Securely Solving Simple Combinatorial Graph Problems

Abdelrahaman Aly Edouard Cuvelier Sophie Mawet Olivier Pereira Mathieu Van Vyve

4 April 2013

Motivation

We investigate the problem of securely solving graph problems:

- in a multi-party setting,
- when the knowledge of the graph is distributed.

Example of applications include:

- privacy-preserving GPS guidance,
- privacy-preserving determination of topological features in social networks,
- privacy-preserving benchmarks between competing network operators.

Contributions

New protocols for securely solving graph problems.

► The shortest path problem:

	Original	Secret weights	Secret structure
Bellman-Ford	V E	V E	$ V ^3$
Dijkstra	$ V ^2$	$ V ^3$	$ V ^{3}$

► The maximum flow problem:

	Original	Secret	Secret
		weights	structure
Edmonds-Karp	$ V E ^{2}$	$ V E ^{2}$	$ V ^{5}$
Push-Relabel	$ V ^{3}$	$ V ^2 E $	$ V ^4$

Challenges related to securely solving graph problems.

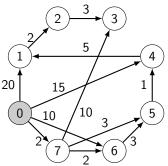
- ► Leakage by execution flow: running time, memory addressing, ... usually depend on the data that are manipulated.
- ▶ **Different efficiency metrics**: The traditional complexity metrics do not transpose to secure computations.
- ► Composability: The algorithm should leak no partial solution.

Leakage by execution flow: running time, memory addressing, ... usually depend on the data that are manipulated.

Leakage by execution flow: running time, memory addressing, ... usually depend on the data that are manipulated.

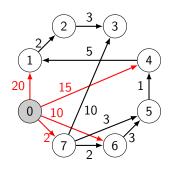
Dijkstra's algorithm maintains for each vertex:

- the status (unreached, labelled, scanned),
- the current previous vertex,
- ▶ the current distance.

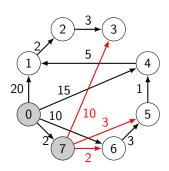


Leakage by execution flow

Dijkstra's first iteration:

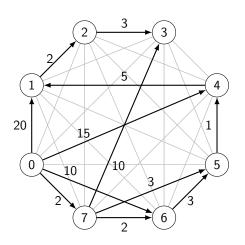


Dijkstra's second iteration:



We need to hide the scanning sequence.

We consider a complete graph to preserve privacy!



Different efficiency metrics: The traditional complexity metrics do not transpose to secure computations.

One comparison costs more than 100 multiplications.

Different efficiency metrics: The traditional complexity metrics do not transpose to secure computations.

One comparison costs more than 100 multiplications.

Complexity for a graph with V vertices and E edges:

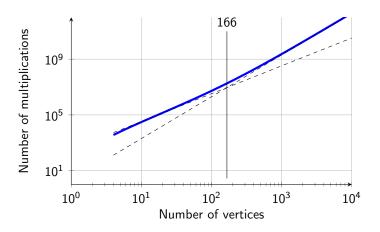
Dijkstra's complexity:

- ► O(V²) comparisons
- $ightharpoonup O(V^3)$ multiplications

Bellman-Ford's complexity:

- $ightharpoonup O(V \cdot E)$ comparisons
- $O(V \cdot E)$ multiplications

Number of multiplications for Dijkstra's algorithm



The dashed lines highlight the quadratic then cubic growths.

Composability: The algorithm should leak no partial solution.

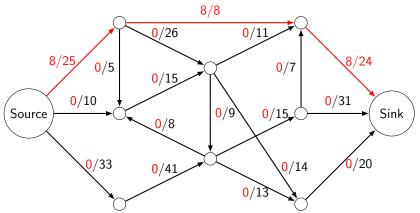
Composability: The algorithm should leak no partial solution.

The maximum flow algorithm makes use of the secure shortest path (which cannot leak any partial information).

Brickell and Shmatikov proposed a shortest path solution that revealed a part of the solution at each step. [BS05]

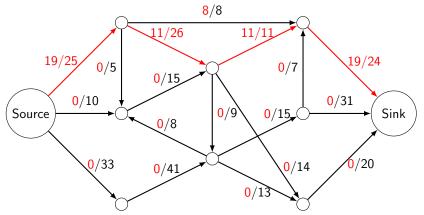
Edmonds-Karp's algorithm

Find the smallest augmenting path in the residual graph in O(E)



Edmonds-Karp's algorithm

Find the smallest augmenting path in the residual graph in O(E)



Number of steps is at most E, length of path is at most V-1

Secure Maximum Flow based on Edmonds-Karp

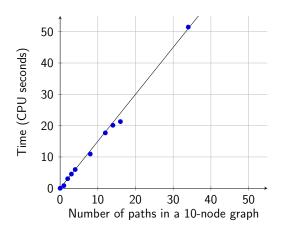
- dynamic search of the smallest augmenting path is tricky
- ▶ hide the length of the paths
- keep the time of execution reasonable

Secure solution for the Maximum Flow

Consider all the paths (sorted) even if they are not augmenting!

- dynamic search of the smallest augmenting path is tricky
- hide the length of the paths
- keep the time of execution reasonable

Results for the secure Maximum Flow



The number of paths has to be small: $< E^2$

Conclusion

Our investigation raised interesting complexity gaps between centralized algorithms and secure protocols.

Further work:

- Design efficient datastructures (for example priority queues [Toft12]),
- ► Trade secure comparisons for cheaper arithmetic operations.

Thank you for your attention!

