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WTSC18  Overview 
 
 
 
These proceedings collect the papers accepted at the ​Second Workshop on Trusted Smart 
Contracts (WTSC18)​ associated to the Financial Cryptography and Data Security 2018 
(FC18) conference held in Curaçao in 2018 (February 26–March 2, 2018). 
 
WTSC18 focused on ​smart contracts ​, i.e. self-enforcing agreements in the form of 
executable programs, and other ​decentralised applications​ that are deployed to and run 
on top of (specialised) blockchains. These technologies introduce a novel programming 
framework and execution environment, which, together with the supporting blockchain 
technologies, carry unanswered and challenging research questions. Multidisciplinary 
and multifactorial aspects affect correctness, safety, privacy, authentication, efficiency, 
sustainability, resilience and trust in smart contracts and decentralised applications. 
 
WTSC18 aimed to address the scientific foundations of Trusted Smart Contract 
engineering, i.e. the development of contracts that enjoy some verifiable “correctness” 
properties, and to discuss open problems, proposed solutions and the vision on future 
developments amongst a research community that is growing around these themes and 
brings together users, practitioners, industry, institutions and academia. This was 
reflected in the multidisciplinary Programme Committee of this second edition of WTSC, 
comprising members from companies, universities, and research institutions from 
several countries worldwide, who kindly accepted to support the event. The association 
to FC18 provided an ideal context for our workshop to be run in. WTSC18 was partially 
supported by the University of Stirling, UK, the University of Trento, IT, and FC18 
IFCA-ICRA. 
 
This second edition of WTSC18 received fourteen submissions by about thirty authors, 
of which eight were accepted after peer review as full papers, and have been collected in 
the present volume. These analysed the current state of the art and legal implications of 
smart contracts; addressed aspects of security and scalability; proposed protocols for 
sealed-bid auctions, for lending cryptocurrencies, for distribution and managements of 
digital certificates; introduced logging schemes and models theorem-proving-based 
verification for smart contracts. 
 
WTSC18 also enjoyed Arthur Breitman (Tezos Founder) and Bud Mishra ( NYU, USA) as 
keynote speakers. Arthur gave a talk on present and future perspectives on models for 
Smart Contracts, while Bud presented a model for decentralised drug development. 
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BURPA or Bust!

How to build a Bio-Unified Research Project Agency?

(Extended Abstract)

Bud Mishra1

In collaboration with: Q. Qi, L. Rudolph, F. Savas, and M. Weill

Courant Institute, NY 10012, USA,
mishra@nyu.edu

Abstract. A specter of sky rocketing drug prices is haunting the global health care. A novel
market micro-structure in alliance with theories from financial engineering, smart contracts,
systems biology and information asymmetric games can exorcise this specter, thus enabling
lower per-patient costs for both curative and non-curative therapies for acute and chronic
diseases, respectively, while accelerating research on drug discoveries.

Here, we formalize our and others’ earlier design of mega-funds via an information-asymmetric
signaling game model and then implement it with verifiable smart contracts. The model not
only elucidates how the stakeholders strategically interact in this market using deception,
adverse selection, moral hazards, etc. but also how to tame their interactions to improve
the overall performance. In particular, we suggest and rigorously evaluate an embodiment
built on a scalable implementation of smart contracts and crypto-currencies. Using extensive
simulations, we show that, in the smart-contract-based mega-fund both senior and junior
tranche investors get their principals fully repaid in 99.9%of the time.

In costly signals, we trust; it’s BURPA or bust!

Keywords: Smart Contracts, Information Asymmetric Games, Cancer Megafund

1 Problem with Current Bio-Research Project Models

The pharmaceutical industry faces a significant barrier against accelerating research for drug discov-
ery: specifically, for cancer. The average cost of new drug development in the U.S. was around USD
2.6 billion in the past ten years – up from an average of USD 1 billion in the 1990s. Such extraor-
dinarily high costs for drug development are not only reflected in skyrocketing prices of approved
cancer drugs, which thus places a substantial burden on U.S. households, but also in discouraging
the pharmaceutical industry from allocating research-and-development (R&D) resources to projects
with narrow profit margins. This state of a↵airs leaves many cancer subtypes, rare genetic disorders
or third-world infectious diseases, all but neglected. Subsequently, it can result in critical medical
needs remaining largely unmet. According to many scholars, such high costs, and by inference, the
declining e�ciency of R&D investment in biomedical industry, is a major indicator that the current
biomedical business model is flawed, relying too heavily on the incentive provided by patents to
rationalize the risk of investing in biomedical R&D.



1.1 Four Stages of Bio-Research Projects

Specifically, there are four stages for each biotechnological research: (i) funding; (ii) innovation and
research; (iii) clinical trials and regulation approval; (iv) pricing and marketing (See Figure 1).
Based on these stages, we categorize all the current research processes into two major approaches:

1. Not-for-profit approach: Government agencies (or charity and other nongovernmental organiza-
tions) collect funds from tax payers (or general public), and then distribute them to researchers
in the university labs or research institutions based on peer review process. If a researcher makes
a breakthrough, he either starts up an enterprise through a technology transfer o�ce or licenses
it to pharmaceutical companies.

2. Market approach: Pharmaceutical companies collect funds from venture capitalists or the capital
market and hire researchers to work on promising projects. If a drug is approved by FDA,
companies price it and sell it in the market or to the hospitals.

Fig. 1: Stages of traditional biotechnology research. The resulting market microstrucrures struggle
with various forms of adverse selection, deception and moral hazards, which result from informa-
tion asymmetry, exacerbated by mis-aligned utilities, lack of a community wide social norms and
enforceable complete contracts.

In both of these approaches, participants from each stage usually have conflicts of interest,
leading to fragmented strategies and agenda, which stifle information sharing across research teams
necessary to advance treatments and cures.

Specifically, the not-for-profit approach su↵ers from the following three problems. First, govern-
ment or non-profit organizations end up ine�ciently allocating resources. For example, politicians
may steer taxpayers money away from drug development to serve their own interests. As a re-
sult, under-investment is always an issue for not-for-profit drug development. Second, the interests
of researchers and patients are not fully aligned. Purely academic competition among researchers,
while beneficial in basic science research, prohibits them from sharing research results transparently
and only a small percentage of NIH-funded medical research yields positive results that end up in
publications. Third, the drug price is determined by pharmaceutical companies, therefore there is
no control by the taxpayer or patients (who through charity invest their money in the first place)
to rationally but strategically interact with the other key players.



1.2 Information Asymmetry and its E↵ects

Although the market approach is more e�cient in allocating resources, pharmaceutical companies
have traditionally taken advantage of its inherent information asymmetry to maximize corporate
profit by charging high drug prices for the patients. In addition, they may only focus on disease
groups that promise blockbuster returns and leave many rare diseases untreated. Powerful Big
Pharmas also hold patents, trade secrets, know how, copyright, etc. for processes associated with
actionable biomarkers and molecules. They are able to charge significant licensing fees to researchers
who use or work on these intellectual assets, imposing barriers to information sharing within the drug
development community. Thus, for instance, while personalized therapies are touted as the future
of biomedicine, it is practically impossible to motivate a cohort to participate with their genomic
data, as it will only deliver mostly equivocal, uninterpretable or non-actionable biomarkers, but not
much else.

2 Combining with Crypto-currency and Smart Contracts

Given a biomedical research question (Example: “Can a drug [e.g., Avastin] be developed that will
target hypoxic breast tumor cells by inhibiting angiogenesis?”), at least three types of resources are
needed for the necessary research to gain momentum. These resources are: (i) research e↵orts from
researchers (who understand angiogenesis pathways), (ii) capital provided by investors (who per-
form due diligence on suitability, safety and e�cacy of Avastin ([Bevacizumab]) and (iii) data from
patients attending clinical trials (who su↵er from advanced breast cancer with VEGF mutation).
Now, suppose a type of contract (possibly associated with a currency) existed and represented
the ownership of all the pharmaceuticals, as well as the intellectual properties produced during
this drug development process (henceforth, biomedical-research-based crypto-currency shortened,
crypto-currency). This currency could then be earned by patients if they attend clinical trials, could
be earned by researchers if they conduct experiments for this research question, and could be bought
by investors. We may then conclude that the currency’s versatility will lead to patients, researchers
and investors from everywhere identifying themselves and noncoercively contributing to this drug
development processes. In addition, if every participant in the drug development process owned
part of the final products, their interests would be automatically aligned, as they receive nothing if
the drug development process fails.

In order for this currency to serve as the norm, we need to make sure that all participants in the
drug development believe this currency has value. The key di↵erence between a drug development
process and bitcoin mining is that drug development is highly experimental in the sense that its
success rate depends highly on the talents, stamina and perseverance of researchers, and its outcome
cannot be evaluated solely by computer models in silico.

2.1 Institutions

Therefore, we propose the following three (virtual) institutions to facilitate the drug discovery
process and honor the commitment by the cryptocurrency.

1. A cryptocurrency mega-fund that sets predetermined rules for the open innovation re-
search process, constructs diversified portfolios of these research projects, issues cryptocur-
rency to represent the ownership of these portfolios and honors the commitment of the crypto-
currencies. It is worth noting parenthetically that the organizational structure of this cryptocur-



rency mega-fund is fundamentally di↵erent from that of the mega-fund proposed by Fagnan et
al.(2013)(henceforth, centralized mega-fund). In the centralized mega-fund, the fund managers
need to optimize decisions of capital structure, through buying and selling compounds for each
experiment, as well as by hiring and contracting with researchers in each stage of the drug de-
velopment. The possibility of a misalignment of interests between fund managers and investors
– one of the primary reasons behind 2007-2009 financial crisis – could significantly reduce the
profitability of such a mega-fund. The crypto-market mega-fund would overcome this concern
by using a decentralized, transparent, and market-based solution for drug development. All the
activities during the open innovation research process follows predetermined rules. By avoiding
a central authority governing the market and other transitional institutions, it avoids non-
transparency and deception associated with the market manipulation. It also globalizes the
system and encourages scaling with liquidity.

2. A blockchain ledger ensuring that all predetermined rules will be implemented as contracts
with minimum costs. Specifically, the mega-fund manages each research project through smart
contracts and real-time accounting. For investors, the costs of collecting accounting information
and of enforcing the contracts are almost zero. For researchers, the funds for each stage of
research will be distributed automatically if they meet predetermined milestones, their use of
the cryptocurrency will be recorded in a real-time accounting system, and their discoveries will
be time stamped on the blockchain. Now they have a cheaper and faster way to protect their
intellectual property rights, alternative to patenting them. By compensating innovation with
the cryptocurrency, researchers contributions will subsequently find their way into a commercial
product, and they are then entitled to a statutory share of the products revenues.

3. A secondary exchange market of the cryptocurrency which would give liquidity to pa-
tients, investors and researchers. Encouraged by the cost-e�cient feature of the cryptocurrency
mega-fund, pharmaceutical companies would want to collaborate, instead of competing, with
this mega-fund. They, along with health insurance companies, public health organizations (e.g.
CDC) and charities could join the exchange market as market makers. Namely they could buy
big blocks of these cryptocurrency based on their estimation of the demand, and subsequently
sell it to future patients. New occupations would then emerge and will include data analysts,
who will estimate returns and risks using translational systems biology and machine learning
and then price the cryptocurrency to help investors better understand the research feasibility
and progress.

3 The Importance of Smart Contracts

In our approach, more productive researchers will get much more research funds and higher com-
pensation than current system. In fact, there are three design goals for the new funding system: (i)
more innovative, e�cient and productive researchers will get more funds; (ii) the researchers will be
paid based on their performance, therefore the return to researchers with breakthrough discoveries
under the new system will be significantly higher than those under the current system; (iii) the
researchers are encouraged to take risks. In other words, they need not fear of being punished for
failure when trying innovative approaches.

To design a funding system with these features, we need a better understanding of the following
two questions: (i) What is the production function of knowledge? (ii) What is the best way to
motivate researchers? These are questions that have been studied for decades, yet no consensus has



Fig. 2: Crypto-currency system. It tames the information asymmetry with flows of information
balanced by reciprocating flows of obligations and rights (via investments and smart-contracts).
Furthermore, it seamlessly includes all stake-holders: patients, researchers, investors and regulators.
For example, patients invest on research based on disease risks, receive crypto-currencies and acquire
the rights to buy drugs from research upon disease onset.

Fig. 3: Secondary market of crypto-currency. It brings liquidity by inviting additional market par-
ticipants, who may have access to better informatics (e.g., systems and synthetic biology) for mon-
itoring, pricing and arbitraging.



been reached. Here we just want to borrow some recent development from the mechanism design
literature and present a new funding scheme that can generate better returns to the researchers
and investors than the current system.

Smart contracts are important in the context of this principal-agent problem, in which investors
(the principal) delegate the researchers (the agents) to search for a solution of the targeted disease.
Researchers have private information about the distribution of potential outcome and their own
abilities (adverse selection), as well as the e↵orts they put into researching (moral hazard). They
can choose between two di↵erent approaches to finish the job: one is a routine approach and the
other is an experimental approach. We then combined the findings from the dynamic mechanism
design literature (see bibliography for some examples) and propose a new mechanism as follows:

1. At the creation of each SPV (special purpose vehicle, a legal entity with specific responsibilities),
researchers submit their research proposals to the mega-fund. This research proposal will include
estimates for deadlines, measurable milestones and budget needed for each milestone.

2. All the research proposals are analyzed by the mega-fund and ranked based on the past per-
formance of the researcher, feasibility of the research approach, correlation of this approach to
other approaches and its budget. More importantly, the mega-fund may also need to under-
stand the interdependence among the proposals and the nature of coordination, cooperation
and competition that it entails.

3. Approved research project is funded under a vesting schedule associated with a cryptocurrency
account. A smart contract, imposed on the account, pays the researchers as determined by the
research proposal. That is, cryptocurrency for the next stage research is paid to the researcher if
and only if the targeted milestone at current stage is met within the predetermined time frame.

4. The budget has an option-like feature: the amount of cryptocurrency paid at each stage is
determined by the initial price of the cryptocurrency, or the current price of cryptocurrency if
it is lower than the initial price, to meet the proposed budget. In other words, if the price of the
cryptocurrency appreciates, then the researchers will enjoy a higher value than his proposed
budget; if the price of the cryptocurrency depreciates, then the researcher still gets his proposed
budget.

5. For projects that is terminated early because of failing experiments or missing a milestone, the
remaining unspent crypto-currencies are redistributed among the other ongoing projects. In this
way, the successful projects are rewarded not only by the appreciation of the cryptocurrency,
but also by the increasing amount of their cryptocurrency budget. This structure is reminiscent
of DARPAs program continuation scheme with hurdles.

6. The results of the research (e.g., drugs) are made available for purchase using crypto currencies
to an investor (e.g., a potential patient) upon disease onset. At any time, the patient may also
relinquish his rights by selling the crypto currencies in a secondary market.

4 Conclusion

Ina forthcoming paper, Mishra and Qi have simulated the system with realistic parameters and
obtained promising results (to be reported in details in the full paper).

At an abstract level, they have demonstrated how to structure the smart contracts in order to
simultaneously improve the reputation of and rewards to each researcher, the e�cient pricing of
drugs via the cryptocurrency, and the liquidity in the resulting market – all made possible by this
type of smart contract’s ability to address the following information asymmetry problems.



Adverse selection: Since researchers are paid by their long-run performance, their motivation
of producing “Lemon projects” are minimized. As in the game-theoretic literature, a “Lemon
project” refers to the situation where a researcher has deceptively concealed his lack of skill
or the infeasibility of the proposed project by overstating his qualifications or by justifying the
project with fraudulent non-reproducible results, respectively. These projects can only meet a
few initial milestones and their fund will be shut down as soon as the flaws are detected. Such an
outcome will hurt the researchers reputation and significantly reduce their chances of acquiring
future research funds from the mega-fund.

Risk Taking: The option setting of the budget ensures that the researchers are protected from the
downside risk in research and will be willing to explore the risky non-incremental approaches.
First, if any research succeeds in the pool and the price of cryptocurrency appreciates, then the
fund for all the other researchers in the pool will also be increased. Therefore the compensation
to researchers not only depends on the outcome of his own experiment, but also on the SVPs
pool of other experiments. Second, if many research projects in the pool fail, the secondary
market may depreciate the cryptocurrency in an irrational way. The mega-fund will guarantee
that other researchers project are still properly funded. In this way, the mega-fund ensures that
all researchers put proper e↵orts into their respective projects to avoid a contagious default of
the SPV.

