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Abstract. The weakest link in software-based full disk encryption is the
authentication procedure today. Since the master boot record must be
present unencrypted in order to launch the decryption of remaining system
parts, it can easily be manipulated and infiltrated by bootkits that perform
keystroke logging; consequently password-based authentication schemes
become attackable. The current technological response, as enforced by
BitLocker, ascertains the integrity of the boot process by use of the trusted
platform module. But, as we show, this countermeasure is insufficient in
practice.
We present Stark, the first tamperproof authentication scheme that
mutually authenticates the computer and the user in order to resist
keylogging during boot. To achieve this, Stark combines two ideas in a
novel way: (1) Stark implements trust bootstrapping from a secure token
(a USB flash drive) to the whole PC. (2) In Stark, users can securely
verify the authenticity of the PC before entering their password by using
one-time boot prompts, that are updated upon successful boot.

1 Introduction

Full disk encryption (FDE) protects sensitive data against unauthorized access
in the event that a device is physically lost or stolen. The risk of data exposure is
reduced by rendering disks unreadable to unauthorized users through encryption
technologies like AES [11]. Unlike file encryption, FDE encrypts whole disks
automatically on operating system level, without the need to take action for
single files. Therefore, FDE is both more secure and more user-friendly than
file encryption, and consequently, it can be considered best practice for securing
sensitive data against accidental loss and theft.

As stated in a SECUDE survey from 2012 [36], full disk encryption is the most
popular strategy for data protection in the majority of U.S. enterprises today.
Also, the U.S. government recommends agencies to encrypt data on mobile devices
to compensate the lack of physical security outside their agency location [19]. In
Ponemon’s annual study about the U.S. Cost of a Data Breach from 2011 [32],
it is stated that “breaches involving lost or stolen laptop computers or other
mobile data-bearing devices remain a consistent and expensive threat”. This
threat must be counteracted by full disk encryption systems like BitLocker for
Windows, FileVault for Mac, dm-crypt for Linux, or the cross-platform utility
TrueCrypt.



1.1 Threat Model

FDE cannot protect sensitive data when a user logs into the system and leaves it
unattended. Likewise, FDE does generally not protect against system subversion
through malware. In the case of malware infiltration, adversaries can access data
remotely over a network connection with user privileges after the user logged in.
Hence, hard disk encryption is only intended for scenarios where an adversary
gains physical access to a target.

Given physical access, two types of attacks can be distinguished: opportunistic
and targeted attacks. In opportunistic attacks the adversary steals a computer
and immediately tries to retrieve the data. This is the attack scenario which is
withstood by all widespread FDE solutions, including BitLocker and TrueCrypt.
If an attacker simply grabs the computer and runs, data decryption without
having the key or password is a futile task with today’s crypto primitives like
AES. However, a more careful adversary can carry out a targeted attack on the
key, password, or access control management. Besides cold boot attacks [13, 8] and
DMA attacks over FireWire [5, 30], PCIe [7, 9] or Thunderbolt [6, 33], keylogging
attacks via bootkits [24, 25] are a notable threat.

Software-based FDE needs to modify the master boot record (MBR) of a
hard drive in order to present pre-boot environments for user authentication.
Commonly, pre-boot screens ask users for credentials in form of a secret password
or passphrase, but they can also ask for credentials such as smart cards and
tokens. Only after a user is authenticated, the operating system is decrypted and
prepared to take over system control.

The MBR of an encrypted hard drive can easily be manipulated because it
is necessarily left unencrypted for bootstrapping since CPUs can interpret only
unencrypted instructions. As a consequence, bootkits can always be placed in the
MBR to subvert the original bootloader with software-based keylogging. Such
attacks are also referred to as evil maid attacks [16] and typically require access
to the target machine twice: Let the victim be a traveling salesman who left
his laptop in a hotel room and goes out for dinner. An “evil maid” can gain
physical access to her target system unsuspiciously now. She replaces the original
MBR with a malicious bootloader that performs keylogging and, later on, the
unaware salesman boots up his machine and enters his password. On the next
event, the evil maid can access the laptop a second time and reads out the logged
passphrase.1

As shown by a recent study [29] on the security of hardware-based FDE (so-
called self-encrypting drives, SEDs), evil maid attacks are generally not defeated
by SEDs although these drives encrypt the MBR [14]. The reason is that evil
maids can alternatively replace the entire disk drive, plug in a tiny bootable
USB drive, flash the BIOS image [35, 18] or UEFI image [26, 3], or even replace
the machine with an identical model. Overall, targeted attacks with repeated
physical access (such as evil maid attacks) constitute the threat model of our
paper.
1 Following this cover story, we refer to female attackers and male victims throughout

this paper.
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1.2 Bootkit Attacks

