
A Secure Submission System for Online
Whistleblowing Platforms

Volker Roth, Benjamin Güldenring, Eleanor Rieffel†, Sven Dietrich,‡ Lars Ries

Freie Universität Berlin, †FX Palo Alto Laboratory,
‡Stevens Institute of Technology

1 Introduction

Corporate or official corruption and malfeasance can be difficult to uncover
without information provided by insiders, so-called whistleblowers. Even though
many countries have enacted, or intend to enact, laws meant to make it safe for
whistleblowers to disclose misconduct [2, 13], whistleblowers fear discrimination
and retaliatory action regardless, and sometimes justifiably so [4, 11].

It is therefore unsurprising that whistleblowers often prefer to blow the whis-
tle anonymously through other channels than those mandated by whistleblowing
legislature. This gave rise to whistleblowing websites such as Wikileaks. However,
the proliferation of surveillance technology and the retention of Internet protocol
data records [3] has a chilling effect on potential whistleblowers. The mere act
of connecting to a pertinent Website may suffice to raise suspicion [9], leading
to cautionary advice for potential whistleblowers.

The current best practice for online submissions is to use an SSL connection
over an anonymizing network such as Tor [7]. This hides the end points of the
connection and it protects against malicious exit nodes and Internet Service
Providers (ISPs) who may otherwise eavesdrop on or tamper with the connection.
However, this does not protect against an adversary who can see most of the
traffic in a network [5, 8], such as national intelligence agencies with a global
reach and view.

In this paper, we suggest a submission system for online whistleblowing plat-
forms that we call AdLeaks. The objective of AdLeaks is to make whistleblower
submissions unobservable even if the adversary sees the entire network traffic. A
crucial aspect of the AdLeaks design is that it eliminates any signal of intent that
could be interpreted as the desire to contact an online whistleblowing platform.
AdLeaks is essentially an online advertising network, except that ads carry ad-
ditional code that encrypts a zero probabilistically with the AdLeaks public key
and sends the ciphertext back to AdLeaks. A whistleblower’s browser substitutes
the ciphertext with encrypted parts of a disclosure. The protocol ensures that
an adversary who can eavesdrop on the network communication cannot distin-
guish between the transmissions of regular browsers and those of whistleblowers’
browsers. Ads are digitally signed so that a whistleblower’s browser can tell them
apart from maliciously injected code. Since ads are ubiquitous and there is no
opt-in, whistleblowers never have to navigate to a particular site to communicate

with AdLeaks and they remain unobservable. Nodes in the AdLeaks network re-
duce the resulting traffic by means of an aggregation process. We designed the
aggregation scheme so that a small number of trusted nodes with access to
the decryption keys can recover whistleblowers’ submissions with high proba-
bility from the aggregated traffic. Since neither transmissions nor the network
structure of AdLeaks bear information on who a whistleblower is, the AdLeaks
submission system is immune to passive adversaries who have a complete view
of the network.

In what follows, we detail our threat model and our assumptions, we give an
overview over the design of AdLeaks, we report on the current state of its imple-
mentation, we summarize the outcome of our scalability analysis, and we explain
how AdLeaks uses cryptographic algorithms to achieve its security objectives.
We give a more detailed report in [15].

2 Assumptions and Threats in Our Scope

The primary security objective of AdLeaks is to conceal the presence of whistle-
blowers, and to eliminate network traces that may make one suspect more likely
than another in a search for a whistleblower. We assume that whistleblowers
use AdLeaks only on private machines to which employers have no access. In
fact, sending information from work computers even using work-related e-mail
accounts is a mistake whistleblowers make frequently. We hope that the software
distribution channels we discuss in Section 3.3 will help reminding whistleblowers
to not make that mistake.

AdLeaks addresses the threat of an adversary who has a global view of the
network and the capacity to store or obtain Internet protocol data records for
most communications. The adversary may even require anonymity services to re-
tain connection detail records for some time and to provide them on request. The
adversary may additionally store selected Internet traffic and he may attempt
to mark or modify communicated data. However, we assume that the adversary
has no control over users’ end hosts, and he does not block Internet traffic or
seizes computer equipment without a court order. We assume that the court does
not per se consider organizations that relay secrets between whistleblowers and
journalists as criminal. The objective of the adversary is to uncover the identities
of whistleblowers. The threat model we portrayed is an extension of [3] and it is
likely already a reality in many modern states, or it is about to become a real-
ity. For reasons we explain in [15] we do not consider additional threats that we
would doubtless encounter, for example, in technologically advanced totalitarian
countries.

