increases as money moves from the reserves of
the staking protocol to the hands of the adversary. We conclude that the
protocol must be configured with enough margin such that the conditions
for the attack never emerge.
Proportional representation VS fair punishment. Proportional rep-
resentation and fair punishment, as indicated in Section 5, are conflicting
properties in liquid staking. Without exempt delegations (ϕq = ∞), the
protocol has full proportional representation, as the principal can signal
delegation to any agent of their choice without restriction. There, an ad-
versary can always cause unfair punishment of principals. However, with
the introduction of exempt delegations, if we make ϕ

q smaller, the pool of
available agents to choose from is reduced to only the wealthy amongst
them, so proportional representation becomes limited. For a sufficiently
small ϕ

q , unfair punishment is no longer a rational outcome.
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Appendix

A Liquid Staking Module (LSM)

In the context of Cosmos, the exempt delegation mechanism is planned
to be applied at the consensus layer by the Liquidity Staking Module
(LSM) [2]. When this mechanism is used, assets are first delegated to a
validator by a principal who obtains delegated assets, marking them as ex-
empt or non-exempt. In the case of non-exempt delegated assets, these are
then tokenized into LSM shares, representations of delegated assets that
are minimally fungible (fungible among the other tokens that were dele-
gated in the same batch to the same validator). These tokenized shares are
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subject to the exempt delegation constraint b ≤ ϕc. The tokenized shares
can then be deposited into the liquid staking protocol, which issues liquid
staking tokens (stASSETs), as usual, in a process termed refungibilization.
The protocol does not need to delegate further, as it can readily start reap-
ing the delegation rewards (as long as a relevant so-called LSM record,
which enshrines its holder with the privilege of claiming the rewards as-
sociated with a particular delegation, is also transferred along with the
tokenized shares). It also does not need to perform further exempt dele-
gation constraint checks as these are enforced by the LSM. When the user
redeems stASSETs, the protocol may elect to give back tokenized shares
instead of ASSETs. Those can then be unwrapped into delegated assets,
that can afterwards be undelegated into ASSETs after the relevant un-
bonding period expires. Through this mechanism, the exempt delegation c
of a validator is a shared amount across potentially multiple liquid staking
protocols that opt to accept tokenized shares instead of ASSETs directly.
The intent necessary for proportional representation can be read by the
liquid staking protocol by simply looking at the LSM tokenized share
records, and no separate voting is necessary when entering the protocol.
The factor ϕ is decided not by the liquid staking protocols’ governance,
but by the governance of the underlying chain. The slashing factor q is
applied directly by the chain and not by the liquid staking protocol. In
the current8 LSM design, q = p. If a liquid staking protocol participates
in multiple chains, the ϕ factors can be different in each chain. In our
exposition, we abstract out these implementation details to highlight the
economic issues at hand.

8Zaki Manian, personal communication, Jan 1st, 2023
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B Liquid Staking Protocol Tokenomics

Algorithm 1 The basic tokenomics of all liquid staking protocols.
1: contract liquid-stake extends ERC20
2: b0 ← 0
3: s0 ← 0
4: payable function constructor
5: require(msg.value ≥ 0)
6: b0 ← msg.value
7: s0 ← b0
8: balances[msg.sender]← msg.value
9: end function

10: payable function deposit
11: b← msg.value
12: s← b · s0

b0
13: balances[msg.sender]← balances[msg.sender] + s
14: ▷ Maintain the invariant b0

s0
= b0+b

s0+s

15: b0 ← b0 + b
16: s0 ← s0 + s ▷ Mint
17: end function
18: function withdraw(s)
19: require(balances[msg.sender] ≥ s)
20: require(s0 > s)
21: b← s · b0

s0

22: ▷ Maintain the invariant b0
s0

= b0−b
s0−s

23: s0 ← s0 − s ▷ Burn
24: b0 ← b0 − b
25: balances[msg.sender]← balances[msg.sender]− s
26: msg.sender.transfer(b)
27: end function
28: end contract
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