The original evil maid attack was implemented against TrueCrypt in 2009 [16].
Earlier that year, another bootkit, called the Stoned Bootkit [31], had circum-
vented TrueCrypt as well. Until today, TrueCrypt is vulnerable to these attacks
and the program’s authors do not plan future improvements. To the contrary,
they argue that bootkits “require the attacker to have [...] physical access to the
computer, and the attacker needs you to use the computer after such an access.
However, if any of these conditions is met, it is actually impossible to secure the
computer”. [39]

Microsoft’s BitLocker, on the other hand, defeats software keyloggers up to a
certain degree as it assures the integrity of the boot process by means of the trusted
platform module (TPM). TPMs are used to build trusted checksums over sensitive
boot parameters, such as firmware code, the BIOS, and the bootloader [40].
BitLocker’s decryption key can only be derived if these checksums are in line with
the reference configuration from system setup. Otherwise, users cannot decrypt
their data and hopefully become suspicious that somebody manipulated their
machine.

However, at the end of 2009, even BitLocker was successfully compromised by
bootkit attacks. Türpe et al. [42] practically performed tamper and revert attacks
that (1) tamper with the bootloader for introducing keylogging functionality,
(2) let the victim enter his password into a forged text-mode prompt, (3) revert
to the original bootloader, and (4) reboot. The victim may wonder about the
reboot, but most likely he will enter his password again and proceed as usual –
unaware of the fact that his password was already logged.

We reproduced both, the attack against TrueCrypt and the attack against
BitLocker, with our own malicious bootloaders. Both attacks are still effective
today.

1.3 Related Work: Attempts for Countermeasures

As shown by tamper and revert attacks, TPMs alone are not suitable to guarantee
a trusted password prompt. Consequently, other countermeasures have been taken
into consideration in recent years.

The first countermeasures were external bootloaders such as the Anti-Bootkit
Project [2] from 2010. But even if the integrity of external USB bootloaders can
be assured, because they are never left unattended, this measure is insufficient
for several reasons: First, it remains unclear which USB port is preferred for
booting. An attacker could plug in her own, tiny USB flash drive at the back
of the machine. Second, BIOS passwords can often be reset by removing the
onboard battery. This allows an attacker to reconfigure the boot sequence at
her convenience, e.g., to boot from MBR. Third, the BIOS or UEFI might be
manipulated and display a fake password prompt. And fourth, the entire target
machine could simply be replaced with a manipulated model.

Another countermeasure named Anti Evil Maid [17] was introduced in 2011.
This project mentions a mutual authentication scheme in the context of hard
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disk encryption for the first time: Only if the boot process behaves with integrity,
a secret (user-defined) message can be unsealed by means of the trusted platform
module. This message must be shown to the user before he enters his password.
If the secret message cannot be shown, the user is strongly advised not to enter
his password because the boot process is likely to be compromised.

1.4 Possible Attacks against Anti Evil Maid

Considering travelers who boot their laptops at public places like airports, and
in conference and meeting halls, it is unlikely that the authentication message
from Anti Evil Maid remains confidential for a long time. It will be present on
surveillance cameras, can be spied upon by shoulder surfing, and can perfectly
be reconstructed as it is simple ASCII text.

Even worse, the authentication scheme of Anti Evil Maid is not secure if we
take the confidentiality of the authentication message for granted. It is also not
secure if we additionally assume that the sealed authentication message is placed
on an external USB drive. Anti Evil Maid only raises the number of required
physical accesses from two to three, because the attack by Türpe et al. [42]
against BitLocker can be extended as follows:

1. On the first physical access, an evil maid manipulates the bootloader in a way
that it copies USB drives, e.g., into the very last sectors of the hard drive or
into another USB drive. Then she lets the victim plug in his USB drive and,
after it has been cloned, the bootloader automatically reverts to its original
state and reboots. The reboot occurs quickly after the copy procedure, and
thus an unaware user may not even recognize suspicious behavior.

2. On the second physical access, the evil maid boots up her target with the
recently cloned thumb drive and notes down the appearing authentication
message. She builds her own bootloader with this message and overwrites the
original bootloader a second time. The remaining attack equals the procedure
of tamper and revert: The evil maid lets her victim enter his password and
after it has been logged, the bootloader automatically reverts to its original
state and reboots again. This time, the victim may wonder about the reboot,
but most likely he will re-enter his password and proceed as usual.