3 System Architecture

AdLeaks consists of two major components. The first component is an online ad-
vertising network comparable to existing ones. The network has advertising part-
ners (the publishers) who include links or scripts in their web pages which request

ads from the AdLeaks network and display them. Publishers may receive com-
pensation in accordance with common advertising models, for example, per mille
impressions, per click or per lead generated. Advertisers run campaigns through
the AdLeaks network. AdLeaks may additionally run campaigns through other
ad networks to extend its reach, for example, funded by donations or profits from
its own operations. The ecosystem of partners and supporters may include large
newspapers, bloggers, human rights organizations and their affiliates. For exam-
ple, Wikileaks has partnered with organizations such as Der Spiegel, El Páıs and
the New York Times, and OpenLeaks had hinted at support by Greenpeace and
other organizations. The key ingredient of an AdLeaks ad is not its visual dis-
play but its active JavaScript content. Supporters who would forfeit significant
revenue when allocating advertising space to AdLeaks ads have a choice to only
embed the JavaScript portion. The JavaScript is digitally signed by AdLeaks
and contains public encryption keys.

The second major component of AdLeaks is its submission infrastructure.
This infrastructure consists of three tiers of servers. We refer to these tiers as
guards, aggregators and decryptors. When a browser loads an AdLeaks ad, the
embedded JavaScript encrypts a zero probabilistically with the embedded public
key and submits the ciphertext to a guard. The guard strips unnecessary encod-
ing and protocol meta-data from the request and forwards the ciphertext to an
aggregator. An aggregator aggregates the ciphertexts it receives per second and
transmits them to the decryptor. What makes this setting challenging is that
we want to limit the bandwidth of the decryptor to a household Internet con-
nection so that we can keep a close eye on the all-important machine with the
decryption keys. The aggregation leverages the homomorphic properties of the
Damg̊ard-Jurik (DJ) encryption scheme [6], which means that the product of
the ciphertexts is an encryption of the sum of the plaintexts. We chose the DJ
scheme because it has a favorable plaintext to ciphertext ratio.

The decryptor decrypts the downloaded ciphertexts and, if it finds data in
them, reassembles the data into files. The files come from whistleblowers. In
order to submit a file, a whistleblower must first obtain an installer that is digi-
tally signed and distributed by AdLeaks. This is already a sensitive process that
signals intent. We defer the discussion of safe distribution channels for the in-
staller to section 3.3. Installing the obtained software likewise signals the intent
to disclose a secret, and therefore it is crucial that the whistleblower verifies
the signature before running the installer, and assures himself that the signer is
indeed AdLeaks. Otherwise, he is vulnerable to Trojan Horse software designed
to implicate whistleblowers. When run, the installer produces an instrumented
browser and an encryption tool. The whistleblower prepares a file for submis-
sion by running the encryption tool on it. The tool’s output is a sequence of `
ciphertexts. Henceforth, whenever an instrumented browser runs an ad signed
by AdLeaks, it replaces the script’s ciphertext with one of the ` ciphertexts it
has not already used as a replacement.

In order to distinguish ciphertexts that are encryptions of zeros from cipher-
texts that are encryptions of data we refer to the former as white and to the

latter as gray. If the aggregator aggregates a set of white ciphertexts then the
outcome is another white one. If exactly one gray ciphertext is aggregated with
only white ones then the outcome is gray as well. If we decrypt the outcome
then we either recover the data or we determine that there was no data to begin
with. If two or more gray ciphertexts are aggregated then we cannot recover the
original data from the decryption. We call this event a collision and we refer
to such an outcome as a black one. Obviously, we must expect and cope with
collisions in our system. In what follows, we elaborate on details of the design
that are necessary to turn the general idea into a feasible and scalable system.

