On the Need of Physical Security for Small Embedded Devices: A Case Study with COMP128-1 Implementations in SIM Cards

Ryan Zhou, YuYu, F-X Standaert, Jean-Jacques Quisquater

Brightsight Tsinghua University and East China Normal University UCL Crypto Group

Financial Cryptography and Data Security 2013

Outline of the Talk

- Cryptography and Physical Security
- GSM and COMP128-1 (A3/A8) SIM cards
- Weakness and Attacks: Algorithmic vs. Physical
- A Case Study on COMP128-1 Implementations
- Lessons Learned

How cryptography works?

- Typical Assumptions:
- (1) A computational hard problem (RSA, AES).
- (2) Black-box: attacker ONLY sees input-output.
- Provable Security: Reductionist approach. If one breaks the crypto-system (in polynomial-time), then it leads to efficient solution to the assumptions.
- Security guarantee voided if either assumption is not met.

Are these assumptions safe?

Typical Assumptions:

forms.

(1) A computational hard problem (RSA, AES).(2) Black-box: attacker ONLY sees input-output.

Provable Security: Reductionist approach.
 Assumption #1 is ok (otherwise a breakthrough).
 Assumption #2 is not always respected.
 The implementation of a cryptographic algorithm might be leaking in many

input

output

•Side-channel attacks and beyond

- Definition: Any attack based on information gained from the physical implementation of a cryptosystem, rather than brute force or theoretical weaknesses in the algorithms.
- It takes many forms:
 - Timing Attacks
 - Power Analysis (PA)
 - Electro-Magnetic Analysis (EMA)
 - Acoustic Analysis
 - etc.
- More invasive physical attacks exist.

Cryptographic Products in Real World

Smart cards equivalents, banking tokens, and other small embedded devices.

Cellular networks (1-4G)

- 1G: analogue signal (last 90's)
- 2G: digital signal
 GSM vs. CDMA
- 3G: UMTS vs. CDMA2000 high-speed data transmission
- 4G: LTE Advanced vs. WiMAX (IEEE 802.16e)

SIM cloning: the main threat to phone security SIM card is a smart card.

• SIM stores: ICCID(serial number), IMSI (USER id), secret key K, contacts (optional).

knowing IMSI and K allows one to clone the SIM card

• SIM Cloning : making fraudulent calls, impersonation, privacy breach, internet banking security.

• The key of cloning a SIM card: recover the key K

Authentication between SIM card and base station (AuC)

GSM SIM uses the COMP128-1 algorithm for the authentication.

Mathematical vs. physical attacks

 Mathematical attack: Attacker (impersonates the AuC), sends (possibly malicious) inputs R and observes output s accordingly, and try to recover K.

• Side-channel attack: In addition, attackers can capture some physical information such as power consumption.

History COMP128-1

- COMP128-1, as part of the GSM specification, drafted in1987 and kept secret.
- In 1998, a research group at UC Berkeley (led by David Wagner) reversed engineered COMP128-1, and release it on the internet.
- COMP128-1 is a cryptographic hash function with a butterfly structure (FFT-HASH) .
- Targets of this work: a few SIMs cards from several (anonymized) manufacturers and operators.

Pseudo-code of COMP128-1

• COMP128-1 is cryptographic hash function.

Κ

- Input: 32-byte (i.e. 16-byte random R, 16-byte secret K)
- Output: 12-byte(i.e. 4-byte SRES 和 8-byte Kc).
- Pseudo-code:

R

COMP128-1

(SRES, Kc)

```
function COMP128-1(R, K)
begin
    for j=16 to 31 do
                              {* 调入随机数 R * }
        X[j] := \mathsf{R}[j-16];
    for i=0 to 7 do
                              {* 8次循环 *}
    begin
         for j=0 to 15 do {* 调入密钥 K *}
             X[j] := \mathsf{K}[j];
         call Compress
                              {* 压缩函数 *}
         call FormBitsFromBytes; {*格式转换*}
         if i < 7 then
                               {* 置换*}
             call Permute
    end;
end;
```


Exploiting the Flaw: Collision attack

- Strategy: Divide and Conquer.
- Attack one color(1 key byte) at a time, fix the rest colors (s.t. collision on the output of 2nd round can propagate to the final output).
- Each color at 2nd round has 28 (4x7) bits, by birthday paradox, it takes 2¹⁴ inputs to obtain 1 collision, so covering whole key needs 2¹⁴ x 8=131,000 inputs.

Collision attacks are implemented: SIM cloning kits available

- Low cost (\sim \$10).
- Cloning kit: SIM card reader, software (driver, cracking, SIM writing), blank SIM card
- Effective with COMP 128-1.

