Evaluating User Privacy in Bitcoin

<u>E. Androulaki</u>, G. Karame, M. Röschlin, T. Scherer, and S. Čapkun Institute of Information Security, ETH Zürich NEC Laboratories, Europe

Financial Cryptography & Data Security, April 2nd 2013

Bitcoin

- Anonymous & decentralized (p2p-based) payment system
- With its own digital currency (BTC)
- Emerging:
 - Integrated across multiple businesses
 - Several exchange markets

Mobile

H

• BTC-ATMs in schedule to be deployed

Bitcoin

- Anonymous & decentralized (p2p-based) payment system
- With its own digital currency (BTC)
- Emerging:
 - Integrated across multiple businesses
 - Several exchange markets
 - BTC-ATMs in schedule to be deployed

Payment confirmation requires

 \rightarrow **public announcement** of each transaction

Privacy in payment systems

Unlinkability of transactions

ightarrow two transactions of an individual cannot be linked together

Anonymity of transactions

 $\rightarrow\,$ a transaction cannot be linked to a specific identity with a better probability than to other identities

Our contributions: Privacy in Bitcoin

Contribution 1:

Definition of Bitcoin privacy

Contribution 2:

Investigation of privacy provisions of Bitcoin when used as a primary currency within a university

Bitcoin payments

Users represented by addresses

 $\rightarrow\,$ pseudonyms derived from public keys

Payments through transactions

 $\rightarrow\,$ signed transfers of BTCs from a sender address to a recipient address

• In real life:

I am Alice and I transfer 10\$ that I acquired from Jessie to Bob.

Alice Jessie

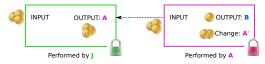
• In real life:

I am Alice and I transfer **10\$** that I acquired from Jessie to Bob.

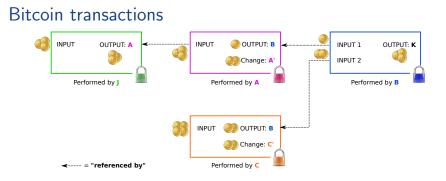
- In Bitcoin:
 - Transactions authenticated using PK signatures

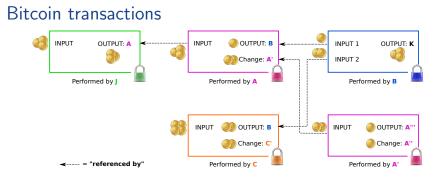
I am A and I transfer **1 BTC** that I acquired from transaction **X** to **B**.

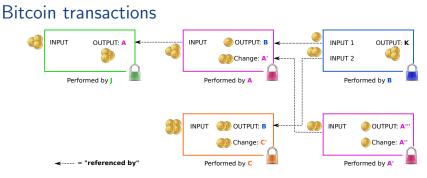
Alice Jessie


• In real life:

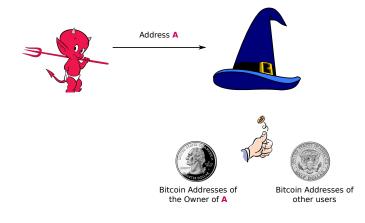
I am Alice and I transfer **10\$** that I acquired from Jessie to Bob.

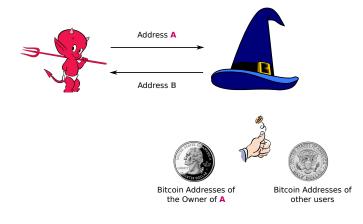

- In Bitcoin:
 - Transactions authenticated using PK signatures

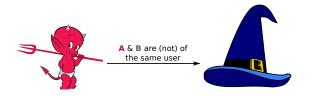

	I am A and I transfer 1 BTC that I acquired from transaction X to B .	
->	I am J and I transfer 3 BTC that I acquired from transaction Y to A .	

