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Abstract. As distributed storage systems grow in popularity, there is now a de-
mand for a reliable incentive and payment system to guarantee and reward the
pristine storage of documents. However, many existing proof-of-retrieval and mi-
cropayment protocols are not secure in a censorship resistance setting, in which
powerful adversaries may infiltrate a system or coerce the original publisher to
remove content. Additionally, most existing censorship resistance systems lack
a rigorous game-theoretic analysis. We propose Lavinia, an audit and payment
protocol for censorship-resistant storage. Lavinia incentivizes document avail-
ability by providing micropayments to participating servers in exchange for hon-
estly storing and serving content. Our protocol enables the implementation of a
digital printing press as described in Anderson’s Eternity Service: allowing the
publisher, as opposed to public interest or an appointed editorial board, to decide
whether a document is worth storing, and for how long. In addition to proving
the security of our protocol, we provide an in-depth game-theoretic analysis and
show that self-interested participants of our system will faithfully implement the
desired behaviour and continue to store documents until their expiration date.

Keywords: censorship resistance, distributed storage, economic incentives, pay-
ment contracts

1 Introduction

Throughout history, the spread of information has been assisted by technological ad-
vances, but has also faced barriers in the form of censorship. With each new advance
in technology that facilitates the spread of knowledge, ideas, and social understanding,
there is an increase in the efforts of censors to limit this spread.

A popular example in the history of censorship and its resistance is the advent of
the printing press [13]. Not only did the ability to print documents easily and efficiently
result in the distribution of previously guarded works, it also led to an increase in the
literacy rate of Europe. Despite censorship attempts, printed documents proved to be
resistant to state-level attempts to remove them. Borders were difficult to patrol thor-
oughly, and the production of many copies of each text made them almost impossible
to eradicate completely. The only important impediment to using a printing press was
the acquisition of enough capital to purchase the requisite raw materials and labour.
? An extended version of this paper is available as a technical report [6].
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Today, worldwide use of the Internet has enabled an even faster and further spread of
ideas than the printing press, and provided the means for near-instantaneous conversa-
tions between physically and politically distant groups. However, although the Internet
has made the distribution and mirroring of content easier and more cost effective than
physical printing, it is also much easier to censor electronic content on a large scale due
to the centralized nature of storage and routing services. For example, the Great Fire-
wall of China [31], capable of filtering and inspecting all traffic that enters and leaves
the country, is a much more practical and scalable censorship strategy than finding and
searching the contents of every physical document that crosses the border. In the United
States, the Digital Millennium Copyright Act (DMCA) provides an extremely flexible
and versatile tool for commercial interests to target content providers and censor digital
content from the web [28].

In an attempt to decrease the centralization of today’s Internet services and provide
Internet users with the censorship-resistant properties of the printing press, Anderson
proposed the Eternity Service [2]. The Eternity Service is a description of an ideal dig-
ital printing press and with it Anderson outlines a conceptual framework for building
censorship-resistant publishing systems in the context of modern digital communica-
tions. However, despite myriad attempts to build systems that fulfill Anderson’s goals,
many of which do provide strong censorship resistance [8, 9, 26, 30], we are still re-
moved from the model of the printing press. Existing systems impose barriers above
and beyond the publisher simply paying for raw materials and labour, such as requiring
the publisher to stay online, take responsibility for distributing their document, or oper-
ate without the guarantee that their document will remain in the system for the desired
amount of time.

Censorship-resistant storage relies on a large number of geo-politically diverse par-
ticipants providing bandwidth and storage space. A significant barrier to the adoption of
existing systems has been the lack of incentives to participate honestly in a distributed
storage system. Existing incentive models are unfit for censorship resistance because
they rely on a centralized audit and payment system or lack a rigorous game-theoretic
analysis of possible attempts to subvert the system and thus maximize earnings. Until
recently, incentive systems also lacked a candidate electronic payment system with the
security and anonymity properties necessary to provide micropayments to participant
servers in exchange for their storage space and bandwidth. However, the development
of cryptocurrencies has provided a new way to administer electronic payments and en-
force payment contracts, similar to the original printing press.

In this paper, we propose Lavinia: a distributed audit and payment protocol for
censorship-resistant storage in which publishers pay for the storage and bandwidth costs
associated with distributing content securely in the presence of powerful censoring ad-
versaries, and receive in return strong guarantees that their content will remain avail-
able for the specified amount of time. We give an extensive game-theoretic analysis of
our protocol and show that rational, self-interested parties will implement our protocol
faithfully, behaving no differently from an honest, altruistic, participant.

In Section 2, we discuss related work on distributed audit and payment protocols.
We then give the models and definitions for censorship-resistant storage and payment
contracts in Section 3. In Section 4 we describe the Lavinia protocol, and we show
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that self-interest results in honest participation in the protocol in Section 5. We give a
security analysis in Section 6, and conclude in Section 7.

2 Related Work

Anderson first proposed a digital version of the printing press 20 years ago [2]. The
Eternity Service is an ideal (yet unrealized) censorship-resistant publishing system that
comprises properties such as plausible deniability for participating servers, anonymity
for publishing authors, and notably a payment system to mimic the model of the printing
press where a publisher pays to have her work replicated and distributed to readers in a
way that is difficult for authorities to track and prevent.