3.1 Disclosure Preparation

In order to handle collisions, the encryption tool breaks a file into blocks of a
fixed equal size and encodes them with a loss tolerant Fountain Code. Fountain
codes encode n packets into an infinite sequence of output packets of the same
size such that the original packets can be recovered from any n′ of them where
n′ is only slightly larger than n. For example, a random linear Fountain Code
decodes the original packets with probability 1 − δ from about n + log2(1/δ)
output packets [12]. Let n′′ be somewhat larger than n′ and let m1, . . . ,mn′′

be the Fountain encoding of the file. The tool then generates a random file
identification number k and computes: ci = Encccaκ1

(EncDataκ2
(mi, k||i||n)) for

1 ≤ i ≤ n′′ where κ1 is an aggregator key and κ2 is the actual submission key.
The purpose of the dual encryption will become clear in Section 4. We assume
that the outer encryption is a fast hybrid IND-CCA secure cipher. We defer the
specification of the inner encryption scheme to Section 6. It assures that, when
the decryptor receives the ciphertexts, it can verify the integrity of individual
chunks and of the message as a whole and he can associate the chunks that
belong to the same submission with all but negligible probability (in |k|).

3.2 Decryption

It is substantially cheaper to multiply two DJ ciphertexts in the ciphertext group
than it is to decrypt one. Furthermore, the product of ciphertexts decrypts to the
sum of the plaintexts in the plaintext group. Recollect that we expect to receive
a large number of white ciphertexts, that is, encryptions of zeroes. This leads to
the following optimization: we form a full binary tree of fixed height, initialize its
leaves with received ciphertexts c1, . . . , cn and initialize each inner node with the
product of its children. Then, we begin to decrypt at the root. If the plaintext
is zero then we are done with this tree, because all nodes in the tree are zeroes.
Otherwise, the decryption yields γ = α + β 6= 0 where α, β are the plaintexts
of the left and right child, respectively. We decrypt the left child, which yields
α, and calculate the plaintext of the right child as β = γ − α (without explicit
decryption). If α or β are zeroes then we ignore the corresponding subtree.
Otherwise, we recurse into the subtrees that have non-zero roots. If a node is
a leaf then we decrypt and verify it. If we find it invalid then we ignore the
leaf. Otherwise we forward its plaintext to the file reassembly process. This

algorithm saves us 61% decryptions or more, depending on the system load [15].
Our analysis and measurements suggest that a 12-core Mac Pro can serve 51480
concurrent whistleblowers at any time with a 18 Mb/s uplink for the decryptor,
independent of the number of users whom AdLeaks serves ads.

3.3 Software Dissemination

We cannot simply offer the installer software for download because the adversary
would be able to observe that. Instead, we pursue a multifaceted approach to
software distribution. Our simplest and preferred approach involves the help of
partners in the print media business. At the time of writing, popular print media
often come with attached CDROMs or DVDs that are loaded with, for example,
promotional material, games, films or video documentaries. Our installer soft-
ware can be bundled with these media. Our second approach is to encode the
installer into a number of segments using a Fountain Code. In this approach,
AdLeaks ads randomly request a segment that the browser loads into the cache.
A small bootstrapper program extracts the segments from the browser cache and
decodes the installer from it when enough of them have been obtained. Since
extraction happens outside the browser it cannot be observed from within the
browser. The bootstrapper can be distributed in the same fashion. This reduces
the distribution problem to extracting a specific small file from the cache, for
example, by searching for a file with a specific signature or name in the cache di-
rectory. This task can probably be automated for most platforms with a few lines
of script code. The code can be published periodically by trusted media partners
in print or verbatim in webpages or it could even be printed on T-Shirts. Our
third approach is to enlist partners who bundle the bootstrapper with distribu-
tions of popular software packages so that many users obtain it along with their
regular software. With our multifaceted approach we hope to make our client
software available to most potential whistleblowers in a completely innocuous
and unobservable fashion.

4 Security Properties

Eavesdropping and Traffic Analysis AdLeaks funnels all incoming transmissions
to the decryptor, and transmissions occur without any explicit user interaction.
Hence, the posterior probability that anyone is a whistleblower, given his trans-
mission is observed anywhere in the AdLeaks system, equals his prior probability.
From that perspective, AdLeaks is immune against adversaries who have a com-
plete view of the network. Furthermore, AdLeaks’ deployment model is suitable
to leapfrog the long-drawn-out deployment phase of anonymity systems that rely
on explicit adoption. For example, if Wikipedia deployed an AdLeaks script then
AdLeaks would reach 10% of the Internet user population overnight, based on
traffic statistics by Alexa [1].