Moral Hazard: The design of the fund also ensures that researchers who make a breakthrough
in their research will be rewarded proportionately. First, if any compound in the system goes
to next phase, the price of the cryptocurrency will jump significantly; second, funds from failed
projects will be redistributed among the surviving projects in their funds. Suppose just one
single drug gets FDA approval in an SPV, then the team which discovered this drug will get
the highest amount of cryptocurrency. It is the same amount of cryptocurrency had the team
conducted all the experiments in the SPV on their own. Free Riding: Note that the smart
contract has two opposite e↵ects on the researchers motivation. On one hand, the long-run
income induced by their reputation motivates them to put as much e↵orts as they can (career
concern); on the other hand, the fund they get is a function of the price of the cryptocurrency,
which depends on their performance. However, because the outcome of the mega-fund (or the
price of cryptocurrency) is a joint e↵ort of all the researchers in the portfolio, researchers may
want to free ride and put less than assumed e↵orts in research (free ride). Terms and structures
of the smart contracts need to be carefully designed so that the career concern motivations
dominate the free-ride incentives.

References

1. Qianru Qi and Bud Mishra: Cryptomarket MicroStructure for a Biomedical MegaFund, Under Review,
2017.

2. Esther Kim and Andrew Lo: Business Models to Cure Rare Disease: a Case Study of Solid Biosciences.
Journal of Investment Management, 14(4):87101, 2016.

3. David Fagnan, Jose Fernandez, Andrew Lo, and Roger Stein: Can financial engineering cure cancer? In
American Economic Review, 103:406411, 2013.

4. X. Yang, Edouardo Debonneuil, Alex Zhavoronkov and Bud Mishra: Cancer megafunds with in silico
and in vitro validation: Accelerating cancer drug discovery via financial engineering without financial
crisis. Oncotarget, 7(36):5767157678, 2016.



 



Ghazal: toward truly authoritative web
certificates using Ethereum

Seyedehmahsa Moosavi1 and Jeremy Clark1

Concordia University

Abstract. Recently, a number of projects (both from academia and in-
dustry) have examined decentralized public key infrastructures (PKI)
based on blockchain technology. These projects vary in scope from full-
fledged domain name systems accompanied by a PKI to simpler trans-
parency systems that augment the current HTTPS PKI. In this paper,
we start by articulating, in a way we have not seen before, why this ap-
proach is more than a complementary composition of technologies, but
actually a new and useful paradigm for thinking about who is actually
authoritative over PKI information in the web certificate model. We then
consider what smart contracts could add to the web certificate model,
if we move beyond using a blockchain as passive, immutable (subject
to consensus) store of data — as is the approach taken by projects like
Blockstack. To illustrate the potential, we develop and experiment with
an Ethereum-based web certificate model we call Ghazal, discuss di↵erent
design decisions, and analyze deployment costs.

1 Introductory Remarks

The blockchain data structure and consensus mechanism has received sig-
nificant interest since being introduced as the underlying technology of the
cryptocurrency Bitcoin in Satoshi Nakamoto’s (pseudonymous) 2008 whitepa-
per [25]. In 2014, Buterin presented a new blockchain based application known
as Ethereum [10]. As a blockchain-based distributed public network, Ethereum
implements a decentralized virtual machine, known as the Ethereum Virtual Ma-
chine (EVM), which allows network nodes to execute deployed programmable
smart contracts on the Ethereum blockchain [31].This platform enables develop-
ers to create and execute blockchain applications called decentralized applications
(dapps) that are executed correctly according to the consensus of the network.
A Dapp’s code and data is stored in a decentralized manner on the blockchain.
Dapps or smart contracts are now often written in a high level programming
language such as Solidity which is syntactically similar to Java [1]. Digital smart
contracts were first described Nick Szabo in 1993 [28], however they reached a
high level of adoption through blockchain technology.

One application of blockchain technology that has received some research and
commercial interest is the idea of replacing (or augmenting) the web certificate
model used by clients (OS and browsers) to form secure communication channels
with web-servers (described in more detail below). This model has been plagued
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with issues from fraudulent certificates used to impersonate servers to ine↵ective
revocation mechanisms; see Clark and van Oorschot for a survey [12]. We argue
that the application of blockchains to this model is more than an interesting
experiment; it is actually a new uni-authoritative paradigm that resolves some of
the fundamental issues with the current model — authority and indirection. We
also argue that adding programmability to a dapp-based PKI provides benefits
beyond using the blockchain as an append-only broadcast channel. Finally, we
instantiate our ideas in a novel system called Ghazal implemented in Solidity and
deployed on Ethereum. At the time of writing, the overall system costs under
$100 to deploy. Basic actions like domain registration costs under $5.

2 Related Work

The HTTPS (HTTP over SSL/TLS) protocol enables secure connections to web-
sites with confidentiality, message integrity, and server authentication. Server au-
thentication relies on a client being able to determine the correct public key for a
server. The current web certificate model uses a system of certificate authorities
(CAs); businesses that provide this binding in the form of a certificate. Client
devices, through the browser and/or the operating system, are pre-installed with
a set of known CAs who can delegate authority to intermediary CAs through a
protocol involving certificates. When a CA issues a certificate to a web-server,
there are generally three types: domain validated (DV) certificates bind a public
key only to a domain (e.g., example.com), while organization validated (OV)
and extended validated (EV) certificates validate additional information about
the organization that operates the server (Example, Inc.).

Namecoin is an altcoin (software based on Bitcoin with a distinct blockchain)
that implements a decentralized namespace for domain names [17]. The main
feature of Namecoin is that for a fee, users can register a .bit address and
map it to an IP address of their choice. CertCoin [14], and PB-PKI [7] are
extensions to Namecoin that add the ability to specify an HTTPS public key
certificate for the domain (as well as other PKI operations like expiration and
revocation, which we discuss in Section 4.1). Blockstack [6] achieves the same
goal by embedding data into a root blockchain, a process called virtualchains that
could be instantiated with OP RETURN on Bitcoin’s blockchain. These approaches
are closest to our own system Ghazal. These systems disintermediate CAs from
the web certificate model. The main di↵erence is that we use Ethereum to provide
full programmability (motivated below in Section 3.2). In addition, we provide
some minor improvements such as allowing multiple keys to be bound to the
same domain, as is common for load balancing and CDNs.

Some research has looked at adding transparency, e↵ectively through an
e�cient log of CA-issued certificates, to augment the current web certificate
model. This is a very active area of research that includes certificate trans-
parency (CT) [18], sovereign keys (SKs) [2], and ARPKI [8]. IKP [22] provides an
Ethereum-based system for servers to advertise policies about their certificates
(akin to a more verbose CAA on a blockchain instead via DNS). Research a bit
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further removed from web certificates concerns decentralized PKIs and broader
identities. While not decentralized, CONIKS provides a distributed transparency
log similar to CT but for public keys (while they could be for anything, email and
IM are the primary motivations) [23]. Bonneau provides an Ethereum smart con-
tract for monitoring CONIKS [9]. ClaimChain is similar to CONIKS but finds
a middle-ground between a small set of distributed servers (CONIKS) and a
fully decentralized but global state (blockchain) by having fully decentralized,
local states that can be cross-validated. CONIKS and ClaimChain do not use
CAs but rather rely on users validating the logs, which are carefully designed
to be non-equivocating. ChainAnchor provides identity and access management
for private blockchains [15], while CoSi is a distributed signing authority generic
logging [27]. Each of these systems is concerned with logging data (a generic um-
brella that encapsulates many of these is Transparency Overlays [11]). As logging
systems, they do not provide programmability which is the primary motivation
for our system.

Finally, some research has explored having public validated by external par-
ties but replacing the role of CAs with a PGP-style web of trust. SCPKI is an
implementation of this idea on Ethereum [5]. Our observation is that for domain
validation, a blockchain with a built-in naming system is already authoritative
over the namespace and does not require additional validation.

3 Motivation

3.1 Are Blockchains a new paradigm for PKI?

In the related work, most blockchain-approaches to identity (or specifically PKI)
motivate their approach with Zooko’s triangle; an articulation of three natural
properties one might want from an identity system: memorable names, secure (as
in hard to impersonate), and a distributed authority for issuing names. His as-
sertion is that two of the three properties can be achieved e↵ortlessly but adding
the third is di�cult or impossible. Blockchains, starting with Namecoin for do-
main names and extensions to PKI, are often claimed to resolve this trilemma
enabling all three properties in one system. A blockchain is distributed, short
human-friendly names can be claimed by anyone, and ownership over a name is
secured with a strong cryptographic key.

We approach thinking about this issue a little di↵erently. In the current web
certificate model, certificate authorities are meant to be authorities: that is,
they are authoritative over the namespace they bind keys to. The reality is that
the web still runs largely on domain validated certificates [13,16] and for do-
main validation, certificate authorities are not any more or less authoritative
over who owns what domain than you or I. Certificate authorities instead rely
on indirection. For example, a certificate authority might validate a request by
Alice for a certificate for alice.com by sending an email to admin@alice.com

with a secret nonce that Alice must type into a webform. This involves 2 levels
of indirection: (1) CAs appeal to DNS to establish the MX record of the domain
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(i.e., the subscriber’s mail server’s IP address); (2) CAs appeal to SMTP to es-
tablish a communication channel to the subscriber. For each level of indirection,
there are a set of vulnerabilities which might allow a malicious party to break
the verification process and obtain a fraudulent certificate for a domain they do
not own. For example, consider the attack surface of email-based validation:

1. Reserved Emails: A CA specifies a list of email addresses to receive the
challenge. The underlying assumption is that only the domain owner controls
this address. However the domain owner might not reserve that email address
or even be aware that a certain email address is being used by one of the CAs
for this purpose. And recall that just a single CA needs to use a single non-
standard email address (e.g., a translation of administrator into their local
language) to open up this vulnerability. For example, Microsoft’s public web-
mail service login.live.com saw an attacker successfully validate his own-
ership of the domain using an email address sslcertificates@live.com

which was open to public registration [32].
2. Whois Emails: A CA also optionally draws the email address from the

Whois record for the domain. A domain’s whois record is generally protected
by the username/password set by the domain owner with their registrar.
Any attack on this password (e.g., guessing or resetting) or directly on the
account (e.g., social engineering [3]) would allow the adversary to specify an
email address that they control.

3. MX Record: A CA establishes the IP address of the mailserver from the
MX record for the domain. As above, all domain records including the MX
record is managed through the owner’s account with her domain registrar.
Any method for obtaining unauthorized access to this account would enable
an adversary to list their own server in the MX record and receive the email
from the CA.

4. DNS Records: If an adversary cannot directly change a DNS record, they
might conduct other attacks on the CA’s view of DNS. For example, they
might employ DNS cache poisoning which can result in invalid DNS res-
olution [26]. They might also exploit an available dangling DNS record
(Dare) [19]. Dares occur when data in a DNS record (such as CNAME,
A, or MX) becomes invalid but is not removed by the domain owner. For
example, if the domain owner forgets to remove the MX record (the IP ad-
dress of the server) from DNS, the associated DNS MX record is said to be
dangling. If an adversary can acquire this IP address at some future point,
he is able to redirect all tra�c intended for the original domain to his server,
including information su�cient for a CA’s domain validation process. Thus
a malicious party can use a Dare to obtain a fraudulent certificate. In a uni-
authoritative system, Dares are still possible (old data that hasn not been
purged from the system) but the public keys dangle with the IP address,
which resolves the security issue for mis-issued certificates

5. SMTP: Once the CA establishes the mailserver’s record, it will send the
email to the mailserver with SMTP (the standard protocol for transfer of
email). Since the email contains a secret nonce, confidentiality of this email
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is crucial. SMTP uses opportunistic encryption that is not secure against an
active adversary. Thus a man-in-the-middle between the CA’s mailserver and
the ultimate destination (including an forwarding mailservers) could request
a fraudulent certificate, intercept the ensuing email, reply with the correct
nonce, and be issued the fraudulent certificate.

6. Email Accounts: Email accounts are generally protected with a username
and password (over IMAP or POP3) to prevent unauthorized access. In
some cases, they might be protected with a client certificate. An adversary
who can gain access to any one of the accounts that should be reserved by
the domain owner (e.g., textttadmin, hostmaster, webmaster, etc.) could
obtain a fraudulent certificate for that site. This could include guessing or
resetting the password, using social engineering, or obtaining access to the
server hosting the email for the account.

Blockchains are actually a new paradigm; they collapse the indirection for
domain validation. If a PKI were added to a blockchain, who would be authorita-
tive over the namespace of domain names? When domain names themselves are
issued through the blockchain (e.g., Namecoin), then the blockchain is actually
the authoritative entity. Arguably, this indirection can be collapsed in the tradi-
tional web certificate model as well. There DNS (in conjunction with ICANN) is
authoritative over the namespace and if ICANN/DNS held key bindings, there
would be no indirection or CAs needed — indeed, this is exactly the proposal
of DANE. Thus blockchains and DANE are both examples of what we might
call a uni-authoritative paradigm. A deployment issue with DANE is that DNS
records do not generally have message integrity (except via the under-deployed
DNSSEC) whereas blockchain transactions do.

3.2 Does programmability add anything?

In the related work, some systems take a uni-authoritative approach while others
rely on third party authorities (generally, CAs or web of trust). Most systems
that use a blockchain (or similar trasnparency log) do it in a passive way—as an
append-only broadcast channel; a few systems actually use smart contracts or
the programmability that a blockchain provides. Of all these systems, to the best
of our knowledge, none are both uni-authoritative and use programmability. We
have argued the merits of uni-authoriatiative above, what about programmabil-
ity? What does it provide?

Programmability, or PKI bindings within a smart contract, can enable fea-
tures that seem desirable. A few examples include: external contracts that can
easily obtain information about a domain in making decisions; atomonicity
within domain name transfers where payments and transfers are inputs to the
same transaction (e.g., even Namecoin relies on a third party tool called ANTPY
to perform atomic name ownership transfer transactions); and fancier options for
transfering domain names: we implement an auction where any domain owner
can auction o↵ their domain within the smart contract itself. The reader might
think of other features that programmability could add.
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In defence of non-programmable blockchain-based PKIs, such as Blockstack,
it is not clear how well a system like ours scales and what demands it puts on
user clients to quickly fetch information on domains. We return to this in the
next section, however we note here that we are not claiming programmability
necessarily wins out in the end, only that it is worth exploring from a research
perspective to better understand the trade-o↵s.

4 The Ghazal System

Our proposed scheme is entitled Ghazal, a smart contract-based naming and PKI
uni-authoritative system. 1 It enables entities, whether they are people or organi-
zations, to fully manage and maintain control of their domain name without re-
lying on trusted third parties. In Ghazal, a user can register an unclaimed domain
name as a globally readable identifier on the Ethereum blockchain. Subsequently,
she is able to assign arbitrary data, such as TLS certificates to her domain. These
values are globally readable, non-equivocating, and not vulnerable to the indirec-
tion attacks outlined above. The penalty paid for a uni-authoritative approach
is that Ghazal has to carve out its own namespace that is not already in use
(e.g., names ending in .ghazal like Namecoin’s .bit or Blockstack’s .id). OS
and browsers would have to be modified before any system like this can be
used. Anyone can claim a domain on a first-come, first-serve basis. Because it
is decentralized, names cannot be re-assigned without the cooperation of the
owner (whereas an ICANN address like davidduchovny.com can be re-assigned
through adminstrative mediation).

The design of Ghazal consists of two essential elements. First, the smart
contract that resides on the Ethereum blockchain and serves as an interface
between entities and the underlying blockchain. The second primary component
of the system are the clients, including people or organizations that interact
with Ghazal smart contract in order to manage their domain names. Figure 1
represents the primary states a domain name can be in and how state transitions
work. These states are enforced within the code itself to help mitigate software
security issues related to unintended execution paths.

4.1 Exploring Ghazal design choices

Beyond simply presenting our design, we think it is useful to explore the land-
scape of possible designs. To this end, we discuss some deployment issues that
we faced where there was no obvious “one right answer.” These are likely to
be faced by others working in this space (whether working narrowly on PKI or
broad identity on blockchain solutions).

Design Decision #1: Domain Name Expiration

Typically domain name ownership eventually expires. Once a domain expires,

1
https://github.com/mahsamoosavi/Ghazal

https://github.com/mahsamoosavi/Ghazal
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Fig. 1: Primary states and transitions for a domain name in Ghazal.

it is returned to the primary market, except if the users renews it. However,
expiration does not necessarily have to mean a disclaimer of ownership; there
are other options.

1. Domain names never expire and last forever. Designing a system with
no domain name expiration would be highly vulnerable to domain squatting.
Domain squatting is registering domain names in speculation that the will
increase in value. These domain names generally do not point to any relevant
IP address (except to earn revenue on accidental visits). If domain names
never expire, squatting may be significantly problematic as squatted names
would be locked forever while legitimate users will end up choosing unusual
names from the remaining namespace. To be clear, even without expiration,
if domains are cheap, squatting is problematic (e.g., Namecoin [17]).