Many existing censorship-resistant publishing systems rely on in-kind payments
and reputation-management protocols to incentivize honest participation and to limit
the effects of a storage-based denial-of-service attack, in which an adversary prevents
the publication of new documents by filling up all available space. Tangler [30] assigns
storage credits to participating servers, allowing them to store a set amount of content
proportional to their own donated capacity. This gives them the option to “rent out” or
donate their storage credits at their own discretion. However, Tangler does not provide
a protocol for credit rentals or donations, leaving servers to adopt insecure or biased
methods of collecting remuneration for their services. Furthermore, there is no audit
process to guarantee that servers continue to store and serve uncorrupted documents
over time. While Tangler does use a comparison of messages to inform other participat-
ing servers of nearby malicious servers, such a reputation system is not secure against
a large number of colluding servers.

Free Haven [11] employs a more complex reputation management system in which
servers assign a reputation and credibility value to all other known servers. Each of these
two values is also accompanied by a confidence rating that reflects the depth of knowl-
edge about the server in question. Servers broadcast referrals that contain suggestions
for these values in the event of honest, malicious, or suspicious behaviour. Although
such a system can pinpoint malicious servers, it does not defend against more compli-
cated game-theoretic attacks in which an adversary behaves honestly but suspiciously
in order to bait other servers into giving false reports.

Vasserman et al.’s one-way indexing scheme [29] solves the complexity of dis-
tributed trust assignments by using a centralized editorial board to curate content and
defends against denial-of-service attacks by deleting unimportant documents from the
system. This centralized design is not ideal for censorship resistance as users cannot
store content that the editorial board deems to be uninteresting or offensive, unless it is
also popular.

Although the development of an electronic payment protocol to incentivize censor-
ship-resistant publishing is novel, it builds on related work in the area of distributed
data storage and retrieval. A key problem in distributed storage is that once a document
is stored, the server responsible for it may decide to discard the data or leave the storage
network. Payment at the time of storage is therefore ineffective, and incremental pay-
ments require careful management of server reputations. There is a large body of work
that addresses the problem of distributed payment in peer-to-peer systems through the
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use of micropayments, audits, and escrow services. Most early systems relied on a cen-
tralized payment system or suffered from problems in scalability or anonymity [10],
which render them unsuitable for censorship resistance. More recent systems tend to
rely on escrow payments to incentivize storage, but still require centralized audits [15]
or in-kind payments where publishers pay by offering access to unused CPU cycles or
bandwidth [22]. These features are undesirable for censorship resistance, where cen-
tralized third parties are vulnerable to attack and publishers (e.g., political dissidents)
should be allowed to cease interaction with the system after publication.

The proposed storage system most similar to our own [20] is fully distributed and
provides micropayments in return for the periodic verification of storage. However, the
proof of retrieval technique used to audit document availability allows servers to dis-
tinguish between auditors and regular users. This knowledge allows them to maximize
profits by refusing to serve content to anyone but an auditor. While this model is ap-
propriate for storing documents that are meant to be accessible by a single user, it does
not fit the needs of a censorship-resistant publishing system in which content is meant
to be accessed by many users, and serving content is equally as important as storing it.
For this reason, our proposed solution will make users indistinguishable from auditors,
forcing servers to deliver content for every access. We utilize a novel micropayment
system in our protocol, similar to existing work, but with additional features that ensure
suitability for censorship-resistant publication, storage, and retrieval.

3 Models and Definitions

3.1 Censorship-Resistant Storage

The structure of censorship-resistant publishing systems differs from that of traditional
storage schemes. Censorship-resistant storage is largely decentralized and dynamic, in-
volving a diverse and constantly changing set of servers. As with traditional printed
documents, wide dispersal and redundancy are essential for increasing the likelihood of
a document’s continued existence over time in a digital setting. The dispersal of sensi-
tive documents across multiple jurisdictions has important advantages: state-sponsored
attempts to remove information from the system will not be able to reach a significant
subset of servers, and a single entity’s attempts to compromise each machine will not
scale to physically separate servers.

Our payment and audit protocol will work with a wide variety of storage schemes,
including many existing censorship-resistant publishing systems. We base our security
and game-theoretic analysis on a general model of storage. Here we briefly describe
existing censorship-resistant storage systems and define our general model.

File retrieval: Documents should be encrypted and split into multiple retrievable
pieces using a threshold scheme [23]. The act of secret sharing provides honest servers
with plausible deniability about what they are hosting, and encryption adds an extra
layer of protection, preventing servers that have acquired multiple shares from using
existing techniques to reconstruct the document. In some jurisdictions, this may afford
them legal protections. We refer to a single document piece as a file f .
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Many existing systems are built as overlays on top of structured peer-to-peer (P2P)
networks such as distributed hash tables (DHTs3) [18, 21, 25]. Each file f is associated
with a keyword, and the space of all keywords is partitioned among partipant servers
to allow for efficient document storage and retrieval. BitTorrent [1] and Freenet [9] are
examples of unstructured P2P systems. Rather than deterministically partitioning the
keyspace among participant servers, documents are initially stored at one location, and
then cached by additional servers when they are retrieved from the system.

In our model, each file f is stored in the system under a lookup key denoted lookup(f).
Performing a lookup for this key will return the server that is currently responsible for
hosting that file. We assume that a lookup will be routed through, on average, a set
of k > 1 servers on its way to the correct host. Additionally, we assume that given
lookup(f), a user is unable to discover all lookup keys necessary to reconstruct the en-
tire document as in the one-way indexing technique [29]. This will provide servers and
auditors with additional plausible deniability.