Outer Encryption and Dishonest Aggregators Assume that AdLeaks did not use
outer encryption. Then adversaries might employ the following active strategy

to gain information on who is sending data to AdLeaks. The adversary samples
ciphertexts of suspects from the network and aggregates the ciphertexts for each
suspect. He prepares a genuine-looking disclosure that is enticing enough so
that the AdLeaks editors will want to publish it with high priority. We call
this disclosure the bait. The adversary then aggregates suspects’ ciphertexts
to his disclosure and submits it. If AdLeaks does not publish the bait within
a reasonable time interval then the adversary concludes that the suspect is a
whistleblower. The reasoning is as follows. If the suspect ciphertexts were zeroes
then the bait is received and likely published. Since the bait was not published,
the suspect ciphertexts carried data which invalidated the bait ciphertexts. This
idea can be generalized to an adaptive and equally effective non-adaptive attack
that identifies a single whistleblower in a group of W suspects at the expense
of log2W baits. For this reason, AdLeaks employs an outer encryption which
prevents this attack. However, if an adversary takes over an aggregator then he
is again able to launch this attack. Therefore, aggregators should be checked
regularly, remote attestation should be employed to make sure that aggregators
boot the correct code, and keys should be rolled over regularly. Note that it may
take months before a disclosure is published and that a convincing bait has a
price — the adversary must leak a sufficiently attractive secret in order to make
sure it is published. From this, the adversary only learns that a suspect has sent
something but not what was sent.

5 Implementation

We developed fully-functional multi-threaded aggregation and decryption servers
with tree decryption support as well as a Fountain Code encoder and decoder.
Decryptors write recovered data to disk and the decoder recovers the original
file. We also developed a fake guard server which is capable of generating and
sending chunks according to a configurable ratio of white and gray ciphertexts.
All servers connect to each other through SSH tunnels via port forwarding. The
entire implementation consists of 101 C, header and CMake files with 7493 lines
of code overall. This includes our optimized DJ implementation [10], which is
based on a library by Andreas Steffen, a SHA-256 implementation by Olivier
Gay, and several benchmarking tools. Our ads implement the DJ scheme based
on the JSBN.js library and use Web Workers to isolate the code from the rest
of the browser. The entire ad currently measures less than 81 KB. The size can
be reduced further by eliminating unused library code and by compressing it.
The ad submits ciphertexts via XmlHttpRequests. We instrumented the Firefox
browser for our prototype and patched the source code in two locations. First, we
hook the compilation of Web Worker scripts and tag every script as an AdLeaks
script if it is labeled as one in lieu of carrying a valid signature. We placed
a second hook where Firefox implements the XmlHttpRequest. Whenever the
calling script is an AdLeaks script running within a Web Worker, we replace the
zero chunk in its request with a data chunk. Since Web Workers run concurrently
the cryptographic operations do not negatively affect the browsing experience.

6 Ciphertext Aggregation Scheme

Our ciphertext aggregation scheme is based on the Damg̊ard-Jurik (DJ) scheme,
which IND-CPA secure and is also an isomorphism of

ψs : ZNs × Z∗N ↔ Z∗Ns+1 ψs(a; b) 7→ (1 +N)a · bN
s

modNs+1

where N is a suitable public key. The parameter s controls the ratio of plaintext
size and ciphertext size. We use two two DJ encryptions c, t to which we jointly
refer as a ciphertext. We refer to t separately as the tag. The motivation for this
arrangement is improved performance. We wish to encrypt long plaintexts and
the costs of cryptographic operations increase quickly for growing s. Therefore
we split the ciphertext into two components. We use a shorter component with
s = 1, which allows us to test quickly whether the ciphertext encrypts data or a
zero. The actual data is encrypted with a longer component with s > 1. The two
components are glued together using Pederson’s commitment scheme [14], which
is computationally binding and perfectly hiding. This requires two additions to
the public key, which are a generator g of the quadratic residues of Z∗N and
some h = gx for a secret x. Instead of committing to a plaintext the sender
commits to the hash of the plaintext and some randomness. We use a collision
resistant hash function H for this purpose, which outputs bit strings of length
|N/16|. Furthermore, let R be a source of random bits. The details of the data
encryption and decryption algorithms are as follows:

