Unique Ring Signatures

Matthew Franklin Haibin Zhang

Department of Computer Science University of California at Davis

April, 3, 2013

Franklin, Zhang (UC Davis)

Outline

Our Contributions

- 2 Ring Signatures
- 3 Restricted-Use Ring Signatures
- Unique Ring Signatures Syntax and Security Definitions
- 5 A Simple, General, and Unified Framework
- 6 Practical Construction in ROM
 - 7 Construction in CRS Model

B Future Work

Outline

1

Our Contributions

- 2 Ring Signatures
- 3 Restricted-Use Ring Signatures
- Unique Ring Signatures Syntax and Security Definitions
- 5 A Simple, General, and Unified Framework
- 6 Practical Construction in ROM
- Construction in CRS Model

8 Future Work

• Simplified definitions.

- Simplified definitions.
- A simple, general, and unified framework.

- Simplified definitions.
- A simple, general, and unified framework.
- Two efficient instantiations.

- Simplified definitions.
- A simple, general, and unified framework.
- Two efficient instantiations.
 - The most efficient construction with tight security reduction.

- Simplified definitions.
- A simple, general, and unified framework.
- Two efficient instantiations.
 - The most efficient construction with tight security reduction.
 - Simplifying the traceable ring signature of Fujisaki.

Outline

Our Contributions

- 2 Ring Signatures
- 3 Restricted-Use Ring Signatures
- Unique Ring Signatures Syntax and Security Definitions
- 5 A Simple, General, and Unified Framework
- 6 Practical Construction in ROM
- Construction in CRS Model

8 Future Work

• Goes back to Rivest, Shamir, and Tauman (ASIACRYPT 2001).

• Goes back to Rivest, Shamir, and Tauman (ASIACRYPT 2001).

Three features of ring signatures:

• Goes back to Rivest, Shamir, and Tauman (ASIACRYPT 2001).

Three features of ring signatures:

"rings" are ad hoc;

• Goes back to Rivest, Shamir, and Tauman (ASIACRYPT 2001).

Three features of ring signatures:

- "rings" are ad hoc;
- signers are anonymous;

• Goes back to Rivest, Shamir, and Tauman (ASIACRYPT 2001).

Three features of ring signatures:

- "rings" are ad hoc;
- signers are anonymous;
- no manager; no opener.

Our Contributions

- 2 Ring Signatures
- 8 Restricted-Use Ring Signatures
- Unique Ring Signatures Syntax and Security Definitions
- 5 A Simple, General, and Unified Framework
- 6 Practical Construction in ROM
- Construction in CRS Model

8 Future Work

Restricted-Use Ring Signatures

- Linkable ring signature.
 - \Rightarrow Linking signatures by the same signer.

Restricted-Use Ring Signatures

• Linkable ring signature.

 \Rightarrow Linking signatures by the same signer.

• Traceable ring signature.

 \Rightarrow Further revealing the identity of the same signer.

Restricted-Use Ring Signatures

• Linkable ring signature.

 \Rightarrow Linking signatures by the same signer.

• Traceable ring signature.

 \Rightarrow Further revealing the identity of the same signer.

• Unique ring signature.

 \Rightarrow *n* signers can sign a message for *exactly n* times.

Outline

Our Contributions

- 2 Ring Signatures
- 3 Restricted-Use Ring Signatures
- Unique Ring Signatures Syntax and Security Definitions
- 5 A Simple, General, and Unified Framework
- 6 Practical Construction in ROM
- Construction in CRS Model

8) Future Work

A ring signature scheme $\mathcal{RS} = (RK, RS, RV)$ that consists of three algorithms:

A ring signature scheme $\mathcal{RS} = (RK, RS, RV)$ that consists of three algorithms:

RK(1^λ). The *user key generation* algorithm outputs a public key *pk* and a secret key *sk*.

A ring signature scheme $\mathcal{RS} = (RK, RS, RV)$ that consists of three algorithms:

- RK(1^{\lambda}). The *user key generation* algorithm outputs a public key *pk* and a secret key *sk*.
- RS(*sk*, *R*, *m*). The *ring signing* algorithm takes a user secret key *sk*, a ring *R*, and a message *m* to return a signature *σ*.