Redundancy: In the presence of an active censor, a high degree of redundancy
ensures that a document does not become lost if some servers leave the system or refuse
to serve content. We assume that the underlying storage scheme mirrors each file f on a
set of n � 2 servers server

f1, serverf2, . . . , serverfn. We also assume that the server
responsible for the main copy of the file f (i.e., the server that is targeted by performing
a lookup on key lookup(f)) has a way of contacting the mirroring servers.

Churn: Censorship-resistant storage systems are, by their nature, dynamic. We as-
sume that new servers may join the system and that existing servers will leave. When
a server joins the system, she becomes responsible for a subset of the system files. The
new server may contact the server(s) that were previously responsible for her files, and
any server operator may leave the system at any time, and may contact the server(s)
responsible for her files after she leaves.

3.2 Payment System

The main goal of providing compensation to participant servers in a censorship-resistant
storage system is to incentivize the storage and availability of a document for an arbi-
trary amount of time. Anderson originally described an annuity that could accomplish
this goal by “following data around”, providing incremental payments to any server
currently responsible for hosting and serving it [2]. Past precedent indicates that even
small operators will go to great lengths to recover valuable missing data [16].

Recent innovations in cryptocurrencies have provided a means to create a travelling
annuity. Funds may be transferred from a sending “wallet” to a recipient wallet with
knowledge of the sending wallet’s private key. This key can be easily transported along
with a file or document, thereby following it around the storage system. In this section,
we demonstrate the suitability of the Bitcoin cryptocurrency [19] for our protocol. How-
ever, our protocol will work with any payment system with the following properties: (1)
coercion-resistant through geo-political distribution or anonymization, (2) redeemable

3 Although many DHTs are vulnerable to Eclipse [7] or Sybil attacks [12], we note that securing
DHT join and lookup protocols is an active area of research [4, 7, 24] and is outside the scope
of this paper.
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with a distributable secret, (3) time-locked where funds can be placed in escrow until a
fixed time has passed, and (4) associated with an append-only log.

Bitcoin is coercion resistant through both geo-politcal distribution and optional
anonymous extensions. As long as at least 50% of miners accept Lavinia transactions,
there is a high probability that they will not be dropped from the system. Furthermore,
Zerocash [5] may be used for anonymization, eliminating the ability to link payments
with specific documents and thereby thwarting censorship attempts.

Bitcoins are redeemable with one or more secrets. To redeem (i.e., spend) a coin, a
user must be able to sign a transaction with the private key associated with the coin’s
wallet. It has a time-lock feature, which allows the sender to specify a date before which
the coin cannot be redeemed. The payment blockchain doubles as an append-only log,
and the Bitcoin scripting language4 allows the spender to enforce that specific values
are added to this log before a payment can be redeemed.

In our system, a publisher Alice constructs a series of payment contracts P(X, t, S, v).
Each contract places a set of funds X in temporary wallets with private keys s

i

2 S. The
funds cannot be removed until after the time t has passed, and upon redeeming these
funds, the holders of the keys in S must publish the value v to the Bitcoin blockchain.
The set of funds, X = {s1 : x1, . . . , sn : x

n

}, specifies the amount of Bitcoins x
i

that
belongs to the wallet with private key s

i

. The funds may not be redeemed without the
cooperation of all recipients.

Each recipient (i.e., holders of the private keys in S) fulfills the contract P by having
all recipients collectively sign and append a transaction to the blockchain that spends the
coins to their own personal accounts and posts the now-public value v. We denote this
transaction as T (proof(S), v). When the transactions are complete, the funds will be
divided amongst the recipients in the amounts specified by X in the payment contract.

We can construct the payment contract

P({s1 : x1, s2 : x2}, t, {s1, s2}, v)

using the Bitcoin scripting language. When a transaction to spend a coin is processed,
its input script is concatenated to the output script of the transaction that created the
coin. Alice commits to P by submitting a transaction spending coins worth a total of
x1 + x2 to the blockchain. This transaction contains the following output script:

timelock: t
Output: [
{x1,

<Pubkey s1> <PubKey s2> 2
OP_CHECKMULTISIG
OP_SHA256
<hash_of_v>
OP_EQUALVERIFY },

{x2,
<Pubkey s1><PubKey s2> 2
OP_CHECKMULTISIG

4 https://bitcoin.org/

https://bitcoin.org/
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OP_SHA256
<hash_of_v>
OP_EQUALVERIFY }]

It requires a proof of knowledge of the secrets s1 and s2 in the form of signatures
on the subsequent spend transaction. It also requires the next spend transaction to in-
clude the value v in its input script. It verifies this value by ensuring that it hashes to
hash of v. The time lock ensures that the next spend transaction will not be submitted
to the blockchain until the time t has passed.

The transaction T that fulfills this contract must have the following input script:

<v> <sig s1> <sig s2>

Each owner of a secret in the set S must provide a transaction with this input script
to redeem their funds. This involves signatures from both parties on each transaction.

4 Lavinia Protocol

4.1 Overview

Lavinia allows a publisher to publish content, submit payments, and then vanish from
the system completely—the continued availability of content is not contingent on the
actions of the original publisher. This protects against out-of-band coercion tactics such
as rubber-hose cryptanalysis in the case that the publisher is captured or prosecuted.
Additionally, third-party benefactors may fund existing documents to increase the like-
lihood that they will remain in the system or extend the document’s lifetime. This en-
sures that even popular content with higher bandwidth costs will remain in the system.

