
CAge: Taming Certificate Authorities by
Inferring Restricted Scopes

James Kasten, Eric Wustrow, and J. Alex Halderman

The University of Michigan
{jdkasten,ewust,jhalderm}@eecs.umich.edu

Abstract. The existing HTTPS public-key infrastructure (PKI) uses a
coarse-grained trust model: either a certificate authority (CA) is trusted
by browsers to vouch for the identity of any domain or it is not trusted
at all. More than 1200 root and intermediate CAs can currently sign
certificates for any domain and be trusted by popular browsers. This
violates the principle of least privilege and creates an excessively large
attack surface, as highlighted by recent CA compromises. In this paper, we
present CAge, a mechanism that browser makers can apply to drastically
reduce the excessive trust placed in CAs without fundamentally altering
the CA ecosystem or breaking existing practice. CAge works by imposing
restrictions on the set of top-level domains (TLDs) under which each CA
is trusted to sign certs. Our key observation, based on an Internet-wide
survey of TLS certs, is that CAs commonly sign for sites in only a handful
of TLDs. We show that it is possible to algorithmically infer reasonable
restrictions on CAs’ trusted scopes based on this behavior, and we present
evidence that browser-enforced inferred scopes would be a durable and
effective way to reduce the attack surface of the HTTPS PKI. We find
that simple inference rules can reduce the attack surface by nearly a
factor of ten without hindering 99% of CA activity over a 6 month period.

1 Introduction

Every day, millions of Internet users rely on HTTPS to secure their online
transactions against malicious eavesdroppers or tampering through man-in-the-
middle attacks. HTTPS relies on a public-key infrastructure (PKI) based on
certificate authorities (CAs) that are trusted by the browser. Each server presents
an X.509 certificate tying its public key to its domain name. This certificate is
digitally signed by a CA, which is responsible for verifying the site’s identity.

CA-signed certificates cannot protect users from compromise of the CAs
themselves. Several recent high-profile attacks on CAs resulted in the signing of
fraudulent certificates. For instance, in 2011, an attacker breached the security
of the Dutch CA DigiNotar and created certificates for dozens of popular sites,
including *.google.com [3]. An ISP in Iran subsequently abused this latter
certificate to conduct man-in-the-middle attacks against Google services.

Preventing DigiNotar-style attacks is difficult, because there are currently very
few technical restrictions on what domains trusted CAs can sign for. Once the CA

2 James Kasten, Eric Wustrow, and J. Alex Halderman

convinces a browser (or another CA) that they are trustworthy, they are given an
almost unrestricted capability to vouch for any domain name they choose. This
ability leads to an enormous attack surface: an attacker who compromises any
one of over 1200 CAs can then impersonate any website that relies on HTTPS.
This violates the principle of least privilege: DigiNotar should not have had
the capability to sign certificates for Google, nor should a CA run by a small
university be allowed to sign certificates for foreign government agencies. In other
words, each CA’s trust should come with a limited scope.

One way to limit the scope of CA trust is to designate a set of top-level
domains (TLDs), such as .com or .uk, within which each CA may sign. Indeed,
we present data that suggests that most CAs currently only sign certificates
for sites in a small number of TLDs, and conversely, that sites in most TLDs
utilize only a small set of CAs. Many CAs appear to sign exclusively for domains
belonging to a single organization, and others appear to operate within a specific
country, sector, or both. Although this suggests that TLD-based restrictions
could be fruitful, realizing them within the existing PKI is a challenge. The X.509
name constraints extension (see Section 2) introduced the ability to explicitly
declare such restrictions in new CA certificates, but has seen almost no adoption.

Rather than relying on each CA to explicitly declare a TLD scope, we
explore the possibility that browser makers could infer such scopes without CA
participation. We propose a mechanism called CAge that creates a profile of each
CA based on the TLDs of publicly visible certificates it has previously signed.
These restrictions can be implemented without cooperation from the CAs, at
the risk that CAs will change their behavior over time and begin signing for
certificates outside their previous pattern. Empirically, we find that this rate of
change is quite low, that inferred scopes generated with simple algorithmic rules
would result in a low false-positive rate, and that the CAge approach would allow
browser makers to dramatically reduce the attack surface of the HTTPS PKI.