3. On the third physical access, the evil maid can read out the logged password
and so she gains full access to the data.

If a second password, e.g., in form of a PIN for the TPM, is used instead of
external thumb drives, as alternatively proposed [17], the attack works analogously
with a second password logger instead of the USB drive cloner. If images instead
of simple text messages are used, as alternatively proposed [17], too, the attack
works similarly as well, because appearing images can be photographed or digitally
retrieved through cold boot attacks.

1.5 Contributions

We present the design and implementation of Stark, an authentication protocol
that fully defends against targeted attacks with repeated physical access for the

4



first time. The goal of Stark is to reveal boot process manipulations before
the user enters his password. To this end, we introduce a mutual authentication
scheme that proves the integrity of a computer to its users. Similar to Anti Evil
Maid, our authentication scheme is based on sealed authentication messages and
external USB drives, but beyond that it introduces the concept of a one-time
password prompt.

Roughly speaking, the authentication sequence of Stark works as follows:

– Upon boot, a user-defined authentication message is displayed. The message
is sealed by the TPM and can only be unsealed if the boot process behaves
with integrity. If the secret message is not displayed, the user must not enter
his password.

– To prevent replay attacks as in Anti Evil Maid, we introduce monces: au-
thentication messages that are used only once. Each time an authentication
message has been displayed and verified, the user must define a new one. All
monces are sealed by means of the TPM and stored on external USB drives.
Upon boot, a consumed monce is always overwritten by a new one.

– The USB drive must be handled like a physical key and never be left unat-
tended. The trustworthiness of our authentication scheme depends on the
trust we have in the thumb drive (trust bootstrapping).

– Additionally, we store a sealed token value on the USB drive, to bind the
drive necessarily to the decryption process (two-factor authentication).

In short, the trustworthiness of a machine state is authenticated to the user by
displaying ever-changing authentication messages. Attacks against those messages
must fail because an attacker can only retrieve messages that have already been
consumed. To summarize, our contribution is threefold:

1. With Stark, we present a mutual boot authentication protocol between
users and computers that is more secure than existing solutions (cf. Sect. 2).

2. We describe a practical implementation of Stark, for which we integrated the
protocol into the bootloader of the FDE solution Tresor [28] (cf. Sect. 3).

3. We give a formal argument for the security of Stark (cf. Appendix A).

Our implementation is open source (under GNU GPL v2) and together with
other information available at http://www1.cs.fau.de/stark/.

2 Stark Protocol and Design Choices

We now describe the actual Stark protocol. Stark is a protocol for mutual
authentication between users and computers. So there are two parties that follow
the Stark protocol: The user U and the computer C. Computer C must contain
a TPM, because Stark requires its sealing capabilities to attest to U that it
behaves with integrity. On the other hand, to attest to C that U is who he claims
to be, traditional passwords are used.
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2.1 The Stark Protocol

We formulate Stark in the standard notation of authentication protocols. Stark
requires a bootstrapping phase, called session 0. Authentication sessions are
numbered consecutively starting with session 1.

Bootstrapping phase. In the bootstrapping phase (see Fig. 1), U exchanges
password p and the initial monce m0 with C and receives sealedC(m0, t) from C; t
is a token value that binds the USB drive to the authentication process. Computer
C permanently stores a hash sum h(p, t) over p and the token value. After the
setup phase, U and C can engage in an infinite sequence of authentication sessions.

User U Computer C

construct p and m0 p, m0−−−−−−−−−−−−−−−−−−−−−−→
construct t
save h(p, t)
seal (m0, t)

save sealedC(m0, t) on USB

sealedC(m0, t)←−−−−−−−−−−−−−−−−−−−−−−

Fig. 1: Session 0 (bootstrapping phase).

Authentication sessions. In authentication session i (see Fig. 2), U plugs in
his USB drive and boots up C. Computer C reads out sealedC(mi−1, t), unseals
it, and displays mi−1 to U . If U does not recognize mi−1, U must abort the
protocol and consider C as compromised. Otherwise, if U recognizes mi−1, C is
authenticated and U can safely enter his password.

User U Computer C

plug in USB
sealedC(mi−1, t)−−−−−−−−−−−−−−−−−−−−−−→

unseal (mi−1, t)

authenticate C and enter p

mi−1←−−−−−−−−−−−−−−−−−−−−−−
p−−−−−−−−−−−−−−−−−−−−−−→

calc h(p, t) to authenticate U
construct mi

ACK←−−−−−−−−−−−−−−−−−−−−−−
mi−−−−−−−−−−−−−−−−−−−−−−→

seal (mi, t)

save & unplug USB

sealedC(mi, t)←−−−−−−−−−−−−−−−−−−−−−−

Fig. 2: Session i, i ≥ 1 (authentication sessions).