Micropayments to participating servers occur during audit periods chosen by the
publisher or benefactor during the initial payment step. The publisher chooses a dif-
ferent auditing server for each audit period and places with them the responsibility of
checking a file for availability at some time during that period, in exchange for a small
remuneration. An auditor lacks sufficient evidence to prove her auditor status and re-
quests the file as a regular user would, forcing the server to respond to both audits
and regular requests for content. We place restrictions on the auditor by preventing
her from learning which files she will audit until the previous audit period has passed.
At that time, she may access the file’s lookup key by searching the payment system’s
append-only log. Finally, we place additional incentives to ensure that all audits and
remuneration occur in a timely manner at each audit time.

An important challenge associated with making censorship resistance a possibly
profitable endeavor is ensuring that a participant is unable to game the system and re-
ceive payments without providing services. We assume that participants in the Lavinia
protocol are rational and self-serving entities who will employ any means necessary to
receive payments while incurring as few costs as possible in the form of storage space
and network bandwidth. The fault tolerance features of our protocol will also defend
against a small number of irrational, malicious participants. In Section 5, we show that
exploiting this self-interest strengthens the censorship-resistant properties of the system
and increases the likelihood that a document remains available until its expiration date.
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Alice Server Auditor

kw(rsi , skSi)

Commits to P(X, ti, {skSi, skAi}, kw(ri, skAi), {skBi, x3})

ti�1, ti, kw(skAi�1, lookup(f)), kw(H(fkskAi�1), skAi), ri�1, ri, kw(H(fkskAi�1), rsi)

at time t

Finds value kw(ri�1, skAi�1)

Unlocks lookup(f)
Search for lookup(f) in storage

f

Decrypts skAi, rsi
rsi

(Posts kw(ri, skAi) to log)

T (proof({skSi, skAi}), kw(ri, skAi))

Can’t find kw(ri�1, skAi�1)

T (proof(skBi), skBi)

Fig. 1. Protocol for setting up payments and auditing a file f during the period [ti�1, ti], where
kw(s,K) is a function that encrypts a key K with a secret s. The burn procedure is shown in red.

Although Lavinia cannot directly help impoverished users publish documents safely,
it does provide a way for third parties to help them more efficiently by allowing them
to create payment contracts on behalf of the publisher or to suppliment existing docu-
ments. For example, concerned free speech advocates could form a fund to store docu-
ments they felt were meritorious, and perhaps even participate as servers in the storage
system and host content for free.

4.2 Protocol Details

We give the full Lavinia protocol in Figure 1. During publication (or at any time through-
out the life of the document) a publisher or benefactor, Alice, prepares payments for
each of their files f stored in the system.

Alice first determines a set of times T = {t1, . . . , tn} that separate the audit periods
during which she wishes her document to be checked for availability. (For convenience,
let t0 denote the time of publication of the document.) She creates a payment contract
for each time t

i

2 T . For example, if she wishes her document to be audited approxi-
mately once a month for two years, she would then create 24 payment contracts for each
file f she uploads to the system. These contracts form an agreement between Alice, the
servers hosting her shares, and the auditors responsible for ensuring her document’s
availability.

For each of Alice’s contracts, she randomly generates new wallets with private keys
skA and skS for an auditor and server, respectively. She then decides on the payment
amounts X = {skA : x

a

, skS : x
s

} for the auditor and server.
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The time lock enforces that funds will not be transfered until the audit period ending
at time t

i

has passed. Let kw(s,K) be a key wrapping function that encrypts a key
K with a secret s. We assume that this key wrapping function is secure and that the
ciphertext does not leak information about the secret s or the key K. Alice encrypts the
auditor’s secret with a random value r to produce the masked secret v = kw(r, skA);
v becomes the value that must be posted to the append-only log to redeem the contract,
as described in Section 3.2.

Alice now constructs a contract
P({skA

i

: x
a

, skS
i

: x
s

}, t
i

, {skS
i

, skA
i

}, kw(r
i

, skA
i

)).
for each audit period by spending coins to the newly created wallets, as described in
subsection 3.2. This places funds for the file f in escrow with the server responsible
for hosting the share and the auditor responsible for assuring its existence in the audit
period [t

i�1, ti]. She distributes the server secrets skS
i

for each time t
i

to the server
hosting the file by encrypting them with the key wrapping function kw and a random
value r

si to produce the masked server secrets {kw(r
si , skSi

)}n
i=1. If the file changes

hands (as in a dynamic storage system), the secrets {kw(r
si , skSi

)}n
i=1 travel with it.

Alice then selects auditors for each of her contracts, and sends to each of them the
beginning and end of their audit period, t

i�1 and t
i

, the lookup key for f encrypted with
the previous auditor’s secret, kw(skA

i�1, lookup(f)), and the masked auditor secret,
kw(H(fkskA

i�1), skAi

), encrypted with a hash of the file f concatenated with the
previous auditor’s secret, where the cryptographic hash function H is both pre-image
resistant and collision resistant. The first auditor for time period [t0, t1] will also receive
the value skA0, randomly chosen by Alice. Finally, she sends the auditor the random
value r

i�1, which is used to decrypt the previous auditor’s secret, the random value r
i

,
which the auditor will use to encrypt her secret, and kw(H(fkskA

i�1), rsi), which the
auditor will later decrypt and send to the server to unlock skS

i

. After this point, the
publisher or other benefactor is free to cease all interaction with the system. The con-
struction and distribution of the above payment information can be performed during
or after the publication of the document. Note that it is in Alice’s interest to construct
these values honestly. An incorrect or insecure value that prevents a server or auditor
from being paid or allows them to cheat the system will increase the probability that her
files will be dropped.

