
A Proof-of-Stake protocol for
consensus on Bitcoin subchains

M. Bartoletti Stefano Lande A. S. Podda

University of Cagliari, Italy

Workshop on Trusted Smart Contracts, 2017

Bitcoin
Bitcoin is a popular cryptocurrency that uses a blockchain to store
transactions, i.e. exchanges of BTC between client addresses

Less frequently, transactions are also used to embed a few bytes of metadata,
usually via the OP_RETURN instruction

Subchains
Some platforms exploit metadata to store tamper-proof messages on the
blockchain, examples:

EternityWall
(stores short
text messages)

Proof-Of-Existence
(stores hashes
of notary documents)

...

The sequence of messages of a platform forms a subchain

Subchains (2)

For EternityWall etc., there are no causal dependencies between messages,
so you can rearrange them without losing the “consistency” of the subchain:

Vice versa, platforms that want to execute decentralized computations (eg:
smart contracts) need to reach a consensus on the messages they publish

➔ less trivial to achieve “consistency”

σ = “Hello world” :: “I’m happy” :: “P != NP”σ = “Hello world” :: “P != NP” :: “I’m happy”

Example
The smart contract FACTORS_n. Each client that extends the subchain with
a new factor of n is rewarded by 1 BTC. Two possible messages:

● (A, x) : the client A broadcast a new factor x of n
● (pay(1, A), x) : the client A is rewarded by 1 BTC to have found x

Possible subchains for FACTORS_330:

σ1 = (A, 11) :: (B, 2) :: (pay(1, A), 11) :: (pay(1, B), 2)

σ2 = (A, 11) :: (pay(1, A), 11) :: (M, 11)

σ4 = (A, 11) :: (pay(1, M), 11)

σ3 = (M, 229) :: (pay(1, M), 229)

Bitcoin nodes cannot determine subchain consistency (they ignore metadata):
they publish all messages indistinctly → consensus between platform nodes is
required:

Which is the next valid subchain message?

Well-known existing platforms (eg: Counterparty) do not use a consensus
mechanism. As consequence, each node has its own view of the subchain

Consistent subchains

(A , x)

Su
bc
ha
in

(B , y)

(C , z)

(M , Ф)

Contribution
We propose a protocol that allows platform nodes to reach consensus on
subchains built upon the Bitcoin blockchain:

● by specifying how platform nodes must uniquely choose the next
update;

● by economically penalizing dishonest nodes (i.e., those violating the
protocol)

The protocol implements a Proof-of-Stake

Proof-of-Stake upon Proof-of-Works vs. pure Proof-of-Stake

The model
We abstractly model platform-specific computations as an LTS

A label of the LTS has the form (A, x), denoting that client A publishes the
update message x

We use a special label (A, pay(v, B)) to indicate an update message that also
transfers v BTC from A to B

Example: a finite fragment of the LTS of FACTOR_330

(A, 5)

(pay(1, B), 11)(pay(1, A), 5)
(B, 11)

(pay(1, A), 5)

(M, 229)

(pay(1, M), 5)

(C, 2) (pay(1, C), 2)

An update (A, x) is consistent when the new subchain, obtained appending it
to the current suchain, is consistent

Consistency
We say that a subchain λ = (A1, x1) ... (An, xn) is consistent whenever λ is a path
of the LTS

(A1, x1) (An, xn)

Protocol

Platform nodes Clients

request 1

request 2

request 3

The protocol is organized in stages of fixed duration

At the begin of each stage, clients send their update requests to the network
of platform nodes...

(A , x)

Su
bc
ha
in

(B , y) (C , z)

Protocol (2)
… then, each platform node votes the updates that it considers consistent

To vote a request, a node must:

● invest к BTC on it ⇒ к is a fixed stake amount

● confirm a message previously published on the subchain

C

(A , x)

Su
bc
ha
in

(B , y) (C , z)

Protocol (3)
… then, nodes send voted request to the request pool

The arbiter sign all well-formed request

The nodes send all signed request to Bitcoin node. Only one transaction will
appear in the new block

sig

sig

(A , x)

Su
bc
ha
in

(B , y) (C , z) (D , w)

Implementation on Bitcoin

 Standard transactions ✓

Properties of the protocol
Let S be the total stake of the network, and S

h
 the total stake of honest

platform nodes

In a given protocol stage:

● the probability that an honest node (with stake h) updates the
subchain is at least h/S

● the probability that a dishonest node updates the subchain is
at most (S - S

h
)/S

Self-compensation attack
The attacker can publish an inconsistent update, the appends a consistent one
to get its first stake back

An honest node will confirm the second update, so the attacker append an
inconsistent update without losing its stake

(A , x)

Su
bc
ha
in

(M , y) (C , z)(M , Ф)

The probability p of an attacker succeed in a self-compensation attack is at
most:

Where C is the checkpoint offset, μ is the attacker stake over the total

The probability grows with C. For instance, for μ = 0.01:

● C = 2 → p = 0.0001
● C = 3 → p = 0.000297
● C = 4 → p = 0.00058806

Self compensation attack (2)

Experimental validation

Experimental validation (2)

● Proof-of-Stake over Bitcoin
○ Allow to maintain consistent subchains
○ Economic disincentive to dishonest platform nodes

● Future works:
○ Develop a programming language for smart contracts
○ Implement a framework to publish and execute smart contracts

Conclusions

Thank you!