6



Afterwards C computes h(p, t) and compares it to the permanently saved value.
If both values do not match, U is asked to enter his password again. Otherwise,
U is now authenticated to C, i.e., both parties are mutually authenticated. Only
then U and C are safe to exchange a new monce mi that will be used in session
i + 1. User U enters mi, C seals it and then it is stored on the USB thumb drive.
Finally, U can unplug the thumb drive and C passes control on to the operating
system.

2.2 Security Argument

The central idea behind the security of Stark is that monces disallow replay
attacks on the authentication message displayed to the user. To prove the security
of the scheme, it is however vital that the user installs a new monce after every
successful login without interference by the adversary. In traditional cryptographic
protocols, replay attacks are oftentimes defeated by nonces, i.e., pseudo-random
numbers that are used once. However, compared with traditional authentication
schemes, the difficulty in the context of FDE is that one of the communication
endpoints is human. Most humans have limited computational capabilities and
therefore, authentication schemes requiring public/private key computations
on both sides must be excluded and we introduce the concept of monces, i.e.,
messages that are used once. Basically, we replace the single authentication
messages known from Anti Evil Maid with a series of continuously alternating
messages.

In short, we use the sealing capabilities of the TPM to authenticate the
computer towards the user. The user then authenticates towards the computer
with traditional passwords as well as with a USB token. So upon each boot,
the user gives two inputs: his password and a new authentication message mi.
Consequently evil maids can only catch outdated messages. We give a formal
correctness argument for Stark in form of an inductive proof in Appendix A.

2.3 Design Components of Stark

We now describe the design choices that influenced Stark. There were two
questions we had to answer when designing Stark. The first question was: What
is the best way to achieve mutual authentication? Since users authenticate using
a password, the problem of mutual authentication lies in having the computer
prove its integrity first. We do this using a novel combination of the trusted
platform module and one-time messages.

The second question was: How can we best protect the necessary authentica-
tion messages? Here we use a USB flash drive to hold the sealed monces. Another
design decision, not directly related to the evil maid scenario, regards the use of
token values, that are placed on the USB drive to protect users who choose weak
passwords (two-factor authentication).
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Mutual Authentication by means of the Trusted Platform Module. In
practice all implementations to date that are based upon TPMs fail to attest
the trustworthiness of boot parameters in a way that cannot be tampered. An
example for this are attacks by Türpe et al. against BitLocker as described above.
Even though BitLocker builds upon TPMs, users can easily be tricked into bogus
password prompts because BitLocker looks exactly the same on every machine.
An attacker can reproduce the original BitLocker prompt perfectly in her own
bootloaders and victims have no chance to distinguish malicious from benign
behavior. However, TPMs are neither insecure nor useless taken by themselves,
they must just carefully be integrated into protocols. In Stark, the TPM is used
to protect one-time messages and bind them to the computer at the same time.

Bootstrapping Trust from USB Flash Drives. We store sealed monces
on an external USB thumb drive. If the monces were stored on the local hard
drive, Stark would be insecure to attackers who simply boot the machine and
note down the appearing monce, because such attackers could build their own
bootloaders with the exactly same message. If only the laptop or the USB drive
is missing, monces remain confidential because they can only be unsealed if both
entities act together. Practically, that means we can leave PCs unattended when
we assure the trustworthiness of USB drives. In this sense, Stark is a protocol
that performs trust bootstrapping from trusted USB drives.

Two-Factor Authentication with Passwords and Token Values. Besides
the machine state and the user password, the FDE decryption key is based
on a token value stored on the USB drive. Similar to monces, the token is
sealed by means of the TPM and can only be unsealed if the machine is in line
with its reference configuration. While all components introduced above defeat
bootkit attacks, token values prevent dictionary attacks against weak passwords.
Without a token value, adversaries would be able to boot their targets and enter
passwords one after another. Tokens are also a protection in scenarios where the
user disclosed his password but did not lose the thumb drive. This can be the case
due to social engineering [38], skimming and shoulder surfing [23, 4], reusing the
password in a different system [15], or writing it down. Token values prevent such
attacks because they bind USB drives compulsorily to the decryption process.

3 Potts: A Linux-based Implementation of Stark

We now present Potts, our practical implementation of the authentication
protocol given above.2 Potts protects opportunistic and targeted threat scenarios
through the integration of Tresor and Stark.