To ensure that Alice’s files will be audited during each time period, the server and
auditor should not be paid before their audit period ends and they should not be able
to audit the document before their audit period begins. To accomplish this, we use the
payment system’s time-lock feature and encrypt the lookup keys and secrets for auditor
[t
i�1, ti] with the published value v of auditor [t

i�2, ti�1]. In order for the auditor of
period [t

i�1, ti] to unlock her secret skA
i

, she must know skA
i�1.

This scheme has the advantage of enforcing the time lock with self-interest. The
auditor [t

i�2, ti�1] cannot redeem her payment until time t
i�1 has passed. When an

auditor moves funds, she must also release her encrypted secret, kw(r
i�1, skAi�1) to

a publicly viewable append-only log. At this time, the auditor for the period [t
i�1, ti],

who owns r
i�1, is able to compute her own secret and perform the audit of the file. If

the previous auditor releases her secret ahead of time, she runs the risk of forfeiting her
payment to the next auditor (since her secret will then be visible to that auditor). We
note that if a server is temporarily unavailable at the time the auditor attempts to retrieve
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publication

time = t
i�1 time = t

i

P(X, t
i

, {skA
i

, skS
i

}, kw(r
i

, skA
i

), {skB
i

, x3})
Alice commits to:

Alice gives Auditor [t
i�1, ti]:

random values: r
i�1, ri, kw(H(fkskA

i�1), rsi)
document key: kw(skA

i�1, lookup(f)),
locked private key: kw(H(fkskA

i�1), skAi

)

Burn secret: skB
i

kw(r
i�1, skAi�1)

Auditor [t
i�2, ti�1] posts

Auditor [t
i�1, ti] sends

T (proof(skB
i

), skB
i

)

Auditor [t
i�1, ti]

decrypts skA
i�1,

lookup(f)

Auditor [t
i�1, ti]

retrieves file f

Auditor [t
i�1, ti]

decrypts skA
i

T (proof(skA
i

), kw(r
i

, skA
i

))

Auditor [t
i�1, ti] sends:

Fig. 2. The timeline of an audit sequence for a file f from the perspective of its auditor for period
[ti�1, ti]. If the auditor for period [ti�2, ti�2] fails to complete their audit and post their private
key, the next auditor will follow the burn procedure shown in red.

the file f , the auditor can continue to query for the document until her audit period has
passed. We show the timeline for auditing a file f at audit time t

i

in Figure 2.
Alice initializes this sequence by providing the first auditor with a randomly gener-

ated initialization key skA0 and the following values:
t1, lookup(f), kw(H(fkskA0), skA1), r1, kw(H(fkskA0), rs1)

Note that this first auditor must still conduct a lookup of the file f to unlock her secret
skA1 and the server’s random secret r

s1 .

4.3 Burn contracts

A disadvantage of the method of sequential payments described above is the impact of
an auditor leaving the system, even temporarily. If the previous auditor fails to release
her information after time t

i�1, the auditor during [t
i�1, ti] will not be able to perform

her audit or receive remuneration for her efforts. This in turn will prevent subsequent
auditors from receiving the information needed to perform their audits, effectively ter-
minating the revenue stream for the file. A malicious party could easily exploit this by
posing as an auditor, and simply declining to perform her audit, or coercing an honest
auditor into skipping a single payment on some targeted document. To avoid this, we
extend the requirements of our payment system to allow an auditor to burn the previ-
ous auditor’s payment after her time has passed. If an auditor at time t

i

becomes aware
that the previous audit failed, she will be able to burn the money in both her and her
predecessor’s accounts and forward the secret to the next auditor in the chain. In order
to incentivize burning instead of complete inaction, we allow auditors to keep a small
fraction of the profits they would have received if an audit were possible (though not so
large that they would prefer burning payments to performing audits).

We define P(X, t, S, v, {skB, x3}) to be an extension of the payment contract in
subsection 3.2 to allow Alice to specify a burn secret, skB

i

and a payment amount x3

for each time t
i

. This will invalidate payments to the secrets in skS
i�1 and skA

i�1,
and pay the holder of this secret the amount x3. The money is burned if and only if
an auditor issues a transaction T (proof(skB

i

), skB
i

) where she posts skB
i

to the log.
Alice provides the auditor for period [t

i

, t
i+1] with the previous auditor’s secret locked
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with their burn secret, kw(skB
i

, skA
i

) at the initial time of payment. This will allow
the auditor at time t

i+1 to proceed as usual.
Each auditor will then receive the previous auditor’s secret locked with the previous

burn secret. In addition to preventing deliberate attacks on the chain of audits, this
will incentivize auditors to complete their assigned audits before the next time period
begins. We now give an implementation of the burn functionality in Bitcoin using the
OP RETURN call. The following Bitcoin script implements the payment contract:

P({skS
i

: x1, skAi

: x2}, ti, {skSi

, skA
i

}, kw(r, skA
i

), {skB
i+1, x3})

Output: [
{x1,

<hash_of_skB> OP_EQUAL
OP_IF

OP_RETURN //burns the money
OP_ELSE

<Pubkey skS> <Pubkey skA> 2
OP_CHECKMULTISIG
OP_SHA256
<hash_of_kw(r, skA)>
OP_EQUALVERIFY

OP_ENDIF
}, {x2, //same as x1 script },
{x3,

<hash_of_skB> <Pubkey skB>
OP_CHECKSIG

}]

4.4 Choice of Auditors and Audit Times
Auditors can conceivably be any collection of entities willing to participate in the
Lavinia protocol. We do not make any assumptions about whether or not they also
participate as servers in the system. However, auditors do need to be discoverable by
Alice. For maximum security, Alice should choose a different auditor for each audit
time and file. This requires a potentially large number of auditors. One way to increase
the ease of distribution and discoverability is to make the set of servers and auditors
one and the same. This would allow Alice to choose a random lookup key for each
payment contract, and probabilistically ensure that no one auditor will be responsible
for multiple audit times of a single file.

To reduce the ability of servers to guess future audit times, a publisher can choose
times at random intervals, distributed according to a Poisson process. This defends
against an attack in which servers only serve content during brief time windows around
fixed intervals in an effort to distinguish between auditors and regular users.

We also note that any reader can claim to be an auditor for an audit time t, and
servers are unable to verify her identity. Even if the server is certain about the next
audit time, there will always be at least some period between the release of the previous
secret and the retrieval of the document by the next auditor during which the servers
will be forced to serve the document to all users.
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5 Game Theory Analysis

In the Lavinia protocol, servers are incentivized to behave correctly by the potential
profits they earn from delivering files. While individual operators might have nobler
motives, we claim that the harnessing of the profit motive is actually an advantage of
our system in many respects. Operators who see an opportunity for profit can go to
great lengths to ensure the integrity of the system, and to ensure they are able to fulfill
their obligations. However, the use of the profit motive also has a distinct disadvantage:
profit-seeking operators will not necessarily conform to the desired protocols and be-
haviours of the system if they can find and implement a more profitable protocol, which
may not include desired behaviours [14]. In this section, we show that rational, profit-
maximizing server operators will follow the Lavinia protocol faithfully by continuously
storing and serving documents to both regular users of the system and auditors.

Game theoretically, we model choices of servers within a censorship-resistant stor-
age system as a game played by the set of server operators A, and denote player i by
A

i

. Each player operates one or more servers, all connected to the same network, and
tries to maximize her own profits, but does not try to reduce the profits of other players
(unless doing so increases her own profits).5 We assume there are ⌘ servers in total, and
denote the set of all servers by S, and server j operated by player i with S

i,j

.
In our model, each player plays several families of games, in which they select a

strategy in the form of a set of policy decisions (e.g., when to store a file or when to
serve a requested file). Strategies are selected to maximize the profit functions of each
player, potentially based on what the other players do. The set of strategies selected
by all players is called a strategy profile. A strategy profile forms a Nash equilibrium
when, even with complete knowledge of what the other players have done, no player
could improve her profits by retroactively adopting a different strategy. An equilibrium
is a dominant strategy equilibrium when no player could improve her profits, regardless
of what the other players may or may not do. If the dominant strategy equilibrium is not
unique (there exists, e.g., two equally good actions for a player to take), we assume that
players prefer the strategy that is closest to the Lavinia protocol (a useful assumption
in many game theoretic contexts [27]). This is essentially an assumption of sloth: no
player should waste resources to change from the default client behaviour to something
else, if there is no change in her overall profits.

5.1 The Static Game

To begin, we consider a simplified version of the storage system where the network
topology is fixed. This environment is unrealistic, but could be a useful approximation
of the network in the long run (i.e., after it has operated for a long time, and includes
many players). Its study will also provide insights for the model considered in the next
subsection, in which servers can both join and leave the network.

In this game operators must pick a strategy for operating their servers. An operator
must adopt the following policies:

5 We consider the impact of malicious servers in the next section.
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– A serving policy, ⇧
share

, that specifies for each file f held by a server, whether
or not to serve the file when it is requested. This policy is expressed as a set of
probabilities 0  ⇧

share

(f)  1, each of which specifies the probability that the
server responds to a request for file f .

– A storage policy ⇧
store

that specifies whether or not to continue storing a file f
expressed as a set of probabilities 0  ⇧

store

(f)  1.
– A routing policy ⇧

route

, that specifies how a server s responds to lookup requests
that are routed through it. This policy cannot depend on any particular f , but may
instead depend on the server or lookup key. This policy can be split into three
components: ⇧

route

(s, any), ⇧
route

(s, self) and ⇧
route

(s, others), respectively
denoting whether the routing information from server s is sent at all, whether the
routing information contains correct information about the keyspace managed by
s, and whether the routing information for the keyspace of other servers is correct.