For further details, see the full version of this paper, which is available online
at https://jhalderm.com/papers/.

2 Related Work

There have been several prior proposals for addressing CA shortcomings [3,11,14].
Multi-path probing [2,10,13] has been suggested as a way to reduce reliance
on CAs; however, it necessitates the availability and access to trusted notaries.
Browser extensions have also been proposed to pin previously seen certificates or
CAs to domains [6,9,12].

Scopes on CA signing have previously been proposed through X.509 Name
Constraints [4], a certificate extension with the ability to restrict CAs to a
particular set of domains. However, this approach has yet to see significant
adoption due to several practical impediments, including lack of direct browser
authority over intermediate CAs, the long lifetime of root CA certs, and the need
to replace site certs when an issuing CA implements constraints. In contrast,
CAge can be applied immediately by browsers without CA collaboration.

https://jhalderm.com/papers/

CAge: Taming Certificate Authorities by Inferring Restricted Scopes 3

1
2

0
7

 C
A

s

252 TLDs

Fig. 1: This matrix shows which trusted CAs have signed certs for at least one
domain (blue) or at least ten domains (green) in each TLD. Columns are scaled
by fraction of valid certs (left is .com). Note sparseness of CA signing practices.

3 Analyzing the CA Infrastructure

Currently, important aspects of browser trust behavior and CA signing practices
are surprisingly opaque to outside observers. Certificate chaining conceals the full
set of trusted CAs by including an unknown number of intermediate authorities.
Furthermore, CAs typically do not publish the domains for which they have
issued certificates, obfuscating their signing patterns.

To understand these aspects of the HTTPS PKI, we analyzed a large corpus
of certificates collected for another recent study [7] using an Internet-wide scan
of HTTPS servers. We determined which certificates would be trusted by major
web browsers and extracted the set of trusted CAs. See the full paper for details.

The number of certificates signed by each CA varied considerably; the top 20
CAs were responsible for more than 80% of valid certificates. Over 90% of all
signed .com domain names used certificates issued by just 25 CAs.

Despite this lopsided distribution of CA size, 1207 CAs had the ability to
issue trusted certificates for any domain name. To examine how much of this
authority each CA exercised, we extracted the set of domain names that each CA
had directly issued certificates for, and then examined the set of TLDs to which
these domains belonged. We find that 89% of CAs had signed for domains in
fewer than 10 unique valid TLDs [8], with the majority (65.8%) of CAs signing
for domains in either zero or one TLD.

Although .com accounts for 51% of signed domains, fewer than 35% of trusted
CAs had signed a certificate for even a single .com domain, and only 20% had
signed for 10 or more such certificates. There were 787 CAs that had never signed

4 James Kasten, Eric Wustrow, and J. Alex Halderman

for a .com domain. Similarly, fewer than 11% of CAs had signed certificates in
the .uk TLD, and only 6.6% had signed for 10 or more in the .uk domain.

Many CAs belong to private companies and organizations and are used for
domains under their control. More than 200 German universities and research
institutions control browser-trusted CAs, as do corporations such as Ford, Disney,
and Wells Fargo. We observed that such CAs generally limit their public signing
practices to a few specific second-level domains. Other smaller CAs appear to
focus their business within a specific geographic region and tend to sign domains
under a country-specific TLD.

4 Our Proposal

In this section, we propose CAge, a browser-based approach that restricts CA
signing to TLDs in which they have already signed. CAge consists of two phases:
In the initialization phase, we collect certificates from an Internet-wide scan and
infer rules from the observed current CA signing practices. Browsers then apply
these rules in the enforcement phase to restrict CAs to the inferred scopes and
handle exceptions. See the full paper for more details and for a description of
our browser extension prototype.