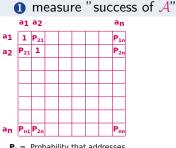

Alice Jessie

----- = "referenced by"



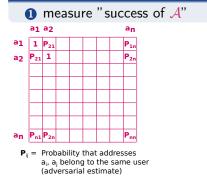


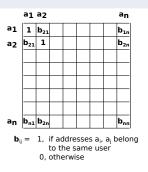

- Obfuscation mechanisms provided by Bitcoin client
 - Use of addresses/pseudonyms
 - Use of a **new** address for change!
- Recommendations to Bitcoin users
 - Transfer of BTCs to another address


- Adversary $\mathcal{A}(\log, \operatorname{prior} \operatorname{knowledge}) \leftrightarrow \operatorname{Challenger} \mathcal{C}(\log, \operatorname{truth})$
 - \rightarrow \mathcal{A} wins if she answers **correctly**!

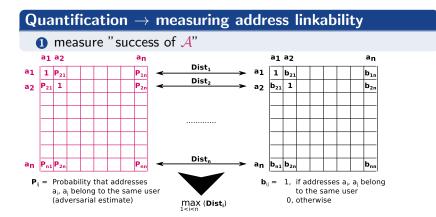
• Ideally, A should not outperform a random adversary \mathcal{R} with prior knowledge.

• Ideally, \mathcal{A} should not outperform a random adversary \mathcal{R} with prior knowledge.


$\textbf{Quantification} \rightarrow \textbf{measuring address linkability}$

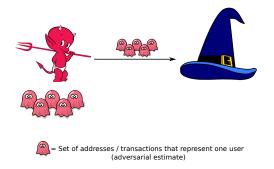


 $\label{eq:pij} \begin{array}{ll} \textbf{P}_{ij} = & \text{Probability that addresses} \\ & a_i, \, a_j \text{ belong to the same user} \\ & (adversarial estimate) \end{array}$

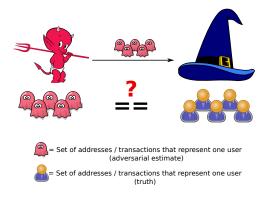

• Ideally, \mathcal{A} should not outperform a random adversary \mathcal{R} with prior knowledge.

Quantification \rightarrow measuring address linkability

• Ideally, \mathcal{A} should not outperform a random adversary \mathcal{R} with prior knowledge.

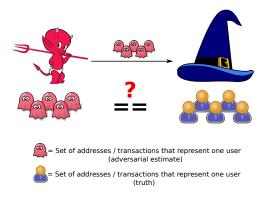

• Ideally, \mathcal{A} should not outperform a random adversary \mathcal{R} with prior knowledge.

Quantification \rightarrow measuring address linkability


- **1** measure "success of \mathcal{A} "
- 2 measure "success of \mathcal{R} "
- $\mathbf{3}$ = "success of \mathcal{A} " "success of \mathcal{R} "

- User \equiv set of transactions (addresses)
- Adversary $\mathcal{A}(\log, \operatorname{prior} \operatorname{knowledge}) \leftrightarrow \operatorname{Challenger} \mathcal{C}(\log, \operatorname{truth})$

- User \equiv set of transactions (addresses)
- Adversary $\mathcal{A}(\mathsf{log}, \mathsf{prior knowledge}) \leftrightarrow \mathsf{Challenger } \mathcal{C}(\mathsf{log}, \mathsf{truth})$



- User \equiv set of transactions (addresses)
- Adversary $\mathcal{A}(\log, \operatorname{prior} \operatorname{knowledge}) \leftrightarrow \operatorname{Challenger} \mathcal{C}(\log, \operatorname{truth})$

- User \equiv set of transactions (addresses)
- Adversary $\mathcal{A}(\mathsf{log}, \mathsf{prior knowledge}) \leftrightarrow \mathsf{Challenger } \mathcal{C}(\mathsf{log}, \mathsf{truth})$

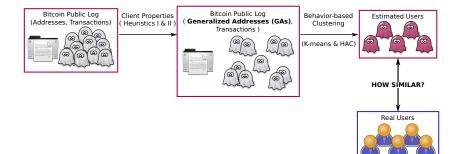
 $\rightarrow \mathcal{A}$ wins if she answers **correctly**!

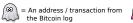
• **Ideally**, \mathcal{A} should not outperform \mathcal{R} .

 $\textbf{Quantification} \rightarrow \textbf{measuring user distinguishability}$

• Ideally, \mathcal{A} should not outperform \mathcal{R} .

