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Motivation

We investigate the problem of securely solving graph problems:

I in a multi-party setting,

I when the knowledge of the graph is distributed.

Example of applications include:

I privacy-preserving GPS guidance,

I privacy-preserving determination of topological features in social
networks,

I privacy-preserving benchmarks between competing network
operators.
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Contributions

New protocols for securely solving graph problems.

I The shortest path problem:

Original Secret
weights

Secret
structure

Bellman-Ford |V ||E | |V ||E | |V |3

Dijkstra |V |2 |V |3 |V |3

I The maximum flow problem:

Original Secret
weights

Secret
structure

Edmonds-Karp |V ||E |2 |V ||E |2 |V |5

Push-Relabel |V |3 |V |2|E | |V |4
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Challenges

Challenges related to securely solving graph problems.

I Leakage by execution flow: running time, memory addressing, . . .
usually depend on the data that are manipulated.

I Different efficiency metrics: The traditional complexity metrics do
not transpose to secure computations.

I Composability: The algorithm should leak no partial solution.
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Challenge 1

Leakage by execution flow: running time, memory addressing, . . .
usually depend on the data that are manipulated.

Dijkstra’s algorithm
maintains for each vertex:

I the status (unreached,
labelled, scanned),

I the current previous
vertex,

I the current distance.
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Leakage by execution flow

Dijkstra’s first iteration:
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Dijkstra’s second iteration:
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We need to hide the scanning sequence.
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We consider a complete graph to preserve privacy!
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Challenge 2

Different efficiency metrics: The traditional complexity metrics do not
transpose to secure computations.

One comparison costs more than 100 multiplications.

Complexity for a graph with V vertices and E edges:

Dijkstra’s complexity:

I O(V 2) comparisons

I O(V 3) multiplications

Bellman-Ford’s complexity:

I O(V · E ) comparisons

I O(V · E ) multiplications
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Number of multiplications for Dijkstra’s algorithm
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The dashed lines highlight the quadratic then cubic growths.
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Challenge 3

Composability: The algorithm should leak no partial solution.

The maximum flow algorithm makes use of the secure shortest path
(which cannot leak any partial information).

Brickell and Shmatikov proposed a shortest path solution that revealed a
part of the solution at each step. [BS05]
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Edmonds-Karp’s algorithm

Find the smallest augmenting path in the residual graph in O(E )
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Secure Maximum Flow based on Edmonds-Karp

I dynamic search of the smallest augmenting path is tricky

I hide the length of the paths

I keep the time of execution reasonable
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Secure solution for the Maximum Flow

Consider all the paths (sorted) even if they are not
augmenting!

I dynamic search of the smallest augmenting path is tricky

I hide the length of the paths

I keep the time of execution reasonable
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Results for the secure Maximum Flow
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The number of paths has to be small: < E 2
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Conclusion

Our investigation raised interesting complexity gaps between centralized
algorithms and secure protocols.

Further work:

I Design efficient datastructures (for example priority queues
[Toft12]),

I Trade secure comparisons for cheaper arithmetic operations.
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Thank you for your attention!