A ring signature scheme $\mathcal{RS} = (RK, RS, RV)$ that consists of three algorithms:

- RK(1^{\lambda}). The *user key generation* algorithm outputs a public key *pk* and a secret key *sk*.
- RS(*sk*, *R*, *m*). The *ring signing* algorithm takes a user secret key *sk*, a ring *R*, and a message *m* to return a signature *σ*.
- RV(R, m, σ). The *ring verification* algorithm takes a ring R, a message m, and a signature σ to return a bit b.

A ring signature scheme $\mathcal{RS} = (RK, RS, RV)$ that consists of three algorithms:

- RK(1^{\lambda}). The *user key generation* algorithm outputs a public key *pk* and a secret key *sk*.
- RS(*sk*, *R*, *m*). The *ring signing* algorithm takes a user secret key *sk*, a ring *R*, and a message *m* to return a signature *σ*.
- RV(R, m, σ). The *ring verification* algorithm takes a ring R, a message m, and a signature σ to return a bit b.

A ring signature scheme $\mathcal{RS} = (RK, RS, RV)$ that consists of three algorithms:

- RK(1^λ). The *user key generation* algorithm outputs a public key *pk* and a secret key *sk*.
- RS(*sk*, *R*, *m*). The *ring signing* algorithm takes a user secret key *sk*, a ring *R*, and a message *m* to return a signature *σ*.
- RV(R, m, σ). The *ring verification* algorithm takes a ring R, a message m, and a signature σ to return a bit b.

Unique Ring Signature

• $(R, m, \sigma) = (R, m, \tau, \pi)$ where τ is the unique identifier

< □ > < 🗇

Unique Ring Signature

• Three security notions

- Three security notions
 - Anonymity

- Three security notions
 - Anonymity
 - Unforgeability

- Three security notions
 - Anonymity
 - Unforgeability
 - Uniqueness

- Three security notions
 - Anonymity
 - Unforgeability
 - Uniqueness + Non-Colliding Property

Anonymity

Anonymity

• Experiment $\operatorname{Exp}_{\mathcal{RS},n}^{\operatorname{anon}}(\mathcal{A})$ $\{(pk_i, sk_i)\}_1^n \stackrel{*}{\leftarrow} \operatorname{RK}(1^{\lambda}); CU \leftarrow \emptyset; RS_{\mathbf{R},\mathbf{M}} \leftarrow \mathbf{\emptyset}$ $(i_0, i_1, R, m) \stackrel{*}{\leftarrow} \mathcal{A}^{\operatorname{USK}(\cdot),\operatorname{RS}(\cdot, \cdot, \cdot)}(\{pk_i\}_1^n)$ $b \stackrel{*}{\leftarrow} \{0, 1\}; \sigma \stackrel{*}{\leftarrow} \operatorname{RS}(sk_{i_b}, R, m)$ $b' \stackrel{*}{\leftarrow} \mathcal{A}^{\operatorname{USK}(\cdot),\operatorname{RS}(\cdot, \cdot)}(\operatorname{guess}, \sigma, \mathbf{s})$ if $b' \neq b$ then return 0 return 1

where for each $d \in \{0, 1\}$ we have $i_d \notin CU$ and $i_d \notin RS_{R,m}$. We define the advantage of A as

$$\operatorname{Adv}_{\mathcal{RS},n}^{\operatorname{anon}}(\mathcal{A}) = \Pr[\operatorname{Exp}_{\mathcal{RS},n}^{\operatorname{anon}}(\mathcal{A}) = 1] - 1/2.$$

Unforgeability

Franklin, Zhang (UC Davis)