2 Note that Pepper Potts is the personal secretary of Tony Stark [10].
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3.1 Integrating Stark with Tresor

When an attacker gains physical access to a machine while it is running or
in standby mode, it is not protected by Stark but must be protected by sep-
arate mechanisms. Therefore we integrated Stark into Tresor [28] because
Tresor already defeats another kind of physical access attacks, namely cold
boot attacks [13].

Cold boot attacks exploit the remanence effect of DRAM [12], meaning that
RAM contents fade away gradually over time. Due to the remanence effect,
encryption keys can be restored from memory through rebooting a system with
malicious USB drives, or by replugging RAM chips physically into another ma-
chine. That makes cold boot attacks rather generic and therefore they constitute
a threat for all software-based FDE technologies to date, including BitLocker
and TrueCrypt.

Tresor, as a countermeasure, runs encryption securely outside RAM. To
this end, Tresor avoids RAM usage entirely and runs the key management, as
well as the AES algorithm, solely on the microprocessor. Some processor registers
(in detail, these are the debug registers) are permanently used as cryptographic
key storage. Tresor is implemented as a Linux kernel patch because side effects
like context switching, which leak information into RAM, cannot be controlled
in user mode.

3.2 Stark Protocol Extensions

In the presentation of Stark above we reduced the protocol to the communication
of authentication messages between U and C. However, we ignored some real-world
aspects, like error recovery and usability, to make the protocol more amendable
for its security analysis (cf. Appendix A). We now make up for those aspects and
present protocol extensions of Stark within Potts.

Data Rescue and Recovery Mechanism. To recover from protocol failures,
from hardware configuration changes, and from system compromise, we use two
different keys in Potts: a key encryption key (KEK) and a data encryption key
(DEK). KEK k is composed of token value t and a checksum over password p.
KEK k decrypts DEK d which is encrypted using AES and therefore is safe to
be stored on hard disk. DEK d is used to decrypt user data.

While k may change frequently, e.g., through password changes, d is designed
to be constant. So d prevents cumbersome re-encryption of the disk in the case of
password changes since only d must newly be encrypted. Furthermore, d allows
for data recovery in the case of password loss, and in the case that USB drives
are lost or TPM hardware failures occur. For data recovery, users must store d
in plaintext at a physically secure place, e.g., in a vault at home. This allows for
migration of the hard disk into other machines and can be consulted in the case
of hardware configuration changes that lead to different TPM states.

Not all protocol inconsistencies must necessarily point to a system compromise
but can arise from technical problems, too. However, this is hard to differentiate
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in practice, and thus we advise users to act carefully: In practice, data can be
recovered with d by mounting potentially compromised HDDs on a second, trusted
computer as an external device. After data rescue, the HDD in question must be
formatted, including the master boot record, and the PC must be reset to factory
settings (including the BIOS or UEFI image). Only then, Stark’s bootstrapping
phase can be rerun securely to set up a new system. Overall, Stark enables users
to identify a potential system compromise; we do not strictly regulate which
actions to take if such a compromise is detected in Potts.

Key Derivation Function. In the previous section we stated that k is derived
from a checksum over the user password p and the token value t. We now specify
the key derivation function used in Potts in detail. We do not use a single
SHA-256 checksum over p but run the password-based key derivation function 2
(PBKDF2) from RSA laboratories [20], which is recommended by NIST [41].

PBKDF2 applies a cryptographic hash to the password along with a salt and
repeats the procedure several times to derive the final key (key stretching). The
salt as well as the additional iterations make brute force attacks on the password
difficult. Salt values reduce the risk of precomputed tables (rainbow tables) that
allow attackers to look up hash values of frequently used passwords. Additionally,
several iterations slow down the brute force approach.

PBKDF2 library calls are usually parameterized with algorithm, password,
salt, iterations, and keylen. In Potts we have chosen the variant

k = pbkdf2(HMAC-SHA-256, p, t, 4096, 256)

to derive KEK k from password p. We use the token value t as salt, perform 4096
iterations of SHA-256, and get a final keysize of 256 bits. The decrypted DEK
variant d is then derived from its encrypted variant D via

d = decrypt(AES-256, k, D)

meaning that the DEK is encrypted with k and AES-256. Decrypted DEK d is a
256-bit value and used to encrypt the disk. In the case that AES-128 or AES-192
is used, superfluous key bits are just ignored.

Usability vs. Security. We now discuss some obvious limitations concerning
the tradeoff between security and usability. A reasonable argument against the
practical applicability of Stark might be the additional overhead we demand
from users by regularly defining new monces. To be able to generate and remember
different monces quickly, we advise users to write sentences about their current
activities, the places they have been during the day, or their personal sentiments.