2. Domain names get deleted once they expire, except being renewed

by the user. The most restrictive system design is where a domain name
e↵ectively gets deleted and is returned to the registry of unclaimed names
once it expires, unless the user renews it. This model has the following two
issues. First, if a browser tries to resolve an expired domain, because the
blockchain has a complete, immutable history of that domain, we would
expect users to want it resolved according to the previous owner. Rolling back
expirations is possible in a way not supported by DNS and it resolves simple
human errors of forgetting to renew domains, so we do not expect browsers
to necessarily fail when it could make a sensible guess as to which server
their users are looking for. The second reason to drop the deletion model of
expiration is that Ethereum contracts can only run when a function is called.
If no one calls a function at expiration time, the contract cannot self-execute
to modify itself. The fact that it is expired can be inferred from contract if it
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includes a time but the contract itself will not transition states until someone
calls a function that touches that particular contract. An alternative is to
rely on a third party like Ethereum Alarm Clock [4] for scheduling future
function calls. This is suitable only if the threat model permits relying on a
trusted third party and a single point of failure (for this one feature).

3. Control over domain names is lost once they expire, except being

renewed by user. In Ghazal, expired domains continue to function although
the owner (i) looses the sole claim to that domain and cannot preserve it if
someone else purchases it, and (ii) she cannot modify the domain in anyway
(e.g., add certificates or change zone information) unless if she first renews
it. Essentially, purchasing a domain name does not entitle an entity to own it
forever; expired domain names are returned back to the primary market and
are available for all the users within the system. However since a full history
of a domain is present, the system’s best e↵ort at resolving the domain will be
to preserve the last known state. Expiration in conjunction to the amount of
the fee will influence the degree of domain squatting, and having expiration
at all will allow abandoned domains to churn if they are under demand.

Design Decision #2: Registration Fees

In Ghazal, new registrations and renewals require a fee. This fee is a deterrent
against domain squatting. The fee amount is di�cult to set and no fee will be
perfectly priced to be exactly too high for squatters but low enough for all ‘legit-
imate’ users. Rather it will trade-o↵ the number of squatters with the number
of would-be legitimate users who cannot pay the fee. Namecoin is evidently too
cheap and ICAAN rates seem reasonable. We leave this as a free parameter of
the system. The important decisions are: (1) in what currency are they paid and
(2) to whom. Every Ethereum-based system, even without a fee, will at least
require gas costs. Additional fees could be paid in Ether or in some system-
specific token. Since it is a decentralized system and the fee is not subsidizing
the e↵orts of any entity involved, there is no one in particular to pay. The fee
could be paid to an arbitrary entity (the system designer or a charity), burned
(made unrecoverable), or to the miners. In Ghazal, fees are paid in Ether and
are released to the miner that includes the transaction in the blockchain.

Design Decision #3: Domain Name Renewal

We design Ghazal in such a way that the domain owners can renew their domains
before their validity period comes to an end, however they cannot renew an
arbitrary number of times. Specifically, a renewal period becomes active after
the domain is past 3/4 of its validity period. Renewal pushes the expiration time
forward by one addition of the validity period (thus renewing at the start or
end of the renewal period is inconsequential and results in the domain having
the same expiration time). Requiring renewal keeps users returning regularly
to maintain domains, and unused domains naturally churn within the system.
Domain name redemption period can take di↵erent values. We experiment with
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1 // Possible states of every auction.

2 enum Stages {Opened , Locked , Ended}

3
4 struct AuctionStruct

5 { uint CreationTime;

6 address Owner;

7 uint highestBid;

8 address highestBidder;

9 address Winner;

10 Stages stage;

11 //To return the bids that were overbid.

12 mapping(address => uint) pendingReturns;

13 //To return the deposits the bidders made.

14 mapping(address => uint) deposits;

15 //Once an address bids in the auction , its associated boolean value

will be set to true within the "already_bid" mapping.

16 mapping(address => bool) already_bid;

17 bool AuctionisValue;

18 }

19 // AuctionLists mappings store AuctionStructs.

20 mapping (bytes32 => AuctionStruct) internal AuctionLists;

Code 1.1: Implementation of AuctionStruct and AuctionLists mapping in
Ghazal⇤ smart contract.

a validity period of 1 year; thus, the renewal period would start after 9 months
and last 3 months.

Design Decision #4: Domain Name Ownership Transfer

In Ghazal, domain owners can transfer the ownership of their unexpired domains
to new entities within the system. Basically, transferring a domain name at
the Ethereum level means changing the address of the Ethereum account that
controls the domain. Our system o↵ers two ways of transferring the ownership
of a domain:

1. Auctioning o↵ the domain name. A domain owner can voluntarily auc-
tion o↵ an unexpired domain. Once an auction is over, the domain is trans-
ferred to the highest bidder, the payment goes to the previous owner of the
domain, and the validity period is una↵ected by the transfer (to prevent
people from shortcutting renewal fees by selling to themselves for less than
the fee). If there are no bidders or if the bids do not reach a reserve value, the
domain is returned to the original owner. While under auction, a domain can
be modified as normal but transfers and auctions are not permitted. To im-
plement the auction feature, we use the fact that Solidity is object-oriented.
We first deploy a basic Ghazal function without advanced features like auc-
tions, and then use inheritance to create a child contract Ghazal⇤ that adds
the auction process. Using Ghazal⇤, a user can run any number of auctions
on any number of domains he owns. This is implemented through a map-
ping data structure called AuctionLists to store every auctions along with
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its attributes. AuctionLists accepts Domain names as its keys, and the Auc-
tionStructs as the values (see Code 1.1). Using the mapping and Ethereum
state machine, we enforce rules to prevent malicious behaviours e.g., domain
owners can auction o↵ a domain only if there is no other auction running
on the same domain. To encourage winners to pay, all bidders must deposit
a bounty in Ether the first time they bid in an auction (amount set by the
seller). This is refunded to the losers after bidding closes, and to the winner
after paying for the domain. Without this, users might disrupt an auction
by submitting high bids with no intention of paying.

1 modifier CheckDomainExpiry(bytes32 _DomainName) {

2 if (Domains[_DomainName ]. isValue == false)

3 {Domains[_DomainName ].state=States.Unregistered ;}

4 if (now >= Domains[_DomainName ]. RegistrationTime +10 minutes)

5 {Domains[_DomainName ].state = States.Expired ;}

6 _;

7 }

8 modifier Not_AtStage(bytes32 _DomainName , States stage_1 , States stage_2)

{

9 require (Domains[_DomainName ].state != stage_1 && Domains[

_DomainName ].state != stage_2);

10 _;

11 }

12 modifier OnlyOwner(bytes32 _DomainName) {

13 require(Domains[_DomainName ]. DomainOwner == msg.sender);

14 _;

15 }

16 function Transfer_Domain(string _DomainName ,address _Reciever ,bytes32

_TLSKey ,bytes32 _Zone) public

17 CheckDomainExpiry(stringToBytes32(_DomainName))

18 Not_AtStage(stringToBytes32(_DomainName),States.Unregistered ,States.

Expired)

19 OnlyOwner(stringToBytes32(_DomainName))

20 {

21 DomainName = stringToBytes32(_DomainName);

22 Domains[DomainName ]. DomainOwner = _Reciever;

23 if (_TLSKey == 0 && _Zone != 0) { Wipe_TLSKeys(DomainName); }

24 if (_Zone == 0 && _TLSKey != 0 ) { Wipe_Zone(DomainName); }

25 if (_Zone == 0 && _TLSKey == 0 ) { Wipe_TLSKeys_and_Zone(

DomainName); }

26 }

Code 1.2: Transfer Domain function of Ghazal smart contract.

2. Transfer the ownership of a domain name. A domain owner can also
transfer an unexpired domain to the new Ethereum account by calling the
Transfer Domain function which simply changes the Ethereum address that
controls the domain name. The owners can also decide to either transfer
domain’s associated attributes (e.g., TLS certificates) or not, when they
transfer the domain. This is possibe with either supplying these attributes
with zero or other desired values when calling the Transfer Domain function
(see Code 1.2).

To prevent from MITM attacks, TLS certificates should be revoked once a
domain name is transferred. However, security incidents reveal that this is not
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commonly enforced in the current PKI. For instance, Facebook acquired the do-
main fb.com for $8.5M in 2010, yet no one can be assured if that the previous
owner does not have a valid unexpired certificate bound to this domain [12]. This
has been successfully enforced in our system as the new owner of the domain
is capable of modifying the domain’s associated TLS keys, which results in pro-
tecting communications between the clients and his server from eavesdropping.

Design Decision #5: Toward Lightweight Certificate Revocation

In the broader PKI literature, there are four traditional approaches to revo-
cation [24]: certificate revocation lists, online certificate status checking, trusted
directories, and short-lived certificates. Revocation in the web certificate model
is not e↵ective. It was built initially with revocation lists and status checking,
but the di�culty of routinely obtaining lists and the frequent unavailability of
responders led to browsers failing open when revocation could not be checked.
Some browsers build in revocation lists, but are limited in scope; EV certifi-
cates have stricter requirements; and some research has suggested deploying
short-lived certificates (e.g., four days) that requires the certificate holders to
frequently renew them [29] (in this case, certificates are not explicitly revoked,
they are just not renewed). Which model does a blockchain implement? At first
glance, most blockchain implementations would implement a trusted directory:
that is, a public key binding is valid as long as it is present and revocation simply
removes it. The issue with this approach on a blockchain is how users establish
they have the most recent state. With the most recent state in hand, revocation
status can be checked. This check is potentially more e�cient than download-
ing the entire blockchain (this functionality exists for Bitcoin where it is called
SPV and is a work in progress for Ethereum where it is called LES). However
a malicious LES server can always forward the state immediately preceding a
revocation action and the client cannot easily validate it is being deceived.

At a foundational level, most revocation uses a permit-override approach
where the default state is permissive and an explicit action (revocation) is re-
quired. Short-lived certificates (and a closely related approach of stapling a CA-
signed certificate status to a certificate) are deny-override meaning the default
position is to assume a certificate is revoked unless if there is positive proof it
is not. This latter approach is better for lightweight blockchain clients as LES
servers can always lie through omitting data, but cannot lie by including fraudu-
lent data (without expending considerable computational work). As an alterna-
tive or compliment, clients could also take the consensus of several LES servers,
although this ‘multi-path probing’ approach has some performance penalties (it
has been suggested within the web certificate model as Perspectives [30] and
Convergence [21]).

In Ghazal, public keys that are added to a domain name expire after a max-
imum lifetime, e.g., four days. Expiration is not an explicit change of state but
is inferred from the most recent renewal time. Owners need to rerun the key
binding function every several days to renew this. If an owner wants to revoke a
key, she simply fails to renew. To verify the validity of a certificate, one is now
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Operation Gas Gas Cost in Ether Gas Cost in USD

Register 169 990 3.56⇥ 10�3 $3.15
Renew 54 545 1.14⇥ 10�3 $1.01
Transfer Domain 53 160 1.11⇥ 10�3 $0.98
Add TLSKey 77 625 1.63⇥ 10�3 $1.43
Add ZoneFile 57 141 1.19⇥ 10�3 $1.05
Add TLSKey AND ZoneFile 68 196 1.43⇥ 10�3 $1.26
Revoke TLSkey 37 672 7.91⇥ 10�4 $0.69
StartAuction 119 310 2.50⇥ 10�3 $2.21
Bid 112 491 2.36⇥ 10�3 $2.08
Withdraw bids 46 307 9.72⇥ 10�4 $0.85
Withdraw deposits 47 037 9.87⇥ 10�4 $0.87
Settle 77 709 1.63⇥ 10�3 $1.44
Ghazal⇤ Contract Creation 2 402 563 0.05 $44.54

Table 1: Gas used for operations in the Ghazal⇤ smart contract.

able to use a LES-esque protocol. Once a user queries a semi-trusted LES node
for a corresponding record of a domain, the node can either return a public key
that is four days old, which user will assume is revoked, or a record that newer
that the user will assume is not revoked. Although this approach requires the
frequent renewal of public keys, it is a cost that scales in the number of domains
as opposed to revocation checks which scale in the number of users accesses a
domain.

5 Evaluation

The aim of this section is to provide the technical implementation details of our
system on the Ethereum blockchain. We specifically discuss the costs related
to the deployment of Ghazal⇤ smart contract on the Ethereum blockchain in
addition to executing its functions on the Ethereum virtual machine. Moreover,
a smart contract analysis tool is used to analyze the security of our system
against a several number of security threats to which smart contracts are often
vulnerable.

5.1 Costs

Ghazal smart contract is implemented in 370 lines of Solidity language, a high
level programming language resembles to JavaScript, and tested on the Ethereum
test network. We use the Solidity compiler to evaluate the rough cost for pub-
lishing the Ghazal⇤ smart contract on the Ethereum blockchain as well as the
cost for the various operations to be executed on the Ethereum virtual machine.
As of January 2018, 1 gas = 21⇥ 10�9 ether2, and 1 ether = $882.923.
2 https://ethstats.net/
3 https://coinmarketcap.com/
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Fig. 2: Results of Ghazal⇤ security analysis using Oyente [20].

Table 1 represents the estimated costs for Ghazal⇤ (and its inherited Ghazal
functionality) smart contract deployment and function invocation in both gas
and USD. As it can be seen from both Table 1, the most considerable cost
is the one-time cost paid to deploy the system on Ethereum. There are then
relatively small costs associated with executing the functions, i.e., users could
easily register a domain by paying $3.15 or they could bind a key to the domain
they own for a cost of $1.43, which is relatively cheap when compared with the
real world costs associated with these operations.

5.2 Security Analysis

Ethereum smart contracts, in particular the ones implemented in Solidity, are
notorious for programming pitfalls. As they generally transfer and handle assets
of considerable value, bugs in Solidity code could result in serious vulnerabilities
which can be exploited by adversaries. We use standard defensive programming
approaches, in particular around functions that transfer money (such as the auc-
tion function that refunds the security deposits), by using explicitly coded state
machines and locks, and by not making state-changes after transfers. We also
analyze Ghazal and Ghazal⇤ against Oyente, a symbolic execution tool proposed
by Luu et al. [20] which looks for potential security bugs like the re-entry at-
tack (infamously). The results of the security analysis represent that both of
the smart contracts are not vulnerable to any known critical security issue (see
Figure 2).
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6 Concluding Remarks

We hope that uni-authoritative systems with programmability continue to be
explored in the literature. There are many open problems to work on. First and
foremost is understanding the scalability issues and how to minimize the amount
of data a client browser needs to fetch for each domain lookup. Blockstack has
done an excellent job on this issue for non-programmable contracts. Future work
could also look at the layer above the smart contract: building web tools with
user interfaces to enable interaction with the underlying functions. Finally, while
auctions are one illustrative example of why programmability might be added
to a PKI, we are sure there are many others. The modular design of Ghazal
using object-oriented programming should allow easy additions to our base con-
tract, which we will provide as open source. Indeed, the auction itself in Ghazal⇤

was added via inheritance and one function override (to enforce that ownership
transfers, part of the parent class, could not be called during a live auction).
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The Game among Bribers in a Smart Contract
System

Abstract. Blockchain has been used to build various applications, and
the introduction of smart contracts further extends its impacts. Most of
existing works consider the positive usage of smart contracts but ignore
the other side of it: smart contracts can be used in a destructive way,
particularly, they can be utilized to carry out bribery. The hardness of
tracing a briber in a blockchain system may even motivate bribers. Fur-
thermore, an adversary can utilize bribery smart contracts to influence
the execution results of other smart contracts in the same system. To
better understand this threat, we propose a formal framework to ana-
lyze bribery in the smart contract system using game theory. We give
a full characterization on how the bribery budget of a briber may influ-
ence the execution of a smart contract if the briber tries to manipulate
its execution result by bribing users in the system.

1 Introduction

Various applications are developed on top of blockchain technology [32, 34, 33].
However, most of these works assume that the blockchain is a perfect system,
e.g., all records stored in the system are correct, and ignore the complexity of
the way that the decentralized system achieves consensus. For purely cryptocur-
rency systems, both static model [24] and game theory model [20, 28] have been
used to analyze their security features. The introduction of the smart contract
makes the situation trickier while extending the applicability of blockchain tech-
nology. A smart contract can involve multiple users/participants and have a high
value stake. Thus, it has the potential to be more critical than mining in pure
cryptocurrency systems (e.g., Bitcoin), in which only a fixed reward is paid to
successful miners. The amount of cryptocurrency involved in a contract may be
many times and significantly higher than the cost of running the contract itself.
Therefore, users involved in a smart contract have the incentive to push through
a certain outcome. In particular, they may achieve such a goal through bribery,
i.e., o↵ering cryptocurrencies to other users in the system. Interestingly, bribery
itself can also be carried out using smart contracts. A recent work discussed this
concept and proposed a straightforward framework to implement bribery on
blockchain [19] where the briber o↵ers incentive to the bribee through a smart
contract.

Bribery is a serious problem as it may help to compromise the fundamental
assumption of smart contract execution model based on consensus or majority
accepted outcome. Note that a user is honest in mining does not necessarily
means that he/she will remain honest when o↵ered with monetary reward in



making decisions. Their honesty is even more questionable when taking into
consideration the unlinkability of users’ identities to real persons, and the fact
that there is no punishment for reporting a wrong execution result in many
smart contract systems like Ethereum. Therefore, it is important to investigate
the problem whether a briber can succeed in manipulating a smart contract
execution result.