Unforgeability

٥

Experiment $\operatorname{Exp}_{\mathcal{RS},n}^{\operatorname{uf}}(\mathcal{A})$

$$\begin{split} \{(pk_i, sk_i)\}_1^n &\stackrel{\$}{\leftarrow} \mathsf{RK}(1^{\lambda}); \ \mathsf{CU} \leftarrow \emptyset; \ \mathsf{RS}_{\mathbf{R},\mathbf{M}} \leftarrow \mathbf{\emptyset} \\ (m, R, \sigma) &\stackrel{\$}{\leftarrow} \mathcal{A}^{\mathsf{USK}(\cdot),\mathsf{RS}(\cdot,\cdot,\cdot)}(\{pk_i\}_1^n) \\ \text{if } \mathsf{RV}(R, m, \sigma) = 0 \ \text{then return } 0 \\ \text{return } 1 \end{split}$$

where $R \subseteq \{pk_i\}_1^n \setminus CU$ and \mathcal{A} never queried $\mathsf{RS}(\cdot, \cdot, \cdot)$ with (\cdot, R, m) . We define the advantage of \mathcal{A} as

$$\mathbf{Adv}^{\mathrm{uf}}_{\mathcal{RS},n}(\mathcal{A}) = \Pr[\mathbf{Exp}^{\mathrm{uf}}_{\mathcal{RS},n}(\mathcal{A}) = 1].$$

Uniqueness

Uniqueness

٩

Experiment $\operatorname{Exp}_{\mathcal{RS}\,n}^{\operatorname{unique}}(\mathcal{A})$ $\{(pk_i, sk_i)\}_1^n \stackrel{\$}{\leftarrow} \mathsf{RK}(1^{\lambda}); \ \mathsf{CU} \leftarrow \emptyset; \ \mathsf{RS}_{\mathbf{R}} \mathbf{M} \leftarrow \mathbf{\emptyset}$ $(m, \sigma_1, \cdots, \sigma_{|\mathsf{CUURS}_T m|+1}) \xleftarrow{\hspace{1.5mm}} \mathcal{A}^{\mathsf{USK}(\cdot), \mathsf{RS}(\cdot, \cdot, \cdot)}(T)$ for $i \leftarrow 1$ to $|CU \cup RS_{T,m}| + 1$ do if $\mathsf{RV}(T, m, \sigma_i) = 0$ then return 0 for $i, j \leftarrow 1$ to $|CU \cup RS_{T,m}| + 1$ do if $i \neq j$ and $\tau_i = \tau_j$ then return 0 return 1

where $T \leftarrow \{pk_i\}_1^n$ and each σ_i is of the form (τ_i, π_i) . We define the advantage of \mathcal{A} as

$$\mathbf{Adv}_{\mathcal{RS},n}^{\mathrm{unique}}(\mathcal{A}) = \Pr[\mathbf{Exp}_{\mathcal{RS},n}^{\mathrm{unique}}(\mathcal{A}) = 1].$$

Non-colliding property

Non-colliding property-Not a security definition!

Non-colliding property-Not a security definition!

- Two honest signers never produce the same *unique identifier*.
- Formally, for all security parameter λ and integer n, all $\{(pk_i, sk_i)\}_1^n \stackrel{\$}{\leftarrow} \mathsf{RK}(1^{\lambda})$ with $T = \{pk_i\}_1^n$, all $i, j \in [n]$ and $i \neq j$, and all message $m \in \{0, 1\}^*$, it holds that

 $\Pr[(\tau_i, \pi_i) \stackrel{\text{\tiny \$}}{\leftarrow} \mathsf{RS}(sk_i, T, m); (\tau_j, \psi_j) \stackrel{\text{\tiny \$}}{\leftarrow} \mathsf{RS}(sk_j, T, m) : \tau_i = \tau_j] \le \epsilon(\lambda).$

Outline

- Our Contributions
- 2 Ring Signatures
- 3 Restricted-Use Ring Signatures
- Unique Ring Signatures Syntax and Security Definitions
- 5 A Simple, General, and Unified Framework
- 6 Practical Construction in ROM
- Construction in CRS Model

8 Future Work

Extending Bellare-Goldwasser paradigm

Franklin, Zhang (UC Davis)

Extending Bellare-Goldwasser paradigm

Setup(1^λ) selects a common random string η, a PRF
 F : S × X → Y, and a commitment scheme Com.

Extending Bellare-Goldwasser paradigm

- Setup (1^{λ}) selects a common random string η , a PRF $F : S \times X \to Y$, and a commitment scheme Com.
- RG(1^λ) for user *i* computes C_i = Com(r_i, s_i) for a random s_i, and outputs the public/secret key pair (pk_i, sk_i) as (C_i, (s_i, r_i)).