We further model global properties of the network with �
send

(f), and �
route

(s):
the fraction of requests for a file f that are correctly routed (eventually) to the server
storing f , and the fraction of routing traffic that passes through s as a fraction of all
traffic expected to pass through s (i.e., 1

⌘

of all traffic is expected to pass through s).
Additionally, we denote by �

hop

the average number of routing steps made by a given
request. Finally, the function �

BR

(f) denotes the ratio of lookup requests made by
ordinary users to lookup requests made by auditors for a particular file f . The functions
g
transmit

(f) and c
transmit

(f) denote the profit from sending f to an auditor, and the
transmission cost of sending f to anyone, respectively. c

route

similarly denotes the cost
of sending routing information for one lookup key, and T is the total number of lookups
into the system. We are now able to state a formal characterization of how rational actors
will behave in the important set of static games of this kind (see the extended version
of this paper [6] for the proof).

Theorem 1. If every server in the network is a starting point for 1
⌘

lookups, and no
lookup will visit the same server more than once, then provided that for every server

s in the storage system,

P
f

1
⌘

(g
transmit

(f)� �
BR

(f)c
transmit

(f))

T
> c

route

, and

for every file f stored at s,
1

⌘
(g

transmit

(f) � �
BR

(f)c
transmit

(f)) > c
store

(f), then

there exists a dominant strategy Nash equilibrium where all servers adopt the strategy
⇧

store

(f) = 1 and ⇧
send

(f) = 1, for all f , and ⇧
route

(s, all) = R
s

, where R
s

is the
correct routing information for s.

The interpretation of this result is that, in a static system in which traffic levels
for files are relatively constant in the longer term (i.e. �

BR

(f) does not change much
from the server’s initial belief), rational servers will conform to the Lavinia protocol
even if other servers behave irrationally, subject to some modest, realistic, constraints.
Further, when more servers behave rationally, �

send

(f) increases, while �
hop

�
route

(s)
decreases, making the cost of irrational behaviour (relative to rational behaviour) in-
crease (see the extended version of this paper [6] for the proof). We conclude that this
indicates the system should be quite stable in practice, once established.

We note that, although storage and bandwidth costs will vary by jurisdiction, the
price of storage hardware at the moment amounts to approximately $0.03 per GB in
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the United States,6 and the cost of bandwidth is approximately $10/month per Mbps,7
which also equals $0.03 per GB. The profit from hosting a file, g

transmit

(f), should
then be at least (⌘ + �

BR

)

$0.03
GB · |f |.

5.2 Estimating �BR

Since the strategy adopted by the server is dependent on �
BR

, the ratio of unprofitable
reader traffic to profitable auditor traffic, we now explain how servers might compute
this quantity, and consequently compute their strategies.

If we assume that audit times are Poisson distributed, as mentioned above, then a
server A

i

still needs to estimate the frequency of non-audit traffic to compute �
BR

.
In practice, the amount of non-audit traffic may change dramatically over time (e.g.,
making it an inhomogeneous Poisson process or a Cox process [17]). For example,
one might expect a rapid increase in reader traffic if an important file is posted, and
then later discovered and reported in the press. If A

i

cannot model the change in the
process’s value over time, then it cannot reasonably decide whether to continue serving
the file in response to sudden spikes in traffic (like a denial of service attack). It also
cannot decide whether or not to continue storing the file if traffic grows too high (in
the hope that traffic rates will decline again in the future), or to discard it (under the
assumption that transmitting the file will never again be profitable).

In essence this is a traffic prediction problem, which is an active area of research. We
suggest the use of a simple piece-wise linear approximation process [17], to estimate the
current rate of requests. Since the auditor’s request rates should not change over time,
it can be estimated using a conventional maximum likelihood approach, where events
take the form of a payment by an auditor. Thus, using the rate of payments for the file,
�
T

, and the rate of total requests for the file, �
f

, a server can calculate �
BR

=

�f��T
�T

.

5.3 Dynamic Behaviours

Having established that Lavinia is stable when the set of players is static, we now con-
sider strategic behaviour in scenarios where servers can join and leave the network. In
this section, we rely heavily on the presence of cached content in the storage system.
When Alice publishes a document, she should store copies of each file, along with its
payment keys at mirroring servers. We will show in this section that servers have strong
incentives for continuing to store this information in the long term.

After a server joins the network, it will be present in the routing information of
all servers that point to its keyspace8. The only needed result is to show that newly
joined servers will be able to acquire the content, and vitally, the payment information,
associated with their assigned keyspace. We refer to this as the mirroring subgame. As
stated, we assume that each file f is mirrored by at least two other servers s

f1 and s
f2.

The mirroring subgame is then a game played between a new server that wishes to join
6 http://www.mkomo.com/cost-per-gigabyte-update
7 https://blog.cloudflare.com/the-relative-cost-of-bandwidth-around-the-world/
8 Note that we assume the presence of a secure routing protocol, in which there are protections

against servers reporting incorrect routing information [7].
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the network, which we call s
new

, and three other servers, s
orig

, s
f1 and s

f2. We denote
by key(s) the identity determining the keyspace of a particular server. The other servers
are defined as follows: s

orig

is the server that holds some files that the new server s
new

would like to take over. s
f1 and s

f2 are currently mirroring the file f . We derive the
following equilibrium result (see the extended version of this paper [6] for the proof):

Theorem 2. In the mirroring subgame, there is a Nash equilibrium where the joining
server s

new

offers a one-time payment to either s
f1 or s

f2, selected randomly, and will
receive f with certainty. Further, this amount is not more than half the long-run total
value of the mirrored file, ensuring a long-run profit for s

new

.