It is remarkable that the execution of a smart contract can be cast as an elec-
tion and we may leverage the research on elections to understand the bribery
problem in a smart contract system. Specifically, we can view users in the system
as voters, and all the possible outcome of a smart contract as candidates. Each
voter (user) will vote for a specific candidate (outcome), and a briber will bribe
voters to alter the election result (smart contract execution outcome). We re-
mark that by using an election model we are actually simplifying the consensus
protocol implemented in a smart contract system without considering, e.g., the
Byzantine behavior of a user who tries to send di↵erent messages to di↵erent
other users. However, note that such kind of behaviors typically influence users
who are following the protocol. In this paper, we take a game theoretical point
of view by treating all users as rational people who are trying to maximize their
own profit, and will therefore stick to the choice which is the best for their own
interest regardless of the choices of others. Hence, it is reasonable to adopt an
election model.

There exist a series of papers focusing on the bribery problem in an election
model, see, .e.g., [14, 2, 36, 8, 26, 35, 17, 4, 11, 3, 23, 18, 9]. Specifically, researchers
have studied extensively the computational complexity of the bribery problem
and show that in many settings it is NP-hard for a briber to decide which subset
of voters should he/she bribe (see, e.g., [16] for a nice survey). Such hardness
results can also be viewed as a way to discourage people from carrying out
bribery, if computational complexity is of concern.

Classical hardness results for the election model apply readily to the bribery
problem in a blockchain system by viewing a smart contract execution as an
election. However, we observe that a briber needs to overcome more di�culties
if he/she really wants to carry out bribery in a blockchain system. Indeed, a
briber not only needs to handle the computational complexity in determining a
suitable subset of voters to be bribed, but he/she may also have to compete with
other bribers in the system. Note that in most real-world elections, bribery is
carried out in secrecy. A person, once o↵ered a bribe, may either take it and cast
his/her vote shortly afterwards, or reject it. The “incorrectness” in the nature
of bribery prevents it from becoming a free market where bribers “sell” their
bribes to people. However, things change completely in a blockchain system. As
we will provide details in the following section, a briber is able to establish a
smart contract with a bribee. The smart contract will be executed by users in the
system and a transfer of cryptocurrencies will be carried out once the contract
is fulfilled, i.e., once the bribee casts his/her vote accordingly. In this case, a
bribee may establish smart contracts with multiple bribers and strategically
chooses the best. The unlinkability from a user identity in a blockchain system



to a real person behind and the fact that a smart contract may not necessarily be
executed immediately allow a user to easily involve in multiple smart contracts.
Such a situation poses a severe task to bribers and they end up in competing
with each other unavoidably without even knowing their opponents. Under such
a competition in a blockchain system, how di�cult it is for a specific briber to
win? This paper is targeting at such a problem.
Our contributions. There are two major contributions of this paper. First,
we study the bribery problem in a blockchain system from a game theoretical
point of view and model it as a smart contract bribery game. This is a first step
towards a better understanding of the bribery problem in a blockchain system;
and may also be of separate interest to the studies of elections. In this model,
every briber is a player and has a bribing budget which can be allocated to voters.
Every voter has a bribing price pj . The voter will only take smart contracts that
o↵er a price no less than pj . Once he/she is o↵ered multiple smart contracts,
he/she will fulfill the one with the highest price (ties are broken arbitrarily). The
strategy set of a briber is all possible allocations of the budget to voters.

Second, given a smart contract bribery game, we consider its Nash equilib-
rium. We are particularly interested in the following problem: if a briber is very
lucky, can he/she compromise the smart contract execution by getting the ma-
jority of votes through a small amount of budget? The answer is no. We show
that, a briber cannot win more than 50% of the votes unless he/she controls
more than 20% of the total bribing budgets in any Nash equilibrium. That is,
even if the briber is lucky enough to end up in a Nash equilibrium that is the best
for him/her, he/she still needs to have a significantly large bribery budget, more
than 20% of the sum of all the budgets, in order to manipulate the execution
result arbitrarily.
Organization of the paper. The remainder of the paper is organized as fol-
lows: In Section 2 we give a short review of smart contract and describe the
problem we address in this paper. In Section 3 we present our main result by
studying the Nash equilibria of the smart contract bribery game. In Section 4
we give further discussion on our results. Section 5 discusses related work, and
we conclude the paper in Section 6.

2 Preliminaries and Problem Statement

Smart contract We begin by defining smart contracts. The definition provided
by Szabo in 1997 is [29]:

Definition 1. A smart contract is a set of promises, specified in a digital form,
including protocols within which the parties perform on these promises.

A blockchain system, equipped with smart contracts, is a powerful tool that
allows users to build various applications on top. In particular, a voting system
can be implemented on blockchain. We first briefly describe the election model
for a voting system studied in the literature.



Election model In an election, given are a set of n candidates C = {C1, C2, . . . , Cn}
and a set of m voters V = {V1, V2, . . . , Vm}. Each voter Vj has a preference list
of candidates, which is essentially a permutation of candidates, denoted as ⌧j .
The preference of vj is denoted by (C⌧j(1), C⌧j(2), . . . , C⌧j(m)), meaning that vj

prefers candidate C⌧j(z) to C⌧j(z+1), where z = 1, 2, . . . ,m� 1.
An election rule is implemented, which takes as input the set of candidates

and voters together with their preference lists, and outputs a set of winner(s).
There are various election rules studied in the literature. In this paper, we focus
on one of the most fundamental rules called plurality. In plurality, every voter
votes for exactly one candidate which is on top of his/her preference list. The
candidate(s) with the highest number of votes then become the winner(s).

The abstract election model is general enough to incorporate a lot of real-
world elections as well as other applications that involve voting in their execution.
In particular, it is very much relevant to a blockchain system since almost all
decisions made in such a system, e.g., block construction and verification [31],
are based on the consensus among users. A consensus protocol can be modeled
as an election where every user votes for his/her decisions, and eventually one
decision is elected by the system.

Bribery in an election In recent years, the problem of bribery in an election has
received much attention in the literature [14, 2, 36, 8, 26, 35, 17, 4, 11, 3, 23, 18, 9].
On a high level, bribery in an election is defined as a way to manipulate the
election by giving monetary reward to voters so as to change their preference
lists. Researchers have proposed di↵erent bribery models. In this paper, we focus
on the constructive bribery model, that is, the briber tries to make one specific
candidate become the winner by bribing a subset of voters. This is particularly
the case when bribery happens in a blockchain based system – a briber tries to
make the system to reach a specific consensus.

Bribery through smart contract In most real-world elections, briberies are car-
ried out in secrecy. It is, however, interesting that briberies can be carried out
“publicly” using smart contracts. Roughly speaking, the briber and the user to
be bribed (or bribee) can create a special smart contract that claims a transfer
of cryptocurrency upon the condition that the user votes for a specific candi-
date (decision). Users of the system will execute this smart contract. Once the
condition is satisfied, the transfer of the cryptocurrency will be enforced by the
system. The anonymous feature of a blockchain system, especially the unlinkabil-
ity of a user account from the real person behind, allows part of the information
of the bribery to be transparent, e.g., the transfer of cryptocurrency from one
account to another, while preserves the privacy of the persons involved.

The concept of carrying out bribery through smart contract naturally follows
from many real-world contracts that are created to facilitate bribery. However,
there is a lack of a systematic study on the creation and execution of such smart
contracts for bribery, and its influence on the whole blockchain system. A very
recent paper by Kothapalli and Cordi [19] gave the first detailed study on the
creation and execution of the smart contracts for bribery and presented pseudo



codes. Briefly speaking, the whole bribery procedure, via smart contracts, is
divided into three phases: (i) Propose stage. The briber creates a briber contract
indicates the incentive that the bribee will receive upon fulfilling the bribe and/or
the punishment if the bribee fails to fulfill that. The contract is submitted to
the blockchain. (ii) Commit stage. A bribee who decides to participate creates
a claim on the blockchain. (iii) Verify stage. After a time period, if the bribe
condition is reached, the bribee can get the incentive. Otherwise, the bribee pays
the penalty.

Given their research [19], it becomes crucial to understand the impact of
such smart contracts for bribery to the whole blockchain system. Although we
may leverage the research on bribery in elections, the problem of bribery via
smart contracts has its own unique characteristics. Particularly, when there are
multiple bribers in the system, the bribee is free to participate in any smart
contract for bribery and he/she can thus strategically maximize his/her own
profit. In this paper, we try to understand the behavior of bribers and bribees
through game theory. Towards this, we first introduce some basic concepts.

Definition 2 ([25]). A normal form game � consists of:

– A finite set N of players (agents).
– A nonempty set Qi of strategies available for each player i 2 N .
– A preference relation �i on Q = ⇥j2NQj for each player i.

We restrict our attention to normal form games in this paper. For simplicity,
when we say a game, we mean a normal form game. We consider Nash equilib-
rium in this paper. A Nash equilibrium is a solution concept of a game involving
two or more players in which each player is assumed to know the equilibrium
strategies of the other players, and no player has anything to gain by unilaterally
changing his/her own strategy [25].

Taking a game theoretical point of view, we are able to model the bribery
problem in a blockchain system with multiple bribers as follows.

Smart contract bribery game We first describe the basic setting for the smart
contract bribery game. Given are a set of n candidates C = {C1, C2, . . . , Cn}, a
set ofm voters V = {V1, V2, . . . , Vm} and a set of k bribers B = {B1, B2, · · · , Bk}.
Each briber Bh has a budget bh for bribing and prefers one specific candidate.
Each voter vj has a preference list ⌧j and a bribing price pj . Each briber can
sign a smart contract with a voter, which o↵ers a certain amount of reward
in cryptocurrency if the voter changes his/her preference list and votes for the
candidate preferred by the briber. A voter vj can sign a smart contract with
every briber and then do the following:

– he/she will discard all smart contracts that o↵er a price lower than pj ;
– if there are multiple smart contracts o↵ering a price larger than pj , he/she

will pick the one with the highest price and vote for the candidate preferred
by this briber;



– ties are broken arbitrarily, i.e., the voter will randomly choose one smart
contract if there are several smart contracts o↵ering the same highest price
(larger than or equal to pj).

Note that if all the smart contracts are o↵ering a price lower than pj , the
voter will vote honestly.

Bribers and the candidates need not be the same, however, as each briber
prefers a distinct candidate, we assume for simplicity that the briber is the
same as the candidate he/she prefers, i.e., B is a subset of the candidates. By re-
indexing the candidates, we may assume without loss of generality that Bh = Ch

for 1  h  k, i.e., the first k candidates are trying to bribe voters.
Let the bribers be players in the game. The strategy set of a briber is the

set of possible smart contracts he/she can make with voters, i.e., every strategy
of a briber bh is an allocation of the budget bh among all the voters, which can
be represented as an m-vector (b1h, b

2
h, · · · , bmh ) where b

j
h is the price the briber

o↵ers to voter Vj and
P

j b
j
h  bh. The goal of each briber, as a player, is to

maximize the (expected) number of votes he/she received.

Nash equilibrium in smart contract bribery game A pure Nash equilibrium for
the smart contract bribery game, if it exists, is a solution where every briber Bh

specifies some strategy (b1h, b
2
h, · · · , bmh ) such that if Bh changes his/her strategy

unilaterally to some (b̄1h, b̄
2
h, · · · , b̄mh ), the expected number of votes he/she can

get will not increase.

3 The Smart Contract Bribery Game

If there is only one briber, then obviously the briber is able to increase the
number of his/her votes if his/her bribing budget is at least as large as the
cheapest bribing price of some voter who votes for another candidate. When there
are multiple bribers, things become much more complicated. Considering an
arbitrary briber, say, B1, can he/she really benefit from bribery in the presence
of other bribers? Of course the answer is no if there exists another briber with an
infinite or su�ciently larger budget, who is able to bribe every voter with a price
larger than b1 and B1 will get no votes at all. If, however, B1 is more powerful,
say b1 � bi for every 2  i  k, is it possible for B1 to get additional votes?
Unfortunately, this may not necessarily be the case and is highly dependent on
the strategies of other bribers. In this section, we focus on Nash equilibrium in
the smart contract bribery game. We consider the following problem: In a Nash
equilibrium, how many votes can B1 get when competing against bribers who
are weaker than him/her? Furthermore, can B1 get more votes than he/she gets
in the absence of bribery in the system?

Theorem 1. There may exist a pure Nash equilibrium for the smart contract
bribery game where the briber B1 can get at most b1/✏c votes even if b1 � 1/✏ · bi
for every 2  i  k, where ✏ 2 (0, 1) is an arbitrary number.



We remark that a pure Nash equilibrium may not always exist.

Proof. Consider the following smart contract bribery game in which there are
m = k � 1 + b1/✏c voters and exactly k candidates (i.e., C = B). Let pj = 1 for
1  j  k � 1, pj = 1/✏ for k  j  m. Let b1 be an arbitrary integer larger
than 1/✏, and bi = ✏b1 for every 2  i  k.

Consider the following feasible solution: each briber Bi, 2  i  k, bribes
Vi�1 at the price of ✏b1. The briber B1 then bribes Vk to Vm, each at the price
of ✏b1.

It is easy to verify that B1 gets b1/✏c votes. It su�ces to argue that the
feasible solution above is a Nash equilibrium. First, we claim that every briber
Bi, 2  i  k, will not deviate from the current solution. Note that if Bi aims to
bribe some other voter instead of Vi�1, then he/she needs to pay at least ✏b1, for
otherwise that voter will simply ignore his/her o↵er. Therefore, Bi has to take
away all the money ✏b1 from Vi�1 and bribes some Vh for h 6= i � 1. However,
since Vh already receives ✏b1 amount of money from another briber, thus in
expectation Bi only gets 1/2 votes, which is worse than the current solution.
Hence, Bi will not unilaterally change his/her strategy. Next, we claim that B1

will not deviate from the current solution. Note that currently B1 gets one vote
at the cost of ✏b1. If he/she aims at getting votes from any Vh, 1  h  k � 1,
he/she has two choices. Either he/she pays the price of ✏b1 and gets 1/2 votes
in expectation, or he/she pays a price strictly larger than ✏b1 and gets one vote.
In both cases, B1 will lose one vote from the set of voters in {Vh : k  h  m}
and get at most one vote from the set of voters {Vh : 1  h  k � 1}. ut

Note that k is a parameter that can be significantly larger than 1/✏, Theo-
rem 1 thus implies that a briber may only get a small number of votes even if
the bribing budget of any other briber is at most ✏ fraction of his/her budget.

It is worth mentioning that in the proof of Theorem 1 we do not specify
which candidate does a voter votes in the absence of bribery. We may assume
that without bribery Vh, 1  h  k � 1, all vote for B1, while Vh, k  h  m,
all vote for B2. Therefore, B1 actually loses an arbitrary amount of votes when
bribery happens. More precisely, we have the following corollary.

Corollary 1. In a smart contract bribery game, a briber may lose an arbitrary
number of votes even if he/she is only competing against other bribers whose
budget is significantly smaller.

Theorem 1 implies that the worst Nash equilibrium for a briber can be very
bad. However, what if a briber is lucky and ends up in a Nash equilibrium which
is the best for him/her? In this case, can the briber win significantly more votes
with a very small budget? Unfortunately, even in the best Nash equilibrium, the
fraction of the votes a briber can win may not exceed the portion of the bribing
budget he/she owns by O(1) times, as is implied by the following theorem.

Theorem 2. Let ✏ < 1/3 be an arbitrary small constant and suppose bi �
✏b1 for 2  i  k. In any Nash equilibrium, B1 gets at most 1/✏ votes or a

4(1+2✏)b1
4(1+2✏)b1+

Pk
i=2 bi

fraction of the votes, whichever is larger.



Proof. Consider an arbitrary Nash equilibrium. If B1 only gets 1/✏ votes in ex-
pectation, then the theorem is proved. From now on we assume that B1 receives
more than 1/✏ votes in expectation. In this case, B1 must have paid less than b1✏

to some voter, say, Vj , who votes for him/her with a positive probability. Since
bi � ✏b1, the briber Bi must have received a positive number of votes, for other-
wise this briber can devote all the budget to Vj and gets one vote, contradicting
the fact that the solution is a Nash equilibrium.

Let �i > 0 be the expected number of votes received by each briber Bi. We
make the following two assumptions.

– each Bi pays out a total price of exactly bi to voters;
– if Bi gets 0 vote from a voter in expectation, Bi pays 0 to this voter.

The two assumptions are without loss of generality since each Bi gets a positive
number of votes from at least one voter, and we can simply let Bi pays all
the remaining money in his/her budget to this voter if he/she does not use up
the budget. By doing so, Bi cannot get fewer votes. The fact that the original
solution is a Nash equilibrium ensures that Bi will not get more votes. Thus,
the modified solution is still a Nash equilibrium.