Extending Bellare-Goldwasser paradigm

- Setup (1^{λ}) selects a common random string η , a PRF $F : S \times \mathcal{X} \to \mathcal{Y}$, and a commitment scheme Com.
- RG(1^λ) for user *i* computes C_i = Com(r_i, s_i) for a random s_i, and outputs the public/secret key pair (pk_i, sk_i) as (C_i, (s_i, r_i)).
- RS (sk_i, R, m) outputs (R, m, τ, π) , where $\sigma = (\tau, \pi)$ is the unique identifier and π is a NIZK proof that $(\{C_j\}_{j=1}^n, R, m, \tau) \in \mathcal{L}_{OR}$ where $\mathcal{L}_{OR} := \{(\{C_j\}_{j=1}^n, R, m, \tau) | \exists (j, s_j, r_j) [C_j = \text{Com}(r_j, s_j) \text{ and } \tau = F_{s_j}(m||R)]\}.$

Extending Bellare-Goldwasser paradigm

- Setup (1^{λ}) selects a common random string η , a PRF $F : S \times \mathcal{X} \to \mathcal{Y}$, and a commitment scheme Com.
- RG(1^λ) for user *i* computes C_i = Com(r_i, s_i) for a random s_i, and outputs the public/secret key pair (pk_i, sk_i) as (C_i, (s_i, r_i)).
- RS (sk_i, R, m) outputs (R, m, τ, π) , where $\sigma = (\tau, \pi)$ is the unique identifier and π is a NIZK proof that $(\{C_j\}_{j=1}^n, R, m, \tau) \in \mathcal{L}_{OR}$ where $\mathcal{L}_{OR} := \{(\{C_j\}_{j=1}^n, R, m, \tau) | \exists (j, s_j, r_j) [C_j = \text{Com}(r_j, s_j) \text{ and } \tau = F_{s_j}(m||R)]\}.$
- $\mathsf{RV}(R, m, \sigma)$ first parses σ as (τ, π) and checks if π is a correct NIZK proof for the language $\mathcal{L}_{\mathsf{OR}}$.

Security

Franklin, Zhang (UC Davis)

Security

• $\mathbf{Adv}_{\mathcal{RS}}^{\mathrm{uf}}(\mathcal{A}) \leq \mathbf{Adv}_{(P,V)}^{\mathrm{sound}}(\mathcal{A}_1) + \mathbf{Adv}_{(P,V)}^{\mathrm{zk}}(\mathcal{A}_2) + n \cdot \mathbf{Adv}_{\mathcal{CM}}^{\mathrm{hide}}(\mathcal{A}_3) + n \cdot \mathbf{Adv}_{F}^{\mathrm{prf}}(\mathcal{A}_4) + n/|\mathcal{Y}|.$

Security

• $\mathbf{Adv}_{\mathcal{RS}}^{\mathrm{uf}}(\mathcal{A}) \leq \mathbf{Adv}_{(P,V)}^{\mathrm{sound}}(\mathcal{A}_1) + \mathbf{Adv}_{(P,V)}^{\mathrm{zk}}(\mathcal{A}_2) + n \cdot \mathbf{Adv}_{\mathcal{CM}}^{\mathrm{hide}}(\mathcal{A}_3) + n \cdot \mathbf{Adv}_{F}^{\mathrm{prf}}(\mathcal{A}_4) + n/|\mathcal{Y}|.$

• $\mathbf{Adv}_{\mathcal{RS}}^{\mathrm{anon}}(\mathcal{A}) \leq \mathbf{Adv}_{(P,V)}^{\mathrm{zk}}(\mathcal{A}_1) + n \cdot \mathbf{Adv}_{\mathcal{CM}}^{\mathrm{hide}}(\mathcal{A}_2) + n \cdot \mathbf{Adv}_F^{\mathrm{prf}}(\mathcal{A}_3).$