4.1 Initialization and Rule Inference

Prior to deploying CAge, the browser maker needs to develop an initial set of
restricted scopes to apply to existing CAs; however, creating justifiable rules for
existing CAs necessitates knowledge of current CA practice. A comprehensive
survey of public HTTPS servers (like that completed by Heninger et al. [7])
can be performed to determine the observable list of intermediate CAs and the
domains for which they have directly signed certificates.

After scanning and collecting the raw data, we infer rules and restrictions for
the CAs, based on current practices. As stated earlier, there are many CAs that
have never signed for particular top-level domains. If a user is later presented
such a certificate, this may indicate that the certificate is fraudulent, and the user
should be alerted. As a first approach, CAge can generate the inferred scopes by
looking at the TLDs that each CA has previously signed for. Under the simplest
form of this approach, the inferred rules will allow a CA to sign for domains in a
given TLD only if that CA has signed for a domain in that TLD before.

Rules are stored for each CA in the form of a set of regular expressions that
governs the domains the CA is trusted to sign. This allows for the rule inference
to be improved with more sophisticated algorithms in the future. In general,
rule inference should be generated from an algorithm taking the CAs and their
signed domains as input and producing the CA restrictions as output. CAs could
be constrained to second-level domains or more specific rules could be required
for larger TLDs, factoring in the cost of false positives and both the size and
brittleness of the rule set.

CAge: Taming Certificate Authorities by Inferring Restricted Scopes 5

4.2 Enforcement and Exception Handling

Once CAge has inferred CA signing rules from the collected scans, CAge relies
on browsers to enforce these rules during certificate validation. Browsers have a
strong incentive to protect their users from fraudulent certificates, making them
a natural place to enforce these restrictions.

Normally, browsers verify that HTTPS certificates have a valid signed chain
to a trusted root. With CAge, browsers additionally compare the domain to the
set of regular expression rules inferred for that certificate’s intermediate (signing)
CA. If the domain does not fall within the allowed rules for the given CA, CAge
alerts the user with a warning explaining that the website’s origin is certified by
an unusual source. CAge also asks the user if they want to send the violation to
the browser developers for further inspection. This feedback allows the browser
to potentially verify the authenticity of the certificate via other means, while
respecting the privacy of its users.

4.3 Updating

Keeping the rule set accurate and current is crucial to keeping a low false positive
rate and avoiding user habituation to clicking through warning messages. The
CAge rule set must be updated as CA policies change and new CAs emerge.
Luckily, browser makers are in a good position to provide updates to users, based
on newly discovered certificates reported collectively by users. Updates to the
CAge rules can also be pushed to users through browser update mechanisms.

The update mechanism must be carefully designed to avoid being gamed by
attackers. For example, we might be tempted to regenerate the inferred rules
based on any newly signed domain. However, in that case, an attacker who
compromised a CA that was not allowed to sign for a domain in .com could
simply purchase a certificate from that CA for a .com domain the attacker
legitimately controlled. The inferred TLD rules would then update to allow this
CA to sign for .com, and the attacker could use their compromise to sign for
other .com domains fraudulently.

While CAge would still protect users from illegitimate certificates signed by
CAs that do not sign publicly (including private organizations, root CAs and
inactive intermediates), attackers can still try to increase the scope of all publicly
signing intermediate CAs. For this reason, we propose that the CAge rule set
should be updated on a per-domain basis. When a domain exception is reported
to browsers, the domain should be added to a “watchlist” where the domain can
be manually vetted before the specific certificate is whitelisted and pushed as
an update. We show in Section 5.2 that these updates are infrequent and thus
enable manual inspection and verification.

Over the long term, new CAs, without any recorded behavior, can be added
by browsers after interrogating the CAs about their intended scope and policies.
While this might pose an additional hurdle for new CAs entering the market,
ultimately, the authority to say if a particular CA is trusted or not lies with the
browser, and users’ security interests demand a high level of scrutiny.