However, to increase the usability (at expense of security) in Potts, we
allow users to skip the creation of new monces and to continue with the current
monce by pressing F12. Skipping new monces can be harmless in many practical
scenarios, because the actual threat situation varies heavily with the physical
environment. Monces that have been displayed on a business trip should always
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be exchanged, of course, but monces that were displayed at home can mostly be
considered as confidential.

If a user skips monces permanently, the authentication scheme of Potts
falls back to that of Anti Evil Maid. But skipping monces carefully, users have a
flexible authentication scheme that is both convenient in unthreatened situations
and secure in threatened situations. That is, Potts can be adapted to the user’s
environment on a daily basis.

The Potts Protocol. Potts uses a setup phase in which U enters secret
password p and authentication message m0. C generates the 256-bit token t and
the 256-bit data encryption key d. C then seals m0 and t and gives the sealed
tuple sealedC(m0, t) back to U who stores it on USB drive. DEK d is encrypted
by means of KEK k, as described above, and can safely be stored inside a crypto
footer of the disk drive. The disk drive is encrypted with Tresor, i.e., with
AES-128, -192, or -256.

User U Computer C

plugin USB drive
sealedC(mi−1, t)−−−−−−−−−−−−−−−−−−−−−−→

unseal mi−1, tmi−1←−−−−−−−−−−−−−−−−−−−−−−

authenticate C, enter password p−−−−−−−−−−−−−−−−−−−−−−→
k =

pbkdf2(HMAC-SHA-256, p, t, 4096, 256)
d = decrypt(AES-256, k, D)

authenticate U

construct mi (or press F12)
ACK←−−−−−−−−−−−−−−−−−−−−−−
mi−−−−−−−−−−−−−−−−−−−−−−→

seal (mi, t)

save sealed (mi, t) on USB drive

sealedC(mi, t)←−−−−−−−−−−−−−−−−−−−−−−
decrypt disk with Tresor and d

Fig. 3: Potts authentication session i for i ≥ 1.

After the setup phase, U and C can engage in an infinite sequence of mutual
authentication sessions. The extended protocol of Potts for session i, i ≥ 1 is
given in Fig. 3. C derives KEK k via PBKDF2 from p and t, so that d can be
decrypted. With d, a block of the hard disk is decrypted exemplarily in order to
verify the correctness of p. If p is wrong, the user is asked to enter his password
again.
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3.3 Potts Implementation Details

The integration of Stark into Tresor was clearly motivated by the fact that
we wanted to build an FDE system which is more secure than common FDE
solutions in use today. Cold boot attacks do not fall into the defined threat model
of this paper, but combining the concepts of Stark with that of Tresor seemed
reasonable. We now give some more information about the implementation of
Potts. The full details are contained in our open source distribution available
online.

Potts is based on two Linux kernels: (1) a minimized kernel for the Stark
authentication which is loaded as first stage, and (2) the Tresor patched kernel
which is loaded as second stage. The reason behind this design choice was that
TPM toolchains like TrouSerS [1] are available for user mode only, and that
talking to the TPM in a pre-boot environment turned out to be difficult. In a
nutshell, the boot process of Potts follows the following sequence:

– Users plug in a bootable USB drive that contains TrustedGRUB. Trusted-
GRUB is an extended version of the known bootloader GRUB with TPM
support. This makes a secure bootstrap architecture possible because Trusted-
GRUB measures the whole boot process and makes it verifyable for system
integrity checks.

– From TrustedGRUB we boot into the first Linux system. The kernel and the
user mode initialization of the first system are optimized for speed and it
takes less than 3 seconds to boot it.

– In the first stage we display an ncurses-based interface that encapsulates the
Stark protocol in a user-friendly way. For example, the interface displays
the recently defined monce, asks for the password, and asks for a new monce
(if F12 is not pressed). Internally, the Stark protocol is implemented via
tpm sealdata and tpm unsealdata from the TPM toolchain. For the key
derivation function PBKDF2 we make use of the OpenSSL library.

– With the recently derived key, the second kernel, which is stored on hard
drive, is decrypted. After the authentication, we boot into this second kernel
via kexec, a Linux command that replaces the currently running OS with a
new OS without actually rebooting the system.

– After the second stage booted into full (Tresor-based) Linux, end-users can
use their systems as usual. Internally we pass on the decryption key to the
Tresor system over the debug registers of CPU0. Incidentally, kexec does
not reset the debug registers of CPU0 while booting into a new kernel. All
residues of the key and the password are wiped out from RAM between the
first and the second stage.