Security

- $\mathbf{Adv}_{\mathcal{RS}}^{\mathrm{uf}}(\mathcal{A}) \leq \mathbf{Adv}_{(P,V)}^{\mathrm{sound}}(\mathcal{A}_1) + \mathbf{Adv}_{(P,V)}^{\mathrm{zk}}(\mathcal{A}_2) + n \cdot \mathbf{Adv}_{\mathcal{CM}}^{\mathrm{hide}}(\mathcal{A}_3) + n \cdot \mathbf{Adv}_{F}^{\mathrm{prf}}(\mathcal{A}_4) + n/|\mathcal{Y}|.$
- $\mathbf{Adv}_{\mathcal{RS}}^{\mathrm{anon}}(\mathcal{A}) \leq \mathbf{Adv}_{(P,V)}^{\mathrm{zk}}(\mathcal{A}_1) + n \cdot \mathbf{Adv}_{\mathcal{CM}}^{\mathrm{hide}}(\mathcal{A}_2) + n \cdot \mathbf{Adv}_F^{\mathrm{prf}}(\mathcal{A}_3).$
- $\mathbf{Adv}_{\mathcal{RS}}^{\mathrm{unique}}(\mathcal{A}) \leq t \cdot \mathbf{Adv}_{(P,V)}^{\mathrm{sound}}(\mathcal{A}_1) + \mathbf{Adv}_{(P,V)}^{\mathrm{zk}}(\mathcal{A}_2) + n \cdot \mathbf{Adv}_{\mathcal{CM}}^{\mathrm{hide}}(\mathcal{A}_3) + n \cdot \mathbf{Adv}_{\mathcal{F}}^{\mathrm{prf}}(\mathcal{A}_4) + tn/|\mathcal{Y}|.$

Outline

Our Contributions

- 2 Ring Signatures
- 3 Restricted-Use Ring Signatures
- Unique Ring Signatures Syntax and Security Definitions
- 5 A Simple, General, and Unified Framework
- 6 Practical Construction in ROM
- 7 Construction in CRS Model

8 Future Work

Tight reduction for ring signature is HARD

Tight reduction for ring signature is HARD

• Cramer-Damgård-Schoemakers transformation relies on proof of knowledge—"rewinding", "forking lemma".

Tight reduction for ring signature is HARD

- Cramer-Damgård-Schoemakers transformation relies on proof of knowledge—"rewinding", "forking lemma".
- Loses a factor of *n* due to the multi-user setting.

Tight reduction for ring signature is HARD

- Cramer-Damgård-Schoemakers transformation relies on proof of knowledge—"rewinding", "forking lemma".
- Loses a factor of *n* due to the multi-user setting.

Tight reduction for ring signature is HARD

- Cramer-Damgård-Schoemakers transformation relies on proof of knowledge—"rewinding", "forking lemma".
- Loses a factor of *n* due to the multi-user setting.

Previous constructions on linkable/traceable ring signatures:

• Loose security reduction for Liu, Wei, and Wong linkable ring signature.

Tight reduction for ring signature is HARD

- Cramer-Damgård-Schoemakers transformation relies on proof of knowledge—"rewinding", "forking lemma".
- Loses a factor of *n* due to the multi-user setting.

- Loose security reduction for Liu, Wei, and Wong linkable ring signature.
- Fujisaki and Suzuki traceable ring signature mentioned "online extractor"—far less efficient.

Tight reduction for ring signature is HARD

- Cramer-Damgård-Schoemakers transformation relies on proof of knowledge—"rewinding", "forking lemma".
- Loses a factor of *n* due to the multi-user setting.

- Loose security reduction for Liu, Wei, and Wong linkable ring signature.
- Fujisaki and Suzuki traceable ring signature mentioned "online extractor"—far less efficient.
- Other constructions use strong/exotic assumptions but less efficient.

Tight reduction for ring signature is HARD

- Cramer-Damgård-Schoemakers transformation relies on proof of knowledge—"rewinding", "forking lemma".
- Loses a factor of *n* due to the multi-user setting.

- Loose security reduction for Liu, Wei, and Wong linkable ring signature.
- Fujisaki and Suzuki traceable ring signature mentioned "online extractor"—far less efficient.
- Other constructions use strong/exotic assumptions but less efficient.