6 James Kasten, Eric Wustrow, and J. Alex Halderman

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25

%
 o

f
O

ri
g

in
a
l
A

tt
a
ck

 S
u
rf

a
ce

Exceptions Allowed

Fig. 2: HTTPS PKI attack surface under the basic CAge inference policy, com-
pared to current practice. Even this simple approach achieves 75–90% reduction.

5 Evaluation

5.1 Attack Surface Reduction

While restricted scopes would reduce the attack surface across a large number
of CAs, they are most effective against small and private CAs. In the Comodo
attack that occurred in March 2011 [11], an attacker issued fraudulent certificates
for .com domains signed by “CN=UTN-USERFirst-Hardware”, a relatively large
CA which had signed over 25,000 other .com certificates previously. Due to these
signing practices, CAge would have been unable to protect against the Comodo
attack. Similarly, all but two of the top 20 CA certificates have signed domains
from over 100 unique TLDs, limiting the usefulness of restricting these large CAs
to the TLDs they currently sign.

However, the vast majority of CAs do not sign for such a diverse market,
allowing CAge to provide protection during a CA compromise. For instance, CAge
would have detected the DigiNotar compromise. The EFF’s SSL Observatory [5]
data, which was collected a year before the attack, shows that the issuer of the
fraudulent *.google.com certificate, “DigiNotar Public CA 2025” [1], had not
signed certificates for any .com domains. Had CAge been implemented at the
time, it would have prevented the attacker from using the *.google.com against
Internet users in Iran.

In light of these conflicting case studies, we attempt to quantify what kinds
of attacks CAge would or would not protect against by developing an attack
surface metric. The goal of this metric is to quantify the relative risk of damage
that could be caused by an attacker-compromised CA. We compare this metric
under different scenarios; namely, current CA practice (all CAs can sign for all
domain names) versus CAge (CAs are restricted to a particular set of domains).

CAge: Taming Certificate Authorities by Inferring Restricted Scopes 7

We approximate the attack surface by
∑

c∈CAs domains[c]. The function
domains[c] is the number of existing, validly signed domains for which a certificate
signed by a given CA c would be trusted under a given set of policies. (Intuitively,
the number of signed valid domains represents the number of protected entities
on the Internet.) Under current practice, domains[c] is constant across all CAs
and is simply the number of signed valid domains in existence. Under CAge,
domains[c] is reduced to domains in TLDs that are allowed under the inferred
trust scope for c. For example, if a CA is trusted to sign for only .com because
it previously signed for 100 of the 1.3 million .com domains (and zero domains
under other TLDs), then domains[c] for that CA would be 1.3 million.

While this attack surface metric is by no means complete, it provides a
first-order approximation that allows us to quantitatively compare the risks of
different CA restriction policies. Applied to our data set, the simple CAge rule
set inference method described in the previous section yields an attack surface
that is 75% smaller than current practice.

We can improve this result by modifying the inference procedure to only allow
a CA to sign for domains in a TLD if it has previously signed for more than a
threshold t of unique domains in that TLD. If a CA has signed t or fewer domains
in a particular TLD, these domains can either be viewed as suspicious anomalies
or whitelisted as individual rules within the rule set. Applied to our scan data
with t = 25, this policy would reduce the attack surface by 89% compared to
current practice.

5.2 Rule Set Durability

Although the attack surface metric provides a quantifiable goal, reducing it is not
our only objective. The minimum attack surface would be achieved by pinning
every observed domain to the CA that signed its cert, but the result would
be an enormous rule set that would require constant updating and lead to an
impractical number of false positives. CAge must instead attempt to capture
CAs’ actual signing policies so as to produce rules that are compact and stable.

In order to test the durability of our inferred rules, we acquired a second scan
in April 2012 (6 months after the original scan). Focusing on changes during this
interval, we found that the large majority of domains observed in newly issued
certificates conformed to our rules, supporting our hypothesis that the TLDs
that CAs sign for are generally static. The basic policy, restricting CAs to TLDs
they have signed in the past, accommodated 99.84% of new certificates. Most of
the 1506 violations that occurred were in unpopular or small TLDs. See the full
version of this paper for additional analysis.