FREE	SIMMAX GSM 16-Number-in-1 SIM Card with USB Card Reader/Writer and Cloning Kit		
Super SIN Super Sin Sin Sin Sin Sin Sin Sin Sin Sin Sin	Item condition: Time left:	New 1 day 9 hours (Apr 01, 2013	10:56:56 PDT)
	Starting bid:	US \$9.99 Enter US \$9.99 or more	[0 bids] Place bid
	Price:	US \$14.99	Buy It Now Add to cart

Ad-hoc Countermeasures

- Move to newer versions COMP128-2, COMP128-3 (still kept secret!)
- Patch COMP128-1:

Known attacks easy to detect: attacker sends many correlated inputs.

Detecting heuristics (used by some operators): Store a few previous inputs, compare with the current one. Lock the card if too many attempts are detected.

Attack 2 (our results): Power Analysis Attacks

- Collision attacks fail because they are easy to detect.
- Power analysis: Send truly random R to SIM, not causing sim lock.
- How it works: SIM relies on external power and clocking signal.

Measurement Setup for Power Analysis

Power Trace Measurement

• Send random R, measure the corresponding output and power traces, and repeat.

How secrets are leaked from traces (leakage model)?

- Hamming weight model: The power consumption (for preserving value e.g. r=10100111) is proportional (or conversely) to its Hamming weight.
- Applicable to CMOS circuits (with precharged data bus)

time t[i+1] Power $(i \rightarrow i+1)$ time t[i] Byte[0] 0 $E_{0 \rightarrow 1}$ 1 $E_{0 \rightarrow 0}$ Byte[1] 0 0 $E_{0 \rightarrow 1}$ Byte[2] 0 $E_{0 \rightarrow 0}$ Byte[3] 0 0 $E_{0 \rightarrow 0}$ Byte^[4] 0 0 $E_{0 \rightarrow 1}$ Byte^[5] 0 1 Byte[6] 0 $E_{0 \rightarrow 1}$ 1 $E_{0 \rightarrow 1}$ 0 Byte^[7] Total: $5E_{0 \rightarrow 1} + 3E_{0 \rightarrow 0} \approx 5E_{0 \rightarrow 1}$

Which intermediate result as the target?

- Strategy: Attack one color at a time(0 ≤ i ≤ 15), but not fixing the rest colors (not causing SIM card lock).
- hypothesis testing: Target at T0[Ki+2Ri)], assume Ki= v (256 possibilities), compute the correlation coefficient between T0[v+2Ri]]'s Hamming weight and power traces.
- For correct guess Ki=v , the correlation should be maximal.

Assume Ki= v, Compute correlation coefficient (between power traces and $HW(T_0[v+2R_i])$)

hypothesis testing: compute the coefficient corresponding to v=0,1,...,255 one by one, the maximum should be with the correct hypothesis.

Pearson correlation coefficient

Correlation coefficient between U and V, denoted by $\rho_{U,V}$, is:

$$\rho_{U,V} \stackrel{def}{=} \frac{\mathrm{E}[(X - \mu_U)(Y - \mu_V)]}{\sigma_U \sigma_V}$$

where E is expectation, $\mu_U \stackrel{def}{=} E[U]$, and standard deviation $\sigma_U \stackrel{def}{=} \sqrt{E[(U - \mu_U)^2]}$.

By sampling from (U,V) to (u_1,v_1) , (u_2,v_2) , \cdots , (u_n,v_n) , the estimator of $\rho_{X,Y}$, denoted by $r_{x,y}$, is given by:

$$r_{x,y} = \frac{\sum_{i=1}^{n} (u_i - \bar{u})(v_i - \bar{v})}{\sqrt{\sum_{i=1}^{n} (u_i - \bar{u})^2} \sqrt{\sum_{i=1}^{n} (v_i - \bar{v})^2}},$$

where $\bar{u} = \frac{u_1 + u_2 + \dots + u_n}{n}$ and $\bar{v} = \frac{v_1 + v_2 + \dots + v_n}{n}$ detotes mean value.

coefficient for a correct hypothesis (K_i=v)

Power analysis vs. collision attacks

- Targets: 4 SIM cards from two mobile operators and 4 different manufacters
- Efforts in terms of: the number of inputs (traces) needed.

	manufacturer	operator	patch (countermeasure)	DPA	collision attacks
SIM#1	Ι	А	Not available	400	20,000
SIM#2	II	В	I-C	200	$\geq 20,000$
SIM#3	III	В	I-C + C-F	4000	fail (card locked)
SIM#4	IV	В	I-C + C-F	10000	fail (card locked)

- Collision attacks: cheap set-up, only applicable to unpatched target
- Power analysis: powerful, provided with special measurement setup

Lessons Learned

- Awareness of physical security for small embedded devices.
- The contrast:
 - \succ Low cost devices \approx limited budget for CC/EMVCo security testing.
 - \succ Low-cost X huge volume = big impact / loss
- Some SIM cards are used for more sensitive applications such as mobile payments.
- Practical security requires BOTH:
 - ≻ A mathematically secure (and publicly referred) algorithm.
 - > Sufficient countermeasures in place against physical attacks.

Thanks!