$\textbf{Quantification} \rightarrow \textbf{measuring user distinguishability}$


• w.r.t transactions and addresses

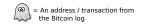

• Ideally, \mathcal{A} should not outperform \mathcal{R} .

Quantification \rightarrow measuring user distinguishability

- w.r.t transactions and addresses
- measure "success of *A*"
 - e.g., via the Normalized Mutual Information (NMI)
- measure "advantage of success of $\mathcal A$ over the success of $\mathcal R$ "
 - e.g., via the Adjusted Mutual Information (AMI)

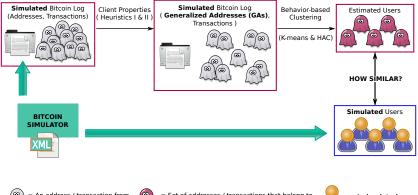
Not possible with the current Bitcoin log

-


= Set of addresses / transactions that belong to one user (adversarial estimate)

- Not possible with the current Bitcoin log

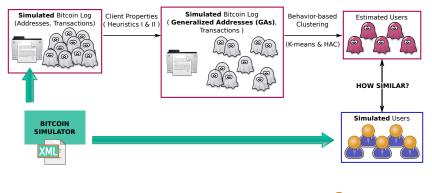
 - **1** measuring adversarial success \rightarrow knowledge of real users
 - 2 Bitcoin is not currently used for **daily payments**

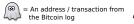


= Set of addresses / transactions that belong to one user (adversarial estimate)

= A real Bitcoin user

- Not possible with the current Bitcoin log
 - ก
- measuring adversarial success \rightarrow knowledge of real users
 - 2 Bitcoin is not currently used for **daily payments**

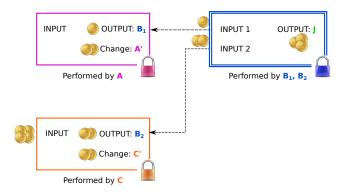



= Set of addresses / transactions that belong to one user (adversarial estimate)

= A simulated user

- At first glance, addresses can be linked together by
 - 1 Leveraging Bitcoin client properties
 - 2 Leveraging behavior-based clustering

 Set of addresses / transactions that belong to one user (adversarial estimate)



Exploiting Bitcoin-client Properties

Heuristic I

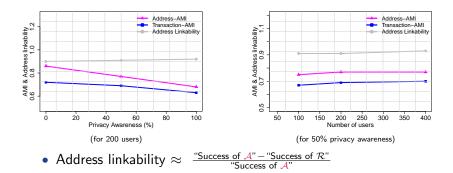
 Addresses contributing to a multiple input transaction belong to the same user

E.g., Addresses B_1 and B_2 belong to the same user

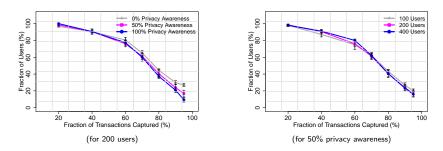
Exploiting Bitcoin-client Properties

Heuristic II

If a transaction has two outputs exactly one of which is to a new address, the new address and the sender address belong to the same user.


E.g., if ${\color{black}B_1}$ has appeared before, ${\color{black}A}$ and ${\color{black}A'}$ are of the same user

Our simulation environment


- · Emulates the use of Bitcoin in a university setting
- Randomly generated purchase habits per user (profiles)
- Accounts for privacy-aware users

Our results: Address linkability & User distinguishability

- User distinguishability \approx AMI:
 - i) 1: correct clustering,
 - ii) 0: random clustering,
 - iii) -1 worse than random

Our results: User profile capturing

Over 40% of the users have their profiles compromised by at least 80%!

Suggestions for enhancing Bitcoin privacy

Getting around Heuristic I & Heuristic II

- Transfer of BTCs to single-use addresses before or after the payment
- Results in scalability and performance issues

Mixers!

- Centralized entity that handles multiple accounts
- Against Bitcoin de-centralized nature

Conclusions

- 1 Bitcoin privacy definitions
- Investigated Bitcoin privacy provisions in a simulated setting, where Bitcoin is used for daily payments
- Ourrent version of Bitcoin would enable the recovery of user transaction profiles to a large extend!

Thank you for your attention!