We have now established that, under the assumption a joining server s
new

will re-
ceive all income from acquired content, it can still plausibly acquire said content. Hav-
ing established this, it is straightforward to show that servers are able to come and go
from the network at will. To leave the network, a server simply copies the content to
the server that will be responsible for the files after she leaves and mirrors the content
at the new mirroring servers server

f1, . . . , serverfn. These mirror servers will accept
the extra load if the content is profitable to host in the first place, because it can be sold
to future joining servers for a sum that will likely cover its costs, provided that network
churn occurs frequently enough relative to the storage cost of the content. Since pay-
ment times are Poisson distributed, no particular block of time is worth more than any
other in expectation, so servers cannot gain value by repeatedly joining and leaving.
Note also that although many servers may thus end up with a given file and the asso-
ciated payment keys, only the server reached by an auditor will receive the r

s

value
needed to unlock payment for that time period.

Under our assumptions regarding secure routing, Lavinia incentivizes an equilib-
rium where servers can join and leave at will, and where content will be stored re-
dundantly. Coupled with the more robust equilibrium for a system with low churn, our
results reinforce the idea that Lavinia satisfies the goals of our payment protocol.

6 Security

We claim our audit protocol is secure if an attacker is unable to: (1) compute the value
of skA for any audit time t, unless she is the auditor for time t, or time t has passed
and the previous auditor has posted to the append-only log, (2) receive a payment for
auditing a file f at time t, unless she has retrieved f from the system sometime after the
previous audit time has passed, and (3) receive a payment for serving a file f at time
t, unless she has served f after the previous audit time has passed. We defend against
these attacks through the use of the key wrapping function kw and the cryptographically
secure hash function H . For a full proof, see the extended version of this paper [6].

While the security of the protocol itself guarantees that an auditor or server is unable
to receive payment without faithfully implementing the protocol, there are a number of
attacks that a malicious adversary willing to forego personal gains could employ to drop
content from the system. We will now describe these attacks and their defenses.

Denial-of-Service (DoS) Attacks: As mentioned, a document that is frequently ac-
cessed will have a higher associated bandwidth cost for the hosting server. An adversary
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could flood the storage system with lookups in order to make content costly, incentiviz-
ing servers to stop serving certain files. There are defenses that servers could deploy
individually, such as rate limiting by IP or requiring the performance of a small compu-
tational task, to limit the number of lookups by a single user. However, these techniques
are useless against distributed attacks. In any case, we argue that a short-lived DoS at-
tack will not result in content being dropped from system, but rather that servers will
refuse to serve content only until the number of requests drop back to normal levels. A
long-term DoS attack may be discoverable or too costly even for a state-level censor.
Even the DDoS attack on Github by the Chinese government [3], which lasted five days,
is still short term in the context of a document with a life span of multiple years.

Auditor-Server Collusion: An integral part of our protocol is that an audit must
look no different from a regular request, forcing a server to deliver content at every re-
quest in return for possible payment. We show that an auditor lacks a sufficient amount
of proof to reveal her status to the server without forfeiting her own payment. The only
way for an auditor to prove her status before faithfully collecting the file f during the
audit is to provide the server with kw(H(fkskA

prev

), r
s

) and lookup(f), allowing the
server to retrieve skS. However, the server cannot validate that this signing key is cor-
rect without the other signing key skA, and the only way for the server to validate it
without serving the file to any auditor or reader that claims to possess skA is for the
auditor to give the server kw(H(fkskA

prev

), skA), forfeiting her payment.
Join-and-Leave Attacks: In an effort to inherit content from existing servers and

drop it from the system entirely, an adversary can employ a join-and-leave attack. By
repeatedly joining the network, an adversary will inherit a subset of documents from
existing servers in the system. If the adversary leaves the system without replicating
or moving these documents, the content will be lost. We argue that the existence of
mirrored content and the profit motive will result in multiple redundant copies of each
document, and that these copies may be found with minimal investigation.

False Payment Attacks: An adversary can attempt to trick servers or auditors into
dropping a document from the system by issuing false payment contracts, forcing the
server-auditor pairs to undergo the audit and payment protocol before she realizes that
there are no funds associated with the provided payment keys. We argue that a document
will still remain in the system as long as the original payments provided by Alice cover
the marginal cost of participating in the additional malicious audits, which would be
very small. Furthermore, the adversary is required to put some amount of funds in
escrow and is unable to receive her funds until the audit time t has passed, allowing an
auditor and server pair to race the adversary to complete the protocol and receive the
additional payment. An adversary may try to overwhelm Alice’s original contract by
flooding the system with thousands of worthless ones. Such an attack is quite costly, in
both computing resources and capital, as it requires a large amount of transactions in
which the adversary must submit real payment contracts.

7 Conclusion

We have proposed Lavinia, a novel audit and payment protocol that incentivizes the
continued availability of published content by remunerating server participation in a
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privacy-preserving manner. Lavinia provides a publisher with the means to specify an
arbitrary storage time for her documents. The continued availability of stored docu-
ments is ensured by an audit and payment protocol, in which servers and auditors are
compensated for ensuring that the document stays in the system until its expiration date.
We provide a game-theoretic analysis that shows servers in the storage system acting
on behalf of self-interest to maximize profits will participate honestly in the Lavinia
protocol. With these requirements met, the Lavinia protocol provides the final pieces
for a comprehensive realization of a true digital printing press for the Internet age.
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