6 Conclusion

In this paper, we presented CAge, a mechanism for inferring TLD-based restricted
scopes for HTTPS CAs. Based on the empirical observation that the vast majority
of browser-trusted CAs do not utilize their technically unconstrained signing

8 James Kasten, Eric Wustrow, and J. Alex Halderman

power, we argue that each CA should be restricted to signing for domains within
a limited set of TLDs. We show how such restrictions can be realized in practice
by profiling past CA signing behavior, and we find that such an approach would
dramatically reduce the attack surface of the HTTPS PKI without a high rate of
false alarms over time.

While browsers have a positive record of revoking compromised CA certificates
once a breach is discovered, we believe much more can be done to proactively
mitigate the damage caused by attacks against CAs and to provide defense-in-
depth to the HTTPS PKI. Given the relative ease with which CAge could be
deployed by browsers, we strongly encourage browser developers to adopt this
approach to help combat the growing threats that HTTPS users face.

Acknowledgements

The authors gratefully acknowledge Zakir Durumeric for providing HTTPS
certificate data for this study, and we thank the anonymous reviewers for their
constructive comments and feedback. This work was supported in part by the
National Science Foundation (NSF) under contract numbers CNS 1255153 and
DGE 0654014 and an NSF Graduate Research Fellowship.

References
1. Gmail.com SSL MITM Attack by Iranian government, Aug. 2011. http://pastebin.

com/ff7Yg663.
2. Alicherry, M., and Keromytis, A. D. Doublecheck: Multi-path verification

against man-in-the-middle attacks. In ISCC (2009), IEEE, pp. 557–563.
3. Bhat, S. Gmail users in Iran hit by MITM Attacks. Website, Aug. 2011. http://

techie-buzz.com/tech-news/gmail-iran-hit-mitm.html.
4. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and

Polk, W. Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. RFC 5280 (Proposed Standard), May 2008.

5. EFF. The EFF SSL Observatory. https://www.eff.org/observatory.
6. Evans, C. New Chromium security features, June 2011. Website. http://blog.

chromium.org/2011/06/new-chromium-security-features-june.html.
7. Heninger, N., Durumeric, Z., Wustrow, E., and Halderman, J. A. Min-

ing your Ps and Qs: Detection of widespread weak keys in network devices. In
Proceedings of the 21st USENIX Security Symposium (Aug. 2012).

8. IANA. Top level domains. http://data.iana.org/TLD/tlds-alpha-by-domain.txt.
9. Loesch, C. Certificate patrol. Website. http://patrol.psyced.org/.
10. Marlinspike, M. SSL and the future of authenticity, Aug. 2011. BlackHat USA.
11. Richmond, R. Comodo fraud incident, Mar. 2011. http://www.comodo.com/

Comodo-Fraud-Incident-2011-03-23.html.
12. Soghoian, C., and Stamm, S. Certified lies: Detecting and defeating government

interception attacks against SSL (short paper). In Proc. 15th Intl. Conf. on Financial
Cryptography and Data Security (2012), FC’11, pp. 250–259.

13. Wendlandt, D., Andersen, D. G., and Perrig, A. Perspectives: Improving
SSH-style host authentication with multi-path probing. In USENIX 2008 Annual
Technical Conference (Berkeley, CA, USA, 2008), USENIX Association, pp. 321–334.

14. Zusman, M. Criminal charges are not pursued: Hacking PKI, Aug. 2009. DefCon 17.

http://pastebin.com/ff7Yg663
http://pastebin.com/ff7Yg663
http://techie-buzz.com/tech-news/gmail-iran-hit-mitm.html
http://techie-buzz.com/tech-news/gmail-iran-hit-mitm.html
https://www.eff.org/observatory
http://blog.chromium.org/2011/06/new-chromium-security-features-june.html
http://blog.chromium.org/2011/06/new-chromium-security-features-june.html
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://patrol.psyced.org/
http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html