We define the average cost per vote for Bi as ai = bi/�i. Let Sj be the set
of bribers who o↵ers the same highest price for Vj , then every briber Bi 2 Sj

gets in expectation 1/|Sj | votes from Vj . For simplicity we remove all the voters
where Sj = ; from now on. We define xij 2 {0, 1} as an indicating variable such

that xij = 1 if Bi 2 Sj and xij = 0 otherwise. Recall that a briber Bi pays b
j
i to

Vj , thus we have

mX

j=1

xij/|Sj | = �i, 8i (1a)

mX

j=1

b
j
ixij = bi, 8i (1b)

There are two possibilities with respect to a1. If a1 � ✏b1, then �1  1/✏,
which means B1 gets at most 1/✏ votes and Theorem 2 is proved. Otherwise
a1 < ✏b1 and there are two possibilities.
Case 1. |{j : 0 < b

j
1 < (1 + 2✏)a1}|  1. Note that a1 is the average cost. We

claim that �1 < 1/✏. Otherwise
Pm

j=1 x1j � 1/✏ and it follows that
Pm

j=1 b
j
ix1j �

(1+2✏)a1(
Pm

j=1 x1j �1) = (1+2✏)b1� (1+2✏)a1 > b1, where the last inequality
follows from the fact that b1 � (1 + 2✏)(1/✏ � 1)a1 = (1 + 1/✏ � 2✏)a1, whereas
2✏b1 > (1 + 2✏)a1. This, however, is a contradiction to Eq (1b). Therefore, B1

gets in expectation at most 1/✏ votes and Theorem 2 is proved.
Case 2. |{j : 0 < b

j
1 < (1 + 2✏)a1}| � 2. In this case, we have the following

lemma.

Lemma 1. If |{j : bj1 < (1 + 2✏)a1}| � 2, then for any 2  i  k, a1 � ai
4(1+2✏) .

Proof (Proof of Lemma 1). Towards the proof, we need the following claims.



Claim. For every i, there exists some set of voters �i such that
P

j2�i
xij/|Sj | 

1 and
P

j2�i
b
j
ixij � ai/2.

To see the claim, we suppose on the contrary that for every set of voters �i

satisfying that
P

j2�i
xij/|Sj |  1, it holds that

P
j2�i

b
j
ixij < ai/2. We list

all the variables xi1, xi2, · · · , xim and divide them into q subsets where the h-th
subset consists of xi,`h�1 , xi,`h�1+1, · · · , xi,`h�1 for 1 = `0 < `1 < · · · < `q =
m+ 1, such that the followings hold for every h:

xi,`h�1

|S`h�1 |
+

xi,`h�1+1

|S`h�1+1|
+ · · ·+ xi,`h�1

|S`h�1|
 1 (2a)

xi,`h�1

|S`h�1 |
+

xi,`h�1+1

|S`h�1+1|
+ · · ·+ xi,`h�1

|S`h�1|
+

xi,`h

|S`h |
> 1 (2b)

By Eq (2a) we have
`h�1X

s=`h�1

b
s
ixis < ai/2.

Taking the summation over 1  h  q, we have

`h�1X

s=`h�1

b
s
ixis < aiq/2.

We show in the following that q  2�i, whereas

qX

h=1

`h�1X

s=`h�1

b
s
ixis < aiq/2  ai�i = bi,

contradicting Eq (1b) and the claim is proved. To see q  2�1, we can view
each xij/|Sj | as an item of size xij/|Sj |. We pack these items into bins of size 1
one by one using the Next-fit algorithm in Bin packing [30], i.e., as long as the
item fits in the same bin as the previous item, put it there; otherwise, open a
new bin and put it in there. It is easy to see that the Next-fit algorithm returns
a solution using q bins with the h-th bin containing exactly xi,`h�1/|S`h�1 | to
xi,`h�1/|S`h�1|. Note that �i =

Pm
j=1 xij/|Sj | is exactly the total size of all

items. It is a classical result [30] that the Next-fit algorithm for bin packing
returns a solution that uses the number of bins at most twice the total item size
(to see this, simply observe that any two consecutive bins have a total size larger
than 1), hence q  2�i.

We are able to prove Lemma 1 now using the above claim. Suppose on the
contrary that for some i it holds that a1 < ai/(4 + 8✏). According to the claim,
there exists some �i such that

P
j 2 �ixij/|Sj |  1 and

P
j2�i

b
j
ixij � ai/2 >

2(1 + 2✏)a1. Hence, the briber Bi pays in total more than 2(1 + 2✏)a1 and only
receive in expectation 1 vote. As |{j : 0 < b

j
1 < (1 + 2✏)a1}| � 2, there exist at

least two voters Vj1 and Vj2 to whom B1 pays less than (1+2✏)a1. Since B1 have
received a positive number of votes from each of them (otherwise B1 would have



paid 0), Vj1 and Vj2 receive o↵ers from bribers with a price less than (1+ 2✏)a1.
Hence, if Bi changes his/her solution unilaterally by paying (1+2✏)a1 to Vj1 and
Vj2 , and meanwhile 0 to voters in �i, he/she gets 2 votes instead, contracting
the fact that the solution is a Nash equilibrium. Thus, Lemma 1 is true. ut

By Lemma 1, we know that in Case 2 every briber Bi gets at least bi
4(1+2✏)a1

votes. Therefore, B1 can get at most 4(1+2✏)b1
4(1+2✏)b1+

Pk
i=2 bi

fraction of the total votes.
ut

Theorem 2 implies that, even if a briber is very lucky and ends up in a
Nash equilibrium which is the best for him/her, he/she cannot get more than

4(1+2✏)b1
4(1+2✏)b1+

Pk
i=2 bi

fraction of the total votes if there are significantly many voters

(larger than 1/✏ which is a constant). By taking b1Pk
i=1 bi

= 1/5, this fractional

value becomes 1/2 +O(✏), therefore we have the following corollary.

Corollary 2. Even in a best Nash equilibrium, a briber needs to control more
than 20% of the total bribing budgets in order to get more than 50% of the votes.

4 Further Discussion

We have shown that, although smart contracts can be used to carry out bribery
in a blockchain system, it is, however, much more di�cult for a briber to do so
than in an ordinary real-world election. The major challenge comes from the fact
that a voter is free to establish multiple smart contracts with di↵erent bribers
and can strategically pick the best one.

A natural question is whether a briber can prevent a bribee from establishing
smart contracts with other bribers. One potential approach is to introduce a
penalty for a bribee if he/she fails to fulfill the smart contract. Indeed, a recent
paper by Abhiram and Christopher [19] presents a pseudocode for such kind of
smart contracts. It is questionable whether such smart contracts can change our
results substantially. Obviously, if the briber can charge an infinite amount of
penalty, then surely the bribee has no choice but to follow the smart contract.
However, this is usually unreasonable. A penalty is usually achieved via a deposit
from the bribee to the briber, a su�ciently high penalty may exceed the wallet
balance of a voter, which means the briber is losing these potential bribees.
More critically, the decision whether a smart contract is fulfilled or not is also
achieved through consensus. Once the bribee pays a high deposit, even if he/she
fulfills the smart contract, the briber may also bribe others to alter the decision
and take away the deposit. Hence, even if penalty may be introduced, it should
be reasonably low. A low penalty, however, only prevents a voter from making
smart contracts with a lot of bribers. It does not prevent a voter from making
smart contracts with only a few bribers, which is already enough to yield a
non-cooperative game among bribers and our results readily apply.



5 Related Work

In this section, we briefly review related works.
Smart contract systems. Ethereum is by far the most popular smart contract
system [5] and many works have been done to detect potential vulnerabilities in
smart contracts, see, e.g., [22]. Although game theory has been extensively used
to analyze mining activities [12, 28], users’ behavior in a smart contract system
is not well understood.
Bribery in elections. There are various researches studying the bribery issue
in elections. Faliszewski et al. [14] gave the first systematic characterization on
the complexity of the bribery problem where the briber can pay a fixed, but
voter-dependent, price to arbitrarily manipulate the preference list of a bribed
voter. Di↵erent bribery models were addressed subsequently in, e.g., [10, 13,
15, 7, 2, 17]. We refer the readers to [16] for a nice survey on this topic and the
references therein.

6 Conclusion and Future Work

Bribery is an important issue in real-world elections. Recent studies have shown
that smart contracts can be utilized to conduct bribery in a blockchain system;
and it is crucial to understand how smart contract based bribery can influence
the whole blockchain system. In this paper, we make the first improvement
towards this direction. We cast the bribery problem in a blockchain system as
an election and leverage the research in voting systems. We observe that, bribery
via smart contracts in a blockchain system is likely to end up in a game situation
where di↵erent bribers compete with each other in bribing users. We model this
problem as a smart contract bribery game and study the behavior of bribers
under Nash equilibrium. Interestingly, we show that in any Nash equilibrium, a
briber cannot win the majority of the votes unless he/she controls more than
20% of the total bribing budgets. Therefore, the phenomenon of “anarchy” in
game theory actually helps in discouraging people from carrying out bribery in
a blockchain system.

There are several interesting open problems along this line of research. In
this paper, we assume every voter has the same weight, i.e., each voter can only
cast one vote. However, it is common that voters do have weights. It is not
clear whether a constant threshold like 20% also exists when voters/users have
weights. Another important problem is to study how to protect the blockchain
system through other methods, particularly by deploying resources. It is true
that the 20% threshold can discourage people from bribing, but it does not
fully defend the system from bribery, especially when some briber owns a large
amount of cryptocurrencies. There are several works in the research of voting
systems which study the problem of protecting an election by awarding honesty
or punishing bribery [37]. It is not clear how to implement a similar scheme in
a blockchain system.
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Verifiable Sealed-Bid Auction on the Ethereum
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Abstract. The success of the Ethereum blockchain as a decentralized
application platform with a distributed consensus protocol has made
many organizations start to invest into running their business on top of
it. Technically, the most impressive feature behind Ethereum’s success is
its support for a Turing complete language. On the other hand, the in-
herent transparency and, consequently, the lack of privacy poses a great
challenge for many financial applications. In this paper, we tackle this
challenge and present a smart contract for a verifiable sealed-bid auction
on the Ethereum blockchain. In a nutshell, initially, the bidders submit
homomorphic commitments to their sealed-bids on the contract. Sub-
sequently, they reveal their commitments secretly to the auctioneer via
a public key encryption scheme. Then, according to the auction rules,
the auctioneer determines and claims the winner of the auction. Finally,
we utilize interactive zero-knowledge proof protocols between the smart
contract and the auctioneer to verify the correctness of such a claim. The
underlying protocol of the proposed smart contract is partially privacy-
preserving. To be precise, no information about the losing bids is leaked
to the bidders. We provide an analysis of the proposed protocol and the
smart contract design, in addition to the estimated gas costs associated
with the di↵erent transactions.

Keywords: Ethereum, Smart Contract, Sealed-Bid Auction.

1 Introduction

Online auctions have played an important role in the world economy by transfer-
ring trillions of dollars in exchange for goods and services in the recent decades.
An auction is a platform for sellers to advertise the sale of arbitrary assets where
buyers place competitive bids as the highest prices they are willing to pay. Prac-
tically, auctions promote many economic advantages for the e�cient trade of
goods and services. Traditionally, there are four main types of auctions [7]:

1. First-price sealed-bid auctions (FPSBA). Bidders submit their bids in sealed
envelopes and hand them to the auctioneer. Subsequently, the auctioneer
opens the envelopes to determine the bidder with the highest bid.

2. Second-price sealed-bid auctions (Vickrey auctions). It is similar to FPSBA
with the exception that the winner pays the second highest bid instead.



3. Open ascending-bid auctions (English auctions). Bidders increasingly submit
higher bids and stop bidding when they are not willing to pay more than
the current highest bid.

4. Open descending-bid auctions (Dutch auctions). Auctioneer initially sets a
high price, which is gradually decreased until a bidder decides to pay at the
current price.

Arguably, the main advantage behind the sealed-bid auctions lies in the fact that
no bidder learns any information about the other bids. Hence, the bidders are
encouraged to bid according to their monetary valuation of the asset. However,
a collusion between the auctioneer and a malicious bidder can break this advan-
tage. In other words, there is a conflict between preserving the privacy of the
bids and trusting the auctioneer to individually determine the winner. Hence, in
online sealed-bid auctions, cryptographic protocols can be utilized to accomplish
the publicly verifiable correctness without sacrificing the privacy of the bids.

According to a recent Reuters report [10], as part of the e↵orts to improve the
transparency in government transactions, the Ukraine’s justice ministry carried
out trial auctions on top of the blockchain. The main goal is to make the auction
system more transparent and secure such that the information is accessible to
everyone to check if there is any manipulation or corruption.

Recently, cryptocurrencies have gained high popularity as evidenced by the
surge in Bitcoin exchange rate. The foundation of cryptocurrencies is based on a
decentralized public ledger on a peer-to-peer network that maintains the history
of all transactions in an append-only fashion. Peers agree on the state of the
ledger through an incentive-based consensus protocol. Additionally, cryptocur-
rencies also use cryptography to secure transactions as well as to control the
creation of new currency units. Furthermore, many cryptocurrencies blockchains
go beyond the simple means of payments. In fact, they provide a support for
building and executing contracts on top of them. Simply, a smart contract is
a piece of code that is stored and run on the blockchain. The smart contract
resides passive until its execution is triggered by transactions. With the help of
the consensus protocol, the contract is also guaranteed to be executed as its code
dictates.

The Ethereum blockchain [17] presumably provides the highest support for
smart contracts creation. Smart contracts are executed by a simple stack-based
Turing complete 256-bit virtual machine known as the Ethereum Virtual Ma-
chine (EVM). Solidity is the common scripting language for writing smart con-
tracts with a growing community. Ether represents the unit of currency in
Ethereum and there are two types of accounts: externally owned accounts and
contract accounts. An externally owned account is typically associated with a
user, it consists of a unique public-private key pair. On the other hand, a contract
account is controlled by the contract instead of a single private key. Transactions
are created and signed by externally owned accounts. The receiver of the trans-
action can be an externally owned account or a contract account. In the former
case, the transaction’s purpose is to transfer ethers between users. Whereas in
the latter case, the transaction triggers the execution of a function on the smart
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contract. Transactions also include a gas limit and a gas price; the amount of
gas consumed to execute the transaction is converted into ethers using the gas
price. These ethers are charged to the sender’s account as transaction fees.

The Ethereum project has been planned in four locksteps [16]: Frontier,
Homestead, Metropolis, and Serenity. Each update brings a set of approved
Ethereum Improvement Proposals (EIP). Recently, the Ethereum blockchain
has been upgraded to the first phase of Metropolis which is named Byzan-
tium. The fork has been announced by the Ethereum team at the block number
4,370,000 [14]. Byzantium includes EIP-196 and EIP-197 to e�ciently perform
elliptic curve point addition and scalar multiplication operations on alt bn128
curve [15]. Simply, they are precompiled contracts with special addresses that
are intercepted by the client software which provide e�cient native implemen-
tation, rather than the ine�cient EVM implementation, for elliptic curve oper-
ations. These proposals prepare Ethereum for untraceable transactions by inte-
grating ZK-Snarks, a cryptographic innovation developed in collaboration with
the anonymity-centric cryptocurrency Zcash [12].

Despite the flexibility and power of the smart contracts, the present form of
the blockchain technologies lacks transactional privacy. Typically, every sequence
of actions executed in the smart contract is propagated across the network and
ends up being recorded on the blockchain. As a result, the lack of privacy is con-
sidered a major challenge towards the adoption of smart contracts as alternatives
to many financial applications. Many individuals are not willing to reveal their
financial transactions to the public. In this paper, we tackle this challenge and
present an auction smart contract that utilizes a set of cryptographic primitives
to guarantee the following attributes:

1. Bid privacy. All bidders cannot know the bids submitted by the others before
committing to their own. This property is also guaranteed even in a collusion
with a malicious auctioneer.

2. Posterior privacy. Given a semi-honest auctioneer, all committed bids are
maintained private from the bidders and public users.

3. Non-repudiability. Once the bid interval is closed, bidders cannot change or
deny the commitments to their sealed-bid.

4. Public verifiable correctness. The auction contract verifies the correctness of
the auctioneer’s work to determine the auctioneer winner.

5. Financial fairness. Bidders or auctioneer may attempt to deviate from the
protocol and prematurely abort to a↵ect the behavior of the auction proto-
col. The aborting parties are financially penalized while honest parties are
refunded after a specific timeout.

6. Non-Interactivity. Bidders do not participate in complex interactions with
the underlying protocol of the auction contract. In fact, no extra communi-
cations between the bidders and the auction contract are required aside from
the submission of the bid commitments and the associated opening values.

We have also made our implementation prototype available on Github 1 for
researchers and community to review it.

1
https://github.com/HSG88/AuctionContract
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The rest of this paper is organized as follows. Section 2 provides a review
of state-of-the-art research on auction solutions on the blockchain. The cryp-
tographic primitives and the protocol for comparing the bids and verifying the
correctness of the auction winner are presented in Section 3. In Section 4, we
provide an analysis of the auction contract design and the estimated gas cost of
the relevant transactions. Finally, we present our conclusions and future work in
Section 5.