EncData(m, r0) =
r1, r2 ← R
chk← if m, r0 = 0 then 0

else H(m, r0)
c← ψ(m;hchk · gr1))
t← ψ(r0||r1; gr2)
return c, t

DecVrfy(c, t) =
(m; k), (r0||r1; ·)← ψ−1(c), ψ−1(t)
chk← if m, r0 = 0 then 0

else H(m, r0)
if hchk · gr1 = k then

return m, r0
return ⊥

We assume that |r0|, |r1|, |r2| are polynomial in the security parameter. Here, r0
corresponds to k||i||n as we introduced it in Section 3.1. We define EncZero =
EncData(0, 0). Aggregation is simply the multiplication of the respective ci-
phertext components. In order to avoid fields overflowing into adjacent ones we
assume that r0, r1, r

′
0, r
′
1 are left-padded with zeroes. The amount of padding

determines how many ciphertexts we can aggregate in this fashion before an ad-
ditive field overflows into an adjacent one and corrupts the ciphertext. If we use
B bits of padding then we can safely aggregate up to 2B ciphertexts. A length
of B = 40 is enough for our purposes.

7 Conclusions

AdLeaks leverages the ubiquity of online advertising to provide anonymity and
unobservability to whistleblowers making a disclosure online. The system intro-
duces a large amount of cover traffic in which to hide whistleblower submissions,

and aggregation protocols that enable the system to manage the huge amount
of traffic involved, enabling a small number of trusted nodes with access to the
decryption keys to recover whistleblowers’ submissions with high probability. We
analyzed the performance characteristics of our system extensively, please refer
to [15] for details. Our research prototype demonstrates the feasibility of such a
system. We expect many aspects of the system can be improved and optimized,
providing ample opportunity for further research.

Acknowledgements: The first, second and last author are supported by an
endowment of Bundesdruckerei GmbH.

References

1. Alexa. Online at http://www.alexa.com, Apr. 2012.
2. D. Banisar. Whistleblowing — International Standards and Developments. Trans-

parency International, Feb. 2009.
3. S. Berthold, R. Böhme, and S. Köpsell. Data retention and anonymity services. In

The Future of Identity in the Information Society, volume 298 of IFIP Advances
in Information and Communication Technology, pages 92–106. Springer, 2009.

4. E. R. Center. 2011 National Business Ethics Survey. Online at http://www.

ethics.org/nbes, 2345 Crystal Drive, Suite 201, Arlington, VA 22202, USA, 2012.
5. S. Chakravarty, A. Stavrou, and A. D. Keromytis. Traffic analysis against low-

latency anonymity networks using available bandwidth estimation. In Proc. ES-
ORICS, pages 249–267. Springer, 2010.

6. I. Damg̊ard, M. Jurik, and J. Nielsen. A generalization of Paillier’s public-key
system with applications to electronic voting. International Journal of Information
Security, 9:371–385, 2010.

7. R. Dingledine, N. Mathewson, and P. Syverson. Tor: the second-generation onion
router. In Proc. USENIX Security Symposium, pages 303–320, 2004.

8. K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-boo, i still see
you: Why efficient traffic analysis countermeasures fail. In IEEE Symposium on
Security and Privacy, pages 332–346, 2012.

9. S. Gustin. Columbia university reverses anti-WikiLeaks guidance. http://www.

wired.com/threatlevel/2010/12/columbia-wikileaks-policy/, Dec. 2010.
10. M. J. Jurik. Extensions to the Pailler Cryptosystem with Applications to Cryptolog-

ical Protocols. Dissertation, BRICS, Department for Computer Science, University
of Aarhus, Aug. 2003.

11. K. J. Lennane. “Whisteblowing”: a health issue. British Medical Journal, 307:667–
670, Sept. 1993.

12. D. MacKay. Fountain codes. IEE Proceedings, 152(6), Dec. 2005.
13. A. Osterhaus and C. Fagan. Alternative to Silence — Whistleblower Protection in

10 European Countries. Transparency International, 2009.
14. T. Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. In Proc. CRYPTO, volume 576, pages 129–140. Springer, 1992.
15. V. Roth, B. Güldenring, E. Rieffel, S. Dietrich, and L. Ries. A secure submission

system for online whistleblowing platforms. Online at http://arxiv.org/abs/

1301.6263, Jan. 2013.