Besides the simplicity of the implementation, the design choice provides us
with a flexible system for future enhancements. Since passwords are not entered in
pre-boot environments but in full Linux systems, we can easily add functionality
to bootstrap trust from smartphones (cf. Sect. 4.2), for example.
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4 Limitations and Outlook

To conclude, we give an outlook on current limitations (Sect. 4.1) and possible
future enhancements (Sect. 4.2).

4.1 Limitations: Hardware-based Attacks

Stark defeats traditional evil maid attacks that require physical access to the
machine. In practice, however, the borderline from software-only attacks to more
complex, hardware-based attacks is blurred. For example, hardware-based attacks
can install hidden USB or PS/2 keyloggers, even to laptops [22]. Such keyloggers
are generally hard to defeat in software. Academic attempts for detecting hardware
keyloggers in software exist [27], but they are hardware-specific and cannot be
generalized well. Another countermeasure against hardware keylogging, which
is often used by online banking software, is the use of on-screen keyboards or
randomized keyboard mappings. However, such countermeasures can in turn be
attacked through VGA and DVI loggers [21]. So hardware-based attacks cannot
be counteracted well by software solutions. In the abstract model of Stark,
attackers can arbitrarily manipulate the software configuration, including the
BIOS and the MBR, but they cannot manipulate hardware that is not measured
by the TPM.

4.2 Outlook: Taking Advantage of New Hardware

An interesting question is whether the upcoming technology UEFI secure boot [43]
is an alternative to Stark on future PCs. Secure boot will be supported by
Windows 8 for the first time, meaning that the Windows 8 bootloader will be
signed by Microsoft, and the underlying UEFI can refuse unsigned bootloaders [37].
While a TPM is a passive module and neither halts the computer, nor warns the
user when the current configuration differs from its reference configuration [34],
secure boot extends the trusted computing architecture by active components.
However, UEFI images could still be replaced or manipulated with physical access
and, consequently, users can still be tricked into bogus password prompts. Only
Stark pursues the idea of authenticating the machine state to the user first.
While secure boot stops malicious bootloaders from getting loaded, it does not
prove the system state to users. Hence, Stark should be combined with secure
boot in the future, but it cannot be fully replaced by secure boot.

Besides that, we plan to extend the idea of trust bootstrapping. Currently,
we use passive USB devices as confidential storage for sealed monces. For the
future, we consider more intelligent devices as confidential, e.g., Android-based
smartphones which can always be carried along like physical keys, too, in order to
bootstrap trust from them. Such devices have the advantage that they come with
computing capabilities that allow for more advanced, RSA-based authentication
schemes and can eliminate the need for monces.
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A Formal Security Argument

In this section, we formalize Stark as a security protocol within an abstract
system model. To this end, we add a third player: attacker A who wants to break
the authentication scheme between U and C. Parties U and C follow the protocol
given above and additional rules given below (Sect. A.1, Sect. A.2). Attacker A
can act arbitrarily under the restrictions described below (Sect. A.3).

In the formal model of Stark, parties communicate by exchanging messages in
an abstract sense. This can correspond to typing text on the keyboard, displaying
a message on the screen, or attaching a USB thumb drive. Due to the immediate
geographical vicinity of all parties, we assume that message exchange is reliable
and synchronous, meaning that if a party sends message m, the other party
receives m within a short delay.

The senders of individual messages cannot be authenticated, i.e., the receiver
of a message does not necessarily know who sent the message. For example, C
cannot distinguish text typed by A or U . Similarly, a message prompt shown to
U may come from C (using the original boot loader) or from A (using a forged
boot loader).

A.1 User Model

We now give the rules that U has to conform to. U corresponds to a human user
sitting in front of the keyboard and wishes to authenticate securely to C. The
security of Stark relies on the following rules for U :

– Completeness : U must complete the protocol and define a new mi as soon as
he started session i and consumed mi−1.

– Singularity : Every monce mi chosen by U must be unpredictable and used
only once.

– Coherence: U must not leave the computer during the authentication phase
but execute all steps consecutively.

– Correctness: If U cannot authenticate C, U must abort the protocol entirely
and never engage in the protocol with the same participants again.

If any of these rules are violated, the security of Stark cannot be proven, and
disk encryption may become insecure. In order to fulfill completeness, e.g., after
C crashed due to a power cut, U is allowed to restart Stark at any point and to
consume mi−1 a second time if our assumption about coherence is not violated.