2 Related Work

Many of the previous research have focused on combining cryptocurrencies with
secure multiparty computation protocols (MPC) and/or zero-knowledge proofs
(ZKP). Typically, the cryptocurrency is used to incentive fairness and correct-
ness, and avoid deviations from the MPC or ZKP protocol [1, 2, 8, 9]. Initially,
each participant deposits an amount of cryptocurrency in a smart contract.
These funds are reserved while the protocol is still running. Subsequently, once
the protocol reaches a final state after an arbitrary timeout, the deposits get
refunded only to the honest players. This in e↵ect encourages parties to strictly
follow the protocols to avoid the financial penalty.

In [6], the authors presented Hawk, a framework for creating Ethereum smart
contract that does not store financial transactions in the clear on the blockchain.
One can easily write a Hawk program without having to implement any cryptog-
raphy. The associated compiler utilizes di↵erent cryptographic primitives such
as ZKP to automatically generate privacy-preserving smart contracts. A Hawk
program contains public and private parts. The public part consists of the logic
that does not deal with the data or the currency. Conversely, the private part
is responsible for hiding the information about data and input currency units.
The compiler translates the Hawk program into three pieces that define the
cryptographic protocol between users, manager, and the blockchain nodes. The
security of a Hawk program is guaranteed to satisfy on-chain privacy that pro-
tects the flow of money and data from the public view, and contractual security
that protects the parties in the agreement of the contract from each other. Up
to our knowledge, the Hawk framework has not been released yet on the project
homepage http://oblivm.com/hawk/download.html.

The authors in [3] presented Strain, a protocol to implement sealed-bid auc-
tions on top of blockchains that protects the bid privacy against fully-malicious
parties. To achieve e�ciency and low latency cost, the authors avoided the use
of highly interactive MPC primitives such as garbled circuits. Instead, they de-
signed a two-party comparison mechanism executed between any pair of bidders
in parallel. The outcome of the comparison is broadcasted to all bidders such
that each one can verify it using ZKP. An additional ZKP protocol is used to ver-
ify that the comparisons only involved the committed bids. Moreover, to achieve
fairness against prematurely aborting malicious parties, the protocol uses a re-
versible commitment scheme such that a group of bidders can jointly open the
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bid commitment. The authors mentioned that the proposed protocol leaks the
order of bids similar to Order Preserving Encryption (OPE) schemes.

In [13], the author proposed Raziel, a system that combines MPC and ZKP
to guarantee the privacy, correctness and verifiability of smart contracts. The
associated proofs of the smart contracts can e↵ectively prove the functional cor-
rectness of a computation, besides to additional properties such as termination,
security, pre-conditions and post-conditions. Furthermore, the author presented
how a smart contract owner can prove its validity to third parties without re-
vealing any information about the source code by using Zero-Knowledge Proofs
to create Proof-Carrying Code certificates. Moreover, the author also proposed
an incentive-based scheme for miners to genereate preprocessed data of MPC.

3 Preliminaries

In this section, we briefly explain the cryptographic primitives that are utilized
in the design of our proposed protocol:

1. Homomorphic commitment scheme that supports the addition operation on
the underlying values

2. Zero-knowledge proof of interval membership x 2 [0, B].

3.1 Homomorphic Commitment Scheme

Our protocol makes an extensive use of Pedersen commitment scheme [11]. Let
G and H be fixed public generators of the elliptic curve alt bn128 which is
supported in EIP-196 and EIP-197 with the group order q [15]. The value of H
is chosen such that neither the bidders nor the auctioneer know its discrete log.
To commit a bid x 2 Zq, the bidder chooses a random r 2 Zq, then computes
the commitment as C = xG + rH. Later, to open the commitment C, the
bidder simply reveals the values of x and r. The Pedersen commitment scheme
also possesses the homomorphic addition property on the underlying committed
values by simply computing the point addition operation on the commitments. In
other words, given two commitments C1 = x1G+r1H and C2 = x2G+r2H, then
C1+C2 = (x1+x2)G+(r1+r2)H which is essentially the outcome commitment
to x1 + x2.

3.2 Zero-Knowledge Proof of Interval Membership

We adapt the interval membership ZKP protocol proposed in [4]. Given an
arbitrary number x which belongs to an interval [0, B), the prover is able to
convince the verifier that x 2 [�B, 2B). Since the financial values of bids cannot
be negative numbers, the proved interval membership becomes x 2 [0, 2B). The
protocol runs as follows:

1. Commit. The prover picks a number w1 2 [0, B] and sets w2 = w1 � B.
Then, the prover sends the commitments X = xG+ uH,W1 = w1G+ r1H,
and W2 = w2G+ r2H to the verifier.
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2. Challenge. The verifier picks a random variable b 2 {0, 1}.
3. Response. The prover sends one of the following responses to the verifier

based on the value of b:

– Case b = 0, the prover sends w1, r1, w2, and r2. The verifier checks
|w1 � w2| = B, and the successful openining of the commitments W1

and W2.
– Case b = 1, the prover sendsm = x+wz and n = u+rz, wherem 2 [0, B)

and z 2 {0, 1}. The verifier checks XWz = (x+ wz)G+ (u+ rz)H.

In this protocol, the probability of cheating is 1
2 which is non-negligible. However,

with multiple k rounds of the protocol, the cheat probability becomes 1
2k .

3.3 Proving Claimed Inequality x1 > x2

Based on the primitives outlined above, we can prove that one bid is greater
than another as follows. Suppose that x1, x2 2 Zq, where q is a 256-bit prime
number representing the order of alt bn128 elliptic curve as specified in EIP-197
and EIP-198 [15]. Then it is relatively easy to prove that x1 > x2 if and only if
the following three interval membership hold (i) x1 2 [0, q

2 ), (ii) x2 2 [0, q
2 ), and

(iii) �x1,2 2 [0, q
2 ) where �x1,2 = (x1 � x2)mod q.

In our work, the auctioneer acts as a prover and the auction contract acts
as a verifier. Recall that in the interval membership ZKP, the prover is able
to convince the verifier that x 2 [0, 2B) given that x 2 [0, B). As a result,
we set an upper bound V = q

4 on the range of possible bids. Additionally,
the auctioneer is not allowed to create any commitments for the bids, instead,
the auctioneer only uses the commitments submitted by the bidders on the
smart contract. The auction contract utilizes the additive homomorphic feature
of Pedersen commitment scheme to compute the commitment to the di↵erences
between each pair of bids �Xi,j = Xi + (�1)Xj .

4 Auction Smart Contract

In this section, we illustrate all the interactions between the bidders, the auc-
tioneer, and the auction contract. Although our work applies to both types of
sealed-bid auctions, we demonstrate the interactions in the case of FPSBA.

There are five sequential phases from the initial deployment of the auction
contract to the collection of the highest bid from the winner given a successful
verification of correctness. There are two methods to define phases of a smart
contract: time interval and block interval. In time interval, the smart contract
checks the time of the mined block (block.timestamp or now) which is specified
by the block’s miner. Ethereum developers discourage this method since it can
be easily manipulated by the miners. On the other hand, in block interval, the
smart contract loses the notion of time.
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4.1 Phase 1: Contract Deployment and Parameters Setup

As shown in Fig. 1, the auctioneer initially deploys the auction contract on the
Ethereum blockchain with the following set of parameters:

Create: upon receiving from auctioneer A (T1, T2, T3, T4, N, F,Apk) :
Set state := INIT, bidders := {}, zkpCommits := {}
Set highestBid := 0, winner := 0

Set challengeBlockNumber := 0, challengedBidder := 0

Assert T < T1 < T2 < T3 < T4

Assert ledger[A] >= F

Set ledger[A] := ledger[A] - F

Set deposit := deposit + F

Fig. 1. Pseudocode for the deployment of the auction contract

1. T1, T2, T3, T4 define the time intervals for the following four phases: com-
mitments of bids, opening the commitments, verification of the winner, and
finalizing the auction, respectively.

2. F defines the amount of initial deposit of ethers received from the bidders
and the auctioneer to achieve financial fairness against malicious parties.

3. N is the maximum number of bidders.
4. Apk is the auctioneer’s public key of an asymmetric encryption scheme.

4.2 Phase 2: Commitment of Bids

This phase starts immediately after the deployment of the auction contract.
Each bidder submits a bid commitment using Pedersen commitment scheme
along with the initial deposit F in ethers to the function Bid as shown in Fig. 2.

Bid: upon receiving from a bidder B (comB):
Assert T < T1

Assert ledger[B] > F

Set ledger[B] := ledger[B] - F

Set deposit := deposit + F

Set bidders[B].Commit := comB

Fig. 2. Pseudocode for the Bid function

Suppose that an arbitrary bidder Bob is known to be very rich and is really
interested in winning the auctioned item, i.e., Bob is very likely to be the one who
submits the highest bid. Then, a collusion between a malicious bidder Alice and
the auctioneer can eliminate Bob’s winning chance by abusing the homomorphic
property of the Pedersen commitment. The attack can be carried out as follows:

1. Bob submits the commitment CB = (xG+ rH).
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2. Subsequently, Alice submits the commitment CA = CB + (G+H).
3. Bob reveals (x, r) to the auctioneer.
4. The auctioneer forwards (x, r) to Alice.
5. Alice reveals (x+ 1, r + 1).

To avoid this attack, we utilize Chaum-Pedersen non-interactive ZKP [5], which
is not shown in Fig. 2. for the sake of simplicity. In this case, the above attack
is not applicable because Bob sends commitments to random numbers rather
than the actual bid which are subsequently challenged to verify the knowledge
of values (x, r). As a result, Alice cannot succeed to imitate Bob’s commitment
since she will receive di↵erent challenges to verify the knowledge of (x+1, r+1).

4.3 Phase 3: Opening the Commitments

Each bidder Bi sends the outcome ciphertext of encrypting (xi, ri) by the public
key of the auctioneer Apk to the function Reveal on the auction contract as
shown in Fig. 3.

Reveal: upon receiving from a bidder B (ciphertext):
Assert T1 < T < T2

Assert B 2 bidders

Set bidders[B].Ciphertext := ciphertext

Fig. 3. Pseudocode for the Reveal function

The ciphertexts are stored on the auction contract instead of being sent
directly to the auctioneer in order to avoid the following attack scenario. Suppose
a malicious auctioneer pretends that an arbitrary bidder Bob has not revealed
the opening values of the associated commitment. In this case, Bob has no chance
of denying this false claim. However, if the ciphertexts are to be stored on the
auction contract, then their mere existence successfully prevents this attack.

We have also taken into our account the possibility of the following attack
as well. Suppose a malicious auctioneer intends to penalize an arbitrary bidder
Bob by claiming that the decryption outcome of Bob’s ciphertext CTB does not
successfully open Bob’s commitment CB . We prevent this attack by requiring
the auctioneer to verify the opening correctness of the commitments once they
are submitted by the bidders. In the case of unsuccessful opening, the auctioneer
declares on the auction contract that the ciphertext associated with the bidder
B is invalid. The honest bidder can deny this claim by revealing (xB , rB) to
the auction contract. Subsequently, the auction contract encrypts the revealed
values by the public key Apk. If the outcome ciphertext is found to be equivalent
to the previously submitted ciphertext, then the auction contract penalizes the
auctioneer and terminates the auction after refunding the bidders. Otherwise,
the bidder is penalized and the associated commitment is removed, such that
only the valid commitments exist on the auction contract.
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To guard against forward search attack on the submitted ciphertexts, the
parameter r in the opening values is a 256-bit random number that has no
restriction on its value compared to the parameter x. Additionally, the opening
values are combined to form one message which is passed to the encryption
scheme.

4.4 Phase 4: Verification of Comparison Proofs

The auctioneer orders the bids to determine the wining bid xw, the associated
account address Bw and commitment Cw. Then, the auctioneer has to prove
that xw > xi for all i 6= w and 0 < i < N . The auction contract has a set
of states to impose an order on the functions being invoked by the auctioneer
for verification. Initially, the auctioneer calls the function ClaimWinner to claim
that a winner is found by specifying the account address and opening values of
the bid commitment as shown in Fig. 4.

ClaimWinner:upon receiving from auctioneer A (Bw, xw, rw):
Assert state = INIT

Assert T2 < T < T3

Assert xw < V

Assert Bw 2 bidders

Assert bidders[Bw].commit = Pedersen.Commit(xw, rw)

Set winner := Bw

Set highestBid := xw

Set state := Challenge

Fig. 4. Pseudocode for the ClaimWinner function

Recall that the interval membership ZKP has a probability of cheating 1
2

which is non-negligible; however, this probability can be further reduced to ( 12 )
k

by running the protocol k times. Moreover, in the challenge step, the verifier
sends to the prover a random value b 2 {0, 1} which has to be non-predictable.
However, smart contracts cannot send data to externally owned accounts, (i.e.,
the auction contract cannot send a challenge value to the auctioneer). Hence, we
utilize a non-interactive interval membership ZKP to prove xi 2 [0, q

2 ) as follows:

1. Commit: The auctioneer chooses k-pairs of (w1,j , w2,j) where w1,j 2 [�V, V )
and w2,j = w1,j � V such that |w1,j � w2,j | = V for 1  j  k. Then, the
auctioneer invokes the function ZKPCommit with the account address of the
challenged bidder and the commitments to w1 and w2 as shown in Fig. 5.
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ZKPCommit:upon receiving from auctioneer A (Bi, commits):
Assert state = Challenge

Assert T2 < T < T3

Assert Bi 2 bidders

Set zkpCommits :=commits

Set challengeBidder := Bi

Set challengeBlockNumber := QueryBlockNumber()

Set State := Verify

Fig. 5. Pseudocode for the ZKPCommit function

2. Challenge and Response:
– The auctioneer receives a transaction receipt which includes the hash

of the block containing the transaction after it has been confirmed. The
ZKPCommit function has no access to this hash while it is being executed;
therefore it stores the current block number in challengeBlockNumber.

– The least significant k-bits of the hash are chosen as the challenge bj .
– The auctioneer creates k responses Rj based on the values of bj .
– Case bj = 0, then Rj = {w1,j , r1,j , w2,j , r2,j}.
– Case bj = 1, then Rj = {mj , nj , z} where mj = xj +wz,j , nj = uj + rz,j

such that mj 2 [0, V ) and z 2 {1, 2}.
– The auctioneer invokes the function ZKPVerify with input parameter

responses which is an array of Rj as shown in Fig. 6.

ZKPVerify: upon receiving from auctioneer A (responses)
Assert State = Verify

Assert T2 < T < T3

Set hash := QueryBlockHash(challengeBlockNumber)

for j 2 [1, k], Rj 2 responses, Cj 2 zkpCommits

Set bj := Bit(hash,j)

if bj = 0
Assert VerifyFirstCase(Cj , Rj)

else

Assert VerfiySecondCase(Cj , Rj)

Set bidders[challengeBidder].ValidBid := true

Set state := Challenge

Fig. 6. Pseudocode for the ZKPVerify function

As explained in Section 3, three interval membership ZKP are required to
prove that xw > xi. However, since the bid of the winner Bw is revealed, then
the number of proofs is reduced to two. In other words, the auctioneer has to
prove the interval membership for all bids xi other than the winning bid and
their associated di↵erences�wi. The function ZKPCommit and ZKPVerify contain
extra logic to also verify the correctness of �wi 2 [0, q

4 ).
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4.5 Phase 5: Finalizing the Auction

After the successful verification of correctness, the auctioneer invokes the func-
tion VerifyAll as shown in Fig. 7 to change the state of the auction contract
so that the winner can pay the winning bid.

VerifyAll upon receiving from auctioneer A ()
Assert state = Challenge

Assert T2 < T < T3

For all b 2 bidders - {winner}
Assert b.ValidBid = true and b.ValidDelta = true

Set State := ValidWinner

Fig. 7. Pseudocode for the VerifyAll function

Subsequently, The winner invokes the function WinnerPay to deposit the
di↵erence between the winning bid and the initial deposit F as shown in Fig. 8.

WinnerPay upon receiving from a bidder B (”winnerPay”)
Assert State = ValidWinner

Assert T3 < T < T4

Assert B = winner

Assert ledger[B] > highestBid - F

Set ledger[B] := ledger[B] - highestBid +F

Set deposit := deposit + highestBid - F

Set state := WinnerPaid

Fig. 8. Pseudocode for the WinnerPay function

The auction contract guarantees to refund the initial deposit to all honest
players after the time T3 as shown in Fig. 9. In the case of invalid proofs, it
penalizes the auctioneer and refunds all bidders. Otherwise, it refunds the losing
bidders and the auctioneer as well. It is also clear that the only way for the
winner to refund the initial deposit is by invoking WinnerPay function.