Idea—Instantiating the above paradigm

Idea—Instantiating the above paradigm

• "Commitment scheme": $y = g^x$

Idea—Instantiating the above paradigm

- "Commitment scheme": $y = g^x$
- PRF: $F(m) = H(m)^x$

Idea—Instantiating the above paradigm

- "Commitment scheme": $y = g^x$
- PRF: $F(m) = H(m)^x$
- Using zero-knowledge proof of membership, instead of proof of knowledge.

The underlying zero-knowledge proof system:

The underlying zero-knowledge proof system:

• Combining the Chaum-Pederson (CP) for proving the equality of two discrete logarithms and Cramer-Damgård-Schoenmakers (CDS) transformation.

Chaum-Pederson:

A prover and a verifier both know (g, h, y_1, y_2) with $g, h \neq 1$ and $y_1 = g^x$ and $y_2 = h^x$ for an exponent $x \in \mathbb{Z}_q$. A prover also knows the exponent x. They run the following protocol:

- 1. The prover chooses $r \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and sends $a \leftarrow g^r, b \leftarrow h^r$ to the verifier.
- 2. The verifier sends a challenge $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ to the prover.³
- 3. The prover sends $t \leftarrow r cx \mod q$ to the verifier.
- 4. The verifier accepts iff $a = g^t y_1^c$ and $b = h^t y_2^c$.

The underlying "or" proof system:

- A proof system that a unique identifier *τ* has the same logarithm w.r.t. base *H*(*m*||*R*) as one of the public keys *y_j* := *g<sup>x_j* (*j* ∈ [*n*]) w.r.t. base *g*.
 </sup>
- 1. For $j \in [n]$ and $j \neq i$, the prover selects $c_j, t_j \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and computes $a_j \leftarrow g^{t_j} y_j^{c_j}$ and $b_j \leftarrow H(m)^{t_j} (H(m)^{x_i})^{c_j}$; for j = i, the prover selects $r_i \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and computes $a_i \leftarrow g^{r_i}$ and $b_i \leftarrow H(m)^{r_i}$. It sends $\{a_j, b_j\}_1^n$ to the verifier.
- 2. The verifier sends a challenge $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ to the prover.
- 3. The prover computes $c_i \leftarrow c \sum_{j \neq i} c_j$ and $t \leftarrow r c_i x_i \mod q$, and sends $c_1, t_1, \cdots, c_n, t_n$ to the verifier.
- 4. The verifier accepts iff $a_j = g^{t_j} y_j^{c_j}$ and $b_j = H(m)^{t_j} \tau^{c_j}$ for every $j \in [n]$.

The above "or" proof system:

- Sound
- Honest-verifier zero-knowledge of membership.

The above "or" proof system:

- Sound (never used before!)
- Honest-verifier zero-knowledge of membership.

The above "*or*" proof system:

• Following Fiat-Shamir transformation, the soundness-*advantage* is bounded by *q_h/q*, where *q_h* denotes the number of times the adversary makes to the random oracle.

One more technique:

• Random self-reducibility of DDH problem.

Security—All the three notions can be tightly related to DDH problems!

Practical Unique Ring Signature with *Tight* Reduction and *Standard Assumptions*

Security—All the three notions can be tightly related to DDH problems!

•
$$\mathbf{Adv}^{\mathrm{uf}}_{\mathcal{RS}}(\mathcal{A}) \leq \mathbf{Adv}^{\mathrm{ddh}}_{\mathbb{G}}(\mathcal{A}_3) + (2q_h + n + 1)/q.$$

Practical Unique Ring Signature with *Tight* Reduction and *Standard Assumptions*

Security—All the three notions can be tightly related to DDH problems!

- $\mathbf{Adv}^{\mathrm{uf}}_{\mathcal{RS}}(\mathcal{A}) \leq \mathbf{Adv}^{\mathrm{ddh}}_{\mathbb{G}}(\mathcal{A}_3) + (2q_h + n + 1)/q.$
- $\mathbf{Adv}_{\mathcal{RS}}^{\mathrm{anon}}(\mathcal{A}) \leq \mathbf{Adv}_{\mathbb{G}}^{\mathrm{ddh}}(\mathcal{A}_2) + q_h/q.$

Practical Unique Ring Signature with *Tight* Reduction and *Standard Assumptions*

Security—All the three notions can be tightly related to DDH problems!