A.2 Computer Model

We now define the possibilities for C. Unlike U , C is an electronic system that
has powerful computation capabilities, including crucial cryptographic primitives.
Stark relies on the following properties of C:

– Integrity : C must not be compromised initially during setup phase.
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– Crypto Competence: We assume that C can seal information in the following
sense: Given a precise software configuration c of C, C can encrypt and sign
a message m such that C itself can decrypt it only when being in c again. It
is unfeasible to seal or unseal information for any party besides C as well as
for C itself if it is not in c.

– Reliability : C waits indefinitely for message mi and password p to be entered
without shutting down. Reading from and writing to a USB thumb drive
does not fail, neither do other electronic operations fail.

Intuitively, the crypto competence of C corresponds to the sealing capabilities
of trusted platform modules, meaning that C is required to have a TPM. Most
notably, configuration c encompasses the BIOS settings and the master boot
record. The reliability of C is an interesting property, both in practice as in
theory, because it is generally hard to differentiate between malicious and faulty
behaviors. This makes secure recovery mechanisms in the case of accidental data
corruption difficult (see Sect. 3.2).

A.3 Attacker Model

Attacker A corresponds to an evil maid who may additionally be equipped with
electronic devices. So A can perform both human actions as well as computa-
tionally complex calculations. Overall, A acts arbitrarily under the following
restrictions:

– Attacker A can let C unseal any data for her (when she plugs in a USB drive
and boots C), but she cannot break cryptography, i.e., she cannot derive the
password from a hash, and she cannot seal data herself.

– Attacker A can inject or replay arbitrary messages before and after the
authentication process of Stark, and she can start an authentication process
herself. But she cannot send messages to U or C within complete protocol
parts, i.e., she is not allowed to interrupt the authentication process of U .
This corresponds to the event that A interferes with U while he boots up C,
which we exclude.

– Attacker A cannot get physical access to the USB drive. Nevertheless, she
can make a one-to-one copy of it after manipulating the MBR (as sketched
in the attacks from Sect. 1.4); so she may know all monces up to mi−2.

A.4 Security Argument

The security argument is by induction. We argue that over an infinite sequence of
sessions, the following invariant is maintained at the beginning of every session i
(the security of Stark follows from item 3 of the invariant):

1. User U knows p and mi−1 and owns sealedC(mi−1) on a USB drive.
2. Attacker A does not know mi−1.
3. Attacker A does not know p.
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Note that token t does not play a role in our security model, because t does not
add security to the evil maid scenario, but in other scenarios as described above.

We now prove that Stark maintains the invariant by induction over the
number of sessions. The base case (session 0) is straightforward and follows from
the setup phase: U knows m0 and has it sealed by C, and the attacker A can
neither have the password p nor the monce m0 because of the initial integrity of
C.

For the induction step, assume that the invariant holds at the beginning of
session i. There are two possibilities: Either A manipulates C and tries to inject
messages, or U starts the protocol with regular behavior of C, possibly after a
reboot, and possibly after his USB drive was cloned. We discuss both cases in
turn:

– Case 1 (A manipulates C and tries to inject messages): Since A does not
know mi−1 (from invariant) and mi−1 cannot be guessed (from singularity
of monces), any value injected by A towards C results in a wrong monce
displayed to U . C cannot unseal sealedC(mi−1) because it is not in line with
its reference configuration (from crypto competence of C). Consequently, the
protocol will be aborted and never restarted with the engaged parties (from
correctness of user behavior).

– Case 2 (U starts the protocol with regular behavior of C, possibly after a
reboot): A may know sealedC(mi−1), and hence, A can learn mi−1 from C.
However, A cannot inject any messages because U started the protocol (from
coherence of user behavior). U successfully authenticates towards C using his
password p, and completes the protocol by defining mi (from completeness
of user behavior), such that sealedC(mi) is stored on a USB drive (from
reliability of C).

In both cases, session i completes and session i + 1 commences. Before the new
session starts, observe the following points:

1. From session i, U knows mi and has a sealed version of it. Of course, U still
knows p.

2. Attacker A does not know mi. Indeed, A may know mi−1, but A cannot
exploit it to fool U because U already defined mi.

3. Attacker A does not know password p (from invariant).

Overall the invariant still holds at the beginning of session i + 1, concluding
the proof. Crucial for our argument is that complete protocol phases restrict
the behavior of adversary A. As explained above, we assume that U completes
session i, meaning that when U executes the first step of a session, U does not
abort but runs the protocol to completion. Without the completeness property,
Stark would be insecure.
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