Timer
if T > T3 then

if state 6= V alidProof then

refund(F) for all b 2 bidders

else

refund(F) to auctioneer A

refund(F) for all b 2 bidders - {winner}

Fig. 10. Pseudocode for the Timer function

11



4.6 Gas Cost

We have created a local private Ethereum blockchain to test our prototype using
the Geth client version 1.7.2. To support the Byzantium EIP-196 and EIP-197,
the genesis.json file has to contain the attribute {“byzantiumBlock”: 0}. Ad-
ditionally, since Ethereum does not support timer triggered functions, we have
implemented a Withdraw function that is invoked by an explicit request from
the honest players to refund their initial fairness deposit. We have tested the
auction contract with ten bidders, and we have set k = 10 as the number of
multiple rounds to verify interval membership NiZKP which results in a proba-
bility of cheat less than 0.001. The upper bound on bid values is up to 250-bit
length which is very adequate for financial values. The Pedersen commitment
size is 512-bits that represent two points on the elliptic curve. The ciphertext
submitted to the Reveal function is 1024-bits. Table 1 shows the consumed gas
and the equivalent monetary cost in US dollars for invoking di↵erent functions
on the auction contract. As of November 30, 2017, the ether exchange rate is 1
ether = 450$ and the gas price is approximately 20 Gwei = 20 ⇥ 10�9 ether.
Furthermore, the execution of ”heavy” functions in Ethereum is not only costly
in dollar terms, but may be even impossible, if the function’s gas requirements
exceed the block gas limit. The block gas limit at time of writing is 8m gas,
whereas the most expensive protocol function consumes 2m gas, which seems
feasible

Table 1. Consumed gas cost for di↵erent functions of the Auction contract

Function Gas units Gas cost (USD)

Deployment 3131261 28.18
Bid 130084 1.17
Reveal 132849 1.19
ClaimWinner 166288 1.49
ZKPCommit 656689 5.91
ZKPVerify 2002490 18.02
VerifyAll 46580 0.42
Withdraw 47112 0.42

5 Conclusion and Future Work

In this paper, we presented a smart contract for a verifiable sealed-bid auction
on the Ethereum blockchain. We utilized Pedersen commitment scheme along
with ZKP of interval membership to create the underlying protocol. The auc-
tion contract maintains the privacy of bids such that bidders do not learn any
information about the other bids when they commit. Additionally, the auction
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contract also exhibits the public verifiable correctness as it is designed to ver-
ify the proofs claimed by the auctioneer to determine the winner. Moreover,
no complex interaction is required from the bidders other than submitting and
revealing the commitments to their bids. The proposed protocol can be easily
modified to support the full privacy of all bids including the winner’s bid if there
is a desire to receive the payment of winning bid aside from the blockchain. For
future work, we will investigate other approaches applicable to the Ethereum
blockchain where we can also protect the privacy of bids from all parties includ-
ing the auctioneer.
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Abstract

With the recent success of cryptocurrency, Blockchain’s design opens the door of building trustworthy distributed
systems. A common paradigm is to repurpose the Blockchain as an append-only log that logs the application events
in time order for subsequent auditing and query verification. While this paradigm reaps the security benefit, it faces
technical challenges especially when being used for data-intensive applications.

Instead of treating Blockchain as a time-ordered log, we propose to lay the log-structured merge tree (LSM
tree) over the Blockchain for efficient and lightweight logging. Comparing other data structures, the LSM tree
is advantageous in supporting efficient writes while enabling random-access reads. In our system design, only a
small digest of an LSM tree is persisted in the Blockchain and minimal store operations are carried out by smart
contracts. With the implementation in Ethereum/Solidity, we evaluate the proposed logging scheme and demonstrate
its performance efficiency and effectiveness in cost saving.

I. INTRODUCTION

Recent years witnessed the advent and wide adoption of the first cryptocurrency, BitCoin [1], followed by many
others including Ethereum [2], Litecoin [3], Namecoin [4], etc. The initial success of cryptocurrency demonstrates
the trustworthiness of Blockchain, the underlying platform of cryptocurrency. The Blockchain supports the storage
and processing of cryptocurrency transactions. In abstraction, it is a trust-decentralized network storing transparent
state designed with incentives to enable open membership at scale. A line of the latest research and engineering
aims at applying the trustworthy design of Blockchain for applications beyond cryptocurrency.

A common paradigm of repurposing Blockchain is to treat the Blockchain as a public append-only log [5],
where application-level events are logged into the Blockchain in the order of time, and the log is used later for
verification and auditing. While this public-log paradigm reaps the security benefit of Blockchain, it is limited to
the applications handling small data (due to high Blockchain storage cost) and tolerating long verification delay
(linear scanning the entire chain for verification).

In this work, we tackle the research of repurposing Blockchains for hardening the security of data-intensive
applications hosted in a third-party platform (e.g., cloud). A motivating scenario is to secure the cloud-based
Internet-of-things (IoT) data storage where the IoT data producers continuously generate an intensive stream of
data writes to the third-party cloud storage which serves data consumers through queries. Including Blockchain
could enhance the trustworthiness of the third-party cloud storage.

A baseline approach is to log the sequence of data writes in the time order into the Blockchain, in a similar
way to log-structured file systems [6]. This approach causes a high read latency (linear to the data size). Another
baseline is to digest the latest data snapshot, e.g., using Merkle tree, and place the digest inside the Blockchain. In the
presence of dynamic data, the digest scheme usually follows classic B-tree alike data structures [7], [8] that perform
“in-place” updates. These schemes incur high write amplification as writing a record involves a read-modify-write
sequence on the tree and has O(logN) complexity per write. On Blockchain, this high write amplification causes
high cost, as writing a data unit in Blockchain is costly (which involves duplicated writes on miners and expensive
proof-of-work alike computation). The problem compounds especially in the write-intensive applications as IoT
streams.

To log write-intensive applications using write-expensive Blockchain, we propose to place the log-structured
merge tree (LSM tree) [9] over the Blockchain for efficient and lightweight logging. An LSM tree is a write-
optimized data structure which supports random-access reads; comparing the above two baselines (append-only log
as in log-structured file system and update-in-place structures in database indices), an LSM tree strikes a better
balance between read and write performance and is adopted in many modern storage systems, including Google
BigTable [10]/LevelDB [11], Apache HBase [12], Apache Cassandra [13], Facebook RocksDB [14], etc.



At a high level, an LSM tree lays out its storage into several “levels” and supports, in addition to reads/writes, a
compaction operation that reorganizes the leveled storage for future read/write efficiency. We propose a scheme to log
the LSM tree in Blockchain: 1) individual levels are digested using Merkle trees with the 128-bit root hashes stored
in Blockchain. 2) The compaction that needs to be carried out in a trustworthy way is executed in smart-contracts,
which allow for computations on modern Blockchain, such as Ethereum [2]. Concretely, we propose compaction
mechanisms that realize several primitives inside the smart contract. We propose a duplicated compaction paradigm
amenable for implementation on the asynchronous Smart-Contract execution model in Ethereum. Based on the
primitives and paradigm, we realize both sized and leveled compaction mechanisms in the smart contract.

We have implemented the design on Ethereum leveraging its Smart-contract language, Solidity [15], and program-
ming support in the Truffle framework [16]. In particular, invoking a Solidity smart-contract is asynchronous and
our system addresses this property by asynchronously compacting the LSM storage. Based on the implementation,
we evaluate the cost of our proposed scheme with the comparison to alternative designs. The results show the
effectiveness of cost-reducing approaches used in our work.

The contributions of this work are the following:
1. We propose TPAD, a novel architecture to secure outsourced data storage over the Blockchain. The TPAD

architecture considers an LSM-tree-based storage protocol and maps security-essential state and operations to the
Blockchain. The architecture includes a minimal state in Blockchain storage and offline compaction operations in
the asynchronous smart-contract.

2. We implement a prototype on Ethereum/Solidity that realizes the proposed design. Through evaluation, we
demonstrate the effective cost saving of the TPAD design with the comparison to state-of-the-art approaches.

The rest of the paper is organized as following: § II formulates the research problem. The proposed technique,
LSM-tree based storage over the Blockchain, is presented in § III. The system implementation is described in § IV.
Evaluation is presented next in § V and § VII surveys the related work. § VIII concludes the paper.

II. PROBLEM FORMULATION

A. Target Applications

This work targets the application of secure data outsourcing in a third-party host (e.g., Amazon S3). A particular
scenario of interest is to outsource the data generated by the Internet of things (IoT) devices to the cloud storage,
which serves read requests from data consuming applications. The IoT data is usually personal and could be
security sensitive; for instance, in the smart home, the IoT devices such as smart TV controller capture residents’
daily activities which could reveal personal secrets such as TV view habits. The IoT data, on the other hand, can
be used to improve the life quality and enable novel applications. For instance, analyzing patient’s activities at
home can improve out-patient care and predict possible disease. In practice, various IoT data is widely collected
and outsourced [17]. A noteworthy characteristic of our target application is that data is generated continuously and
intensively. The workload is more write intensive than the static workload (e.g., in classic database systems).

B. System Model

Cloud
Data 

producer

Writes

Data outsourcing

Blockchain 

Logging
/auditing

Data 
consumers

Fig. 1: Logging data outsourcing in Blockchain
The data-outsourcing system consists of data producers, a cloud host, and several data consumers. A data producer

submits data write requests to the cloud and a data consumer submits data read requests to the cloud. The cloud
exposes a standard key-value store interface for reads and writes. Formally, given key k, value v, timestamp ts, a
data write and data read are described below:
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ts := Put(k, v)

⟨k, v, ts⟩ := Get(k, tsq) (1)

In our system, we assume the data producers and consumers are trusted. The third-party cloud is untrusted and
it can launch various attacks to forge an answer to the consumer which will be elaborated on in § II-C.

Our data-outsourcing system has a companion of Blockchain, as illustrated in Figure 1. The Blockchain logs
certain events in the workflow of data outsource for the purpose of securing it.

C. Security Goals

In the presence of the untrusted host, there are threats that could compromise data security. An adversary, be
it the cloud host or man-in-the-middle adversary in networks, could forge a fake answer to a data consumer and
violate the data integrity, membership authenticity, etc. The data integrity can be protected by simply attaching a
message-authentication code (MAC) to each key-value record. This work considers the more advanced attacks —
membership attacks that manifest in many forms: It could be the untrusted host deliberately skips query results
and presents an incomplete answer (violating query completeness). It could be the host presents a stale version of
the answer (violating query freshness). It could have the host to return different answers to different consumers
regarding the same query (violating the fork consistency). On the write path, a man-in-the-middle adversary could
replay a write request to result in incorrectly duplicated data versions. The formal definition of membership data
authenticity is described in the existing protocols of authenticated data structures (ADS) [18], [19], [20], [21].

While this work mainly focuses authenticity, we consider a weak security goal w.r.t. the data confidentiality that
deterministic encryption suffices. The extension for data confidentiality will be discussed in § VI.

D. Existing Techniques and Applicability

Existing works on ADS construction, while ensuring the security of membership authentication, are mostly
designed based on read-optimized database structures such as B trees and R trees [8], [7] that perform data updates
in place. These update-in-place structures translate an update operation from applications to a read-modify-write
sequence on the underlying storage medium, and they are unfriendly to the write performance. The only ADS work
we are aware of on address write efficiency is [22], which is however constructed using expensive lattice-based
cryptography.

Without security, there are various write-optimized log-structured data structures that do not perform in-place
updates but conduct append-only writes instead. A primary form of these data structures is to organize the primary
data storage into a time-ordered log of records where an update is an append to the log end and a read may have
to scan the entire log. The pure-log design is widely used in the log-structured journaling file systems [6].

A log-structured merge tree [9] represents a middle ground between the read-optimized update-in-place structure
and the write-optimized log. An LSM tree serves a write in an append-only fashion and also supports random-access
read without scanning the entire dataset. The LSM design has been adopted in many real-world cloud storage
systems, including Google BigTable [10]/LevelDB [11], Apache HBase [12], Apache Cassandra [13], Facebook
RocksDB [14], etc. The read-write characteristic of an LSM tree renders it well suited for the applications of IoT
data outsourcing.

E. Motivation

Our target applications such as IoT data outsourcing feature a high-throughput stream of data updates and random-
access read queries. As aforementioned, a Log-Structured Merge Tree is a good fit for this workload, assuming
some offline hours for data compaction.

To map the LSM-tree workflow in an outsourcing scenario, it is essential to find a trusted third-party to conduct
the data-compaction work. Relying on one of data owners to do the compaction is unfeasible due to availability,
data owner’s limited power (e.g., a low-end IoT device), etc.

We propose to leverage the Blockchain for the secure compaction in LSM storage. The decentralized design and
large-scale deployment of existing Blockchain render it a trustworthy platform. The new smart-contract interface
of the latest Blockchain makes it friendly to run general-purpose trustworthy computation on the platform.

Despite the advantages, designing a system for Blockchain-based LSM-storage outsourcing is non-trivial. Notably,
Blockchain’s innate limitation (in low storage capacity, high cost, low write throughput) presents technical challenges

3



when being adapted to the high-throughput data-outsourcing workflow. We address these challenges by limiting
Blockchain’s involvement in the online path of data outsourcing, such that the state on Blockchain can be “updated”
infrequently.

F. Preliminary: LSM trees

The mechanism of an LSM tree is the following: It represents a dataset by multiple sorted runs (or files) and
organized in several so-called “levels”. The first level stores the most recent data writes and is “mutable”. Other
levels are immutable and are updated only in an offline manner. Concretely, a data write synchronously updates the
first level. The first level may periodically persist data to an external place, called write-ahead log (WAL). When
the first level becomes full, it is flushed to the next level. A read iterates over levels, and for each level, it is served
by an indexed lookup. In the worst case, a read has to scan all levels and in practice, the total number of levels is
bounded. In addition, if the application exhibits some data locality (i.e., reads tend to access recently updated data),
a read can stop in the first couple of levels. An LSM tree supports a compaction1 operation that merges multiple
sorted runs into one and helps reorganizes the storage layout from a write-optimized one to a read-optimized one.
The compaction is a batched job that usually runs asynchronously and during offline hours. There are two flavors in
compaction, namely, flush and merge. A flush operation takes as input multiple sorted runs at level i and produces
a sorted run as output at level i+1. A merge operation takes as input one selected file at level i and multiple files
at level i + 1 that overlap the selected file in key ranges. It produces sorted runs that replace these input files at
level i+ 1.

An LSM mechanism supports different policies to trigger the execution of a compaction. These policies include
sized configuration and leveled configuration: 1) In a sized configuration, each tree level has the capacity of storing
a fixed number of sorted files, say K . The file size at level i is Ki (the first level has i to be 0). A flush-based
compaction is triggered when there are K files filled in a level, say i. The compaction merges all K files at level i
into one file at level i+1. With the sized-compaction policy, files at the same level may have their content overlap
in key ranges, and a read has to scan all files in a level. 2) In a leveled configuration, any tree level is a sorted
run where different files do not overlay in their key ranges. Data at level 0 is flushed to level 1 and data at level
i, ∀i ≥ 1, is merged to level i+ 1 [11]. A compaction can be triggered by application-specific conditions. A read
within a level can be served by an indexed lookup without scanning.

III. LSM DATA STORAGE OVER BLOCKCHAIN

A. Baseline and Design Choices

Baseline: Our general design goal is to leverage Blockchain for securing data outsourcing. A baseline approach
is to replace the cloud host by Blockchain. In the baseline, the Blockchain stores the entire dataset and directly
interacts with the trusted clients of data producers and consumers through three smart contracts. On the write path,
a “writer” contract accepts the data-write requests from the producers (encoded in the form of transactions) and
sends them to the Blockchain. On the read path, a “reader” contract reads the Blockchain content to find the LSM
tree level that contains the result. The Blockchain runs an offline “compaction” contract that is triggered by the
same conditions of original LSM stores and that merges multiple sorted runs to reorganize the layout.

Design Space: The above baseline design raises two issues as below:
First, the baseline approach uses the Blockchain as the primary data storage, which is cost inefficient. Concretely,

storing a bit in Blockchain is much more expensive and costly than storing it off-chain (e.g., in the cloud). A
promising solution is to partition the LSM workflow and to result in a minimal and security-essential partition in
Blockchain. This way, the primary data storage which is cumbersome is mapped off-chain to the cloud host.

Second, the baseline approach enforces a strong consistency semantic over the Blockchain which is weakly
consistent; this mismatch across layers may present issues and incur unnecessary cost. More specifically, the current
system of Blockchain promises only eventual consistency (or timed consistency [23]) in the sense that it allows an
arbitrary delay between the transaction-submission time and the final settlement time (i.e., when the transaction is
confirmed in the blockchain). The eventual consistency limits the use of Blockchain for real-time data serving and
renders the baseline approach that aggressively checks the Blockchain digests to be ineffective.