- $\mathbf{Adv}^{\mathrm{uf}}_{\mathcal{RS}}(\mathcal{A}) \leq \mathbf{Adv}^{\mathrm{ddh}}_{\mathbb{G}}(\mathcal{A}_3) + (2q_h + n + 1)/q.$
- $\mathbf{Adv}_{\mathcal{RS}}^{\mathrm{anon}}(\mathcal{A}) \leq \mathbf{Adv}_{\mathbb{G}}^{\mathrm{ddh}}(\mathcal{A}_2) + q_h/q.$
- $\mathbf{Adv}_{\mathcal{RS}}^{\mathrm{unique}}(\mathcal{A}) \leq \mathbf{Adv}_{\mathbb{G}}^{\mathrm{ddh}}(\mathcal{B}) + t(q_h+1)/q + q_h/q + tn/q.$

Outline

Our Contributions

- 2 Ring Signatures
- 3 Restricted-Use Ring Signatures
- Unique Ring Signatures Syntax and Security Definitions
- 5 A Simple, General, and Unified Framework
- 6 Practical Construction in ROM
- Construction in CRS Model

8 Future Work

What's Old?

What's Old?

• Fujisaki scheme—*first* sublinear-size linkable ring signature without random oracles.

What's Old?

• Fujisaki scheme—*first* sublinear-size linkable ring signature without random oracles.

What's Different?

What's Old?

• Fujisaki scheme—*first* sublinear-size linkable ring signature without random oracles.

What's Different?

• Fujisaki's scheme is based on the ring signature due to Chandran, Groth, and Sahai.

What's Old?

• Fujisaki scheme—*first* sublinear-size linkable ring signature without random oracles.

What's Different?

- Fujisaki's scheme is based on the ring signature due to Chandran, Groth, and Sahai.
- Our scheme follows *exactly* our general framework.

What's Old?

• Fujisaki scheme—*first* sublinear-size linkable ring signature without random oracles.

What's Different?

- Fujisaki's scheme is based on the ring signature due to Chandran, Groth, and Sahai.
- Our scheme follows *exactly* our general framework.

What's Old?

• Fujisaki scheme—*first* sublinear-size linkable ring signature without random oracles.

What's Different?

- Fujisaki's scheme is based on the ring signature due to Chandran, Groth, and Sahai.
- Our scheme follows *exactly* our general framework.

What's New?

• Simplifying and clarifying the overall structure.

What's Old?

• Fujisaki scheme—*first* sublinear-size linkable ring signature without random oracles.

What's Different?

- Fujisaki's scheme is based on the ring signature due to Chandran, Groth, and Sahai.
- Our scheme follows *exactly* our general framework.

- Simplifying and clarifying the overall structure.
- Eliminating the relatively inefficient one-time signature.

What's Old?

• Fujisaki scheme—*first* sublinear-size linkable ring signature without random oracles.

What's Different?

- Fujisaki's scheme is based on the ring signature due to Chandran, Groth, and Sahai.
- Our scheme follows *exactly* our general framework.

- Simplifying and clarifying the overall structure.
- Eliminating the relatively inefficient one-time signature.
- Employing a solo assumption (i.e., Pseudo-Random DDHI).

What's Old?

• Fujisaki scheme—*first* sublinear-size linkable ring signature without random oracles.

What's Different?

- Fujisaki's scheme is based on the ring signature due to Chandran, Groth, and Sahai.
- Our scheme follows *exactly* our general framework.

- Simplifying and clarifying the overall structure.
- Eliminating the relatively inefficient one-time signature.
- Employing a solo assumption (i.e., Pseudo-Random DDHI).
- Requiring *no* proofs—impled by the general framework.

Outline

Our Contributions

- 2 Ring Signatures
- 3 Restricted-Use Ring Signatures
- Unique Ring Signatures Syntax and Security Definitions
- 5 A Simple, General, and Unified Framework
- 6 Practical Construction in ROM
- 7 Construction in CRS Model

8 Future Work

Future Work

• Constant-size ring signature in the standard model.

Future Work

- Constant-size ring signature in the standard model.
- Design and implementation of an E-Voting scheme *without* trusted opener.

Thank you!