1In this work, the words of “compaction” and “merge” are interchangeably used.
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B. Blockchain-Based TPAD protocol

TPAD overview: Our proposed TPAD protocol addresses the partitioning problem of an LSM tree for the minimal
involvement with the Blockchain. The TPAD design separates the “data plane” (the primary data storage) and the
“control plane” (e.g., digest management), and maps the former to the off-chain cloud and only loads the latter in
Blockchain. Recall that an LSM tree supports three major operations (i.e., data write, read and compaction). For
online data reads/writes, TPAD places only in Blockchain/smart-contract the access of the digests, while leaving
data access and proof construction off-chain. To address the consistency limits, TPAD embeds the weak-consistency
semantics in the application layer; for instance, it does not access the Blockchain if the results are too recent to
be reflected in the Blockchain. The data-intensive computation of compaction is however materialized inside the
Blockchain, which simulates a multi-client verifiable computation protocol [24]. This subsection presents the details
of the TPAD protocol.

Recall that our overall system includes data producers, the cloud, the blockchain, and data consumers. The data
producers generate data records and upload them to the third-party cloud-blockchain platform. Data consumers
query the cloud by data keys to retrieve relevant records. For the ease of presentation, we use a concrete setting
w.l.o.g. that involves two data producers, say Alice (A) and Bob (B), and one data consumer, say Charlie (C).

Initially, each data producer has a pubic-private key pair and uses the public key as her pseudonymous identity.
In other words, the system is open membership that anyone can join, which is consistent with the design of open
Blockchain. We assume the identities of data producer and Blockchain are established in a trusted manner, which
in practice could be enforced by external mechanisms for user authentication and attestation. Conceptually, there
are two virtual chains registered in the Blockchain to materialize the two states of an LSM tree, that is, the WAL
and digests of data levels. These two virtual chains can be materialized in the same physical Blockchain.

On the write path, Alice, the producer, generates a record (RA) and submits it to the Blockchain through the logger
contract that logs the record as a transaction in the WAL Blockchain. The logger contract is called asynchronously
in that it returns immediately and does not wait for the final inclusion of the transaction in WAL Blockchain.
Simultaneously, Alice also sends the record to the untrusted cloud, which stores it in Level 0 of its local LSM
system. Bob sends another record RB to the Blockchain and cloud, which is processed in a similar fashion. The
logger contract is responsible for serializing multiple records received and sending transactions in order. The total
order between RA and RB is not resolved until the transactions are finally settled in the WAL Blockchain, which
could occur as late as up to 40 min (e.g., in BitCoin) after the submission time. We maintain the consistency
semantics that there is no time ordering among records in Level 0 on the cloud. Upon flush, it only flushes the
records whose transactions are fully settled in the Blockchain.

On the read path, Charlie submits a query to the cloud, which returns the result as well as query proof. In
addition, Charlie obtains the relevant digests from the Blockchain. Specifically, the proof consists of the Merkle
authentication paths of all relevant levels, that is, the level that has the answer (i.e., membership level) and all the
levels (i.e., non-membership levels) that do not have the answer but are more recent than the membership level.
The digests, namely Merkle root hashes, are obtained from Digest Blockchain. As aforementioned, the system does
not provide membership authentication for data in Level 0.

On the compaction path, TPAD supports two relevant contracts for data flush and merge. For the flush, the flush
contract is triggered every time there is a new block found in the WAL Blockchain. It flushes all the files/records
at level i to a single sorted file at Level i+ 1. Inside the flush, the contract sorts the records at level i (which are
originally organized in the time order), builds a digest of the sorted run, and sends it to the Digest Blockchain. At
the same time, the off-chain cloud runs the flush computation that builds the sorted run locally.

For the merge, a separate contract merges multiple sorted runs into one run and places it at a certain level of the
LSM tree. When a compaction contract runs, it validates all the input runs fed from the cloud using the digests
stored in the Blockchain. It then performs the merge computation, builds a Merkle root hash on the merged run,
and sends a transaction encoding the hash to update the Digest Blockchain. In the last step, the Digest Blockchain
stores the digests of different LSM levels and the contract replaces the digests by those of the merged run. At the
same time, the off-chain cloud runs the merge computation that builds the sorted run locally.

The two compaction contracts update the Blockchain state and have a companion computation going on the
off-chain side. Given the delay to finally settle a transaction, we defer the time the updated state in Blockchain
becomes available. For instance, even though the merge contract finishes the execution and sends the transaction,
the off-chain data store will wait until the transaction is settled to activate the use of merged runs. The above two
compaction contracts involve data-intensive computation and are executed at off-line hours. The specific triggering
conditions are described next.
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The algorithms in TPAD are illustrated in Listing 2.
Compaction-triggering policies: In TPAD, the policy that determines when and how to run a compaction is

executed by the cloud host. As aforementioned, the off-chain cloud can opt for the sized LSM tree policy where
the number of files per level is fixed and an overflowing file triggers the execution of flush operation. The off-chain
cloud can also take the leveled LSM tree policy where application-specific condition triggers the execution of merge
operations. In practice, the sized policy lends itself to serving time-series workloads where newer data does not
replace older data.

In our implementation, an LSM level in the Smart Contract program is represented by an array in memory. The
output is the digest of merged data which is stored persistently on Blockchain. Note that we do not store or send
the merge data in Smart Contract to save the Gas cost.

1) Security Analysis: We consider a data-freshness attack where an adversary, e.g., the untrusted host, presents
a valid but stale key-value pair as the result. That is, given a query Get(k, tsq), it returns ⟨k′, v′, ts′⟩ that belongs
to the data store, while there exists another more fresh key-value record ⟨k, v, ts⟩ such that ts′ < ts < tsq .

The LPAD scheme can authenticate the following two properties that establish the data freshness: 1) Result
membership: Given a result record from a specific level (called result level), the LPAD scheme can prove
the membership of the record in the level using the corresponding Merkle tree. That is, given query result
⟨k′, v, ts⟩ :=Get(k, tsq), LPAD can authenticate the membership of ⟨k′, v, ts⟩ in the level it resides in (using
the per-level Merkle tree) and hence the membership in the data store. 2) Non-membership of any fresher result.
That is, the LPAD scheme can prove the non-membership of any record of the same queried key in levels fresher
than the result level. Note that for a given key, levels are ordered by time.

In a query-completeness attack, valid result records are deliberately omitted. The completeness security is similarly
provided by the LPAD scheme with the freshness security: In LPAD, the result completeness (i.e., no valid result
is missed) in each query level can be deduced from that the leaf nodes in each per-level Merkle tree is sorted by
data keys.

In a forking attack, different views are presented to different querying clients (presenting “X” to Alice and “Y”
to Bob). The forking-attack security (or fork consistency) can be guaranteed by LPAD by that the Blockchain can
provide a single source of truth for the dataset state, and any violation (by forking) can be detected by checking
the result against the Blockchain state.

IV. IMPLEMENTATION ON ETHEREUM

We have implemented the TPAD protocol over the Ethereum Blockchain which keeps two states: WAL and
digests. The other players in the protocol, including the data producers, consumers, and the cloud, are implemented
in JavaScript.

A data producer writing a record to the cloud triggers the execution of logger contract on Ethereum that computes
the hash digest and sends a transaction wrapping the digest.

A data consumer submits a query by key to the cloud which returns the answer and proof. The data consumer
inquires about the digests stored in the Blockchain by triggering the execution of a reader contract on Blockchain.
The answer proof consists of authentication paths of Merkle trees from the cloud and is used to compare against
the digests for answer verification. Note that we implement the reading of digests in a smart contract for the ease
of engineering.

A compaction operation is implemented on both the cloud and Blockchain. Consider the compaction of two files
(or sorted runs). First, the compaction smart-contract on the Blockchain takes as input the data stored in JSON
on the cloud side and the digest hashes stored in the Blockchain. As mentioned, the compaction code validates
the inputs based on the digests, conducts the merge computation by heap sort, computes the new digest of the
merged run, and sends the transaction encoding the digest to the Blockchain. Second, the JavaScript program on
the cloud side also runs the merge computation locally on the input files. It then replaces the input files in the local
JSON store by the merged file. We choose this implementation (merge computation done on both cloud and smart
contract), because the JavaScript runs the smart contract asynchronously (i.e., the call returns in JavaScript without
waiting for the smart contract finishes the execution) and it saves bandwidth.

A compaction operation is implemented as a distributed process running on the both sides of cloud and Blockchain.
When the cloud (or a cloud administrator) decides to merge the LSM storage, it first uploads the data to be merged
to the Blockchain using a batch of transactions. Then, the cloud starts to run a local merge operation. Concurrently,
the transactions sent by the cloud triggers the execution of a smart-contract that does the merge computation on the
Blockchain based on the data sent earlier. The cloud and Blockchain is synchronized when the merge computations
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on both sides end. Concretely, the cloud, once it finishes the local merge computation, will wait until being notified
by the completion event of the remote merge on the Blockchain. On implementation, the cloud merge program is
written in Javascript and the synchronization is realized using Promise [25], which is a multithreading support in
Javascript. After the synchronization, the cloud proceed to replace the data by the merged data.

On the blockchain, the verifiable-merge smart contract is implemented as below: The compaction code validates
the input data based on the digest on Blockchain, carries out the merge computation based on heap sort, computes
the new digest of the merged run, and persists it into the Blockchain by sending a transaction.

The logger contract is triggered when a data producer uploads a record and its digest. The flush contract is
triggered by a block in the Blockchain is found. The compaction contract is triggered by LSM compaction policies
elaborated in the next section.

Implementation notes: The current version of Solidity (i.e., 0.4.17) does not support multi-dimensional nested
array in a public function. We have to implement the array of digests as a one-dimensional array and interpret it as
a two-dimensional array (by levels and files) manually in the program. To collect the Gas consumption in a view
function (i.e., the function that does not change state), we call estimateGas() function. In our implementation,
the JavaScript code runs smart contract functions through JSON ABI files generated by the truffle compiler [16].
The state overwrites in Ethereum/Solidity program has to be explicit and is realized by delete and “push” operations.

1 TPADContract{

2 uint[] WAL;

3 unit[] digests;

4 flush(){

5 while(block_found()!=true);

6 list l0=get_6th_block();

7 validate(l0);

8 ll0=sort(l0);

9 digests.send_tx(digest(ll0));

10 }

11 compact(list l1, list l2){

12 while(l1,l2=compact_policy());

13 validate(l1,l2);

14 l12=merge(l1,l2);

15 digests.send_tx(digest(l12));

16 }

17 }

18 class Client {

19 write(record r){

20 cloud.write(r);

21 WAL.send_tx(r);

22 }

23 read(key k){

24 result a, proof p=cloud.read(r);

25 d=digests.read_tx(a);

26 if(verify(a,p,d)) return a;

27 }

28 }

Fig. 2: Implementing TPAD

V. EVALUATION

This section presents the evaluation of TPAD. The goal is to understand the cost saving of TPAD comparing
alternative designs including on-chain storage (§ V-A) and other data structures (§ V-B). We first present our
evaluation platform.

Setup: Our smart-contracts written in Solidity are compiled in the Truffle programming suit. They run on a
personal Blockchain network set up by Ganache [26]. This local Blockchain network is sufficient for our evaluation
purpose which only evaluates the cost consumption. For comparison, we implement the baseline approach of storing
data in Blockchain. Here, the blockchain keeps a state of the LSM tree stored in a multi-dimensional storage array.
In the implementation, no in-memory index is maintained and finding a record in a file is materialized by binary
search. We also implement the other two baselines, namely append-only log and update-in-place structures. For
the latter, we implement a binary-search tree and build a Merkle tree based on it with the root node stored in
Blockchain.
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A. Cost Saving of Off-chain Storage

(a) Write cost at level 2 (b) Write cost with K = 3 (K is the
number of files per level)

(c) Read cost at level 2 (d) Read cost with K = 3

Fig. 3: On-chain storage cost versus off-chain cost

The TPAD is firstly a Blockchain logging scheme with the data stored off-chain. A relevant baseline is to treat
the Blockchain as the primary storage, namely on-chain store. We implement the baseline by placing an entire LSM
tree, including leaf-level data nodes, inside the Blockchain.

On our platform, we conduct experiments by driving 20, 000 records into the data store. We varied the “shape”
of the LSM tree in terms of the size of a level (number of files allowed in a level, K) and the number of levels.
We measure the cost in terms of Gas consumption of the two approaches respectively with on-chain and off-chain
storage.

The results are presented in Figure 3. Figure 3a is the write cost when the LSM tree has two levels. With different
values of K (recall K is the number of files in a level), the cost is relatively stable. Comparing the on-chain storage,
the off-chain storage saves a significant amount of cost, which is about 5X saving. When fixing K at 3, varying
the number of levels from 1 to 5, the cost of on-chain store increase which is consistent with the fact that write
amplification increases along with the number of compaction jobs. Comparing on-chain and off-chain storage, the
cost saving also increases along with the number of levels. In both Figure 3c and Figure 3d, the read cost increases
along with the value of K . The off-chain storage saves the Gas cost up to 60X and 20X respectively for the
settings of two levels and K equal to 3.

B. Efficiency of LSM-based Storage on Blockchain

(a) Write cost (b) Read cost

Fig. 4: LSM tree-based TPAD compared against other structures in cost

The TPAD is an authenticated key-value store that supports random-access reads/writes. In this regard, relevant
baselines that implement the key-value store abstraction include an append-only log where records are ordered
by time and an update-in-place structure, namely a single Merkle tree where leaf nodes are ordered by keys.
We implement the first baseline by simply sending the hash digest of every data write to the Blockchain. The
second baseline is implemented by maintaining the root hash of the key-ordered Merkle tree in Blockchain and by
translating every data read/write to a leaf-to-root path traversal on the Merkle tree. In more details, a data read to
the cloud store would present as a proof the authentication path of the leaf node to the root hash of the Merkle tree
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and a data write consists of a data read followed by a local modification and a remote update to the authentication
path.

We conduct small-scale experiments by loading a thousand records into the storage system; the keys and values
in the records are randomly distributed. We measure the average costs of read and write. The cost consists of the
Gas cost for running smart contract that retrieves the digests stored in the Blockchain and the costs of preparing
and verifying query proof (e.g., the authentication paths in Merkle trees). We use a heuristic to combine the two
costs by multiplying the Gas cost by 100 times before adding it and the proof-related cost. The proof-related cost
is measured by the number of cycles spent locally for proof verification.

The results are presented in Figure 4. The results show that the TPAD can result in cost efficiency on both reads
and writes. Concretely, for the write results in Figure 4a, the online part of TPAD has a similar cost with the other
two baselines, as each write results in a single transaction in all three approaches. The overall TPAD approach that
includes both online and offline operations (i.e. compaction) would incur write amplification as shown in Figure 4a.
For the data read results in Figure 4b, the cost saving of TPAD is significant, provided that the y-axis is plotted in
log scale. The TPAD incurs even lower cost than update-in-place trees partly because of the locality in our query
workloads where recently updated data is more likely being queried.

VI. DISCUSSION: DATA CONFIDENTIALITY & KEY MANAGEMENT

Data producers concerned about data confidentiality can upload the records in an encrypted form. Specifically,
a data producer sends the ciphertext of the record, instead of plaintext, to the third-party host. The decryption key
is shared through an offline key-distribution channel between the data producer and the data consumers who are
permissioned to access the record. Those consumers can obtain the ciphertext of the record from the host and use
the key to decrypt. To enable the query over ciphertext, we consider the use of deterministic encryption which
supports exact-match query in the encrypted form, that is, the consumer could submit the encrypted query key to
the host who will conduct exact-match query between the query ciphertext and data ciphertext. The integration with
more secure encryption primitives is complementary to this scope of this work.

The data-encryption layer is laid over the membership-/data- authentication layer of TPAD (as described above).
This is similar to the classic encryption-then-authentication scheme [27]. With deterministic encryption, the merge
operation of TPAD occurs in the domain of ciphertext.

VII. RELATED WORK

A. Blockchain Applications

A common paradigm of supporting applications over Blockchain is that the application-level workflow is
partitioned and mapped to the on-/off-chain parts. Decentralizing privacy [28] supports access-control oriented
data-sharing applications over Blockchain. It publishes the access control list onto the Blockchain and enforces
the access control by smart contract. A similar approach is used in MedRec [29] to enforce access control for
medical data sharing. MedRec runs a proprietary Blockchain network where miners are computers in an academic
environment and are rewarded by an anonymized medical dataset.

Namecoin [4] and Blockstack [30] support general-purpose key-value storage in the decentralized fashion. They
allow open-membership and accept any users to upload their data signed with their secret keys. They support
the storage of name-value binding, with a canonical application to be DNS servers. Namecoin is a special-purpose
Blockchain system and Blockstack is realized as a middleware on top of any Blockchain substrates. The VirtualChain
in Blockstack supports a (single) state-machine abstraction. Re-purposing original Blockchain for storage, its system
design tackles the challenges of limited storage capacity, long write latency, and low transactional throughput.

Catena [31] is probably the closest related work to TPAD. Catena is a non-equivocation scheme over the
Blockchain that repurposes its no-double-spending security for non-equivocation in logging and auditing. In essence,
it aligns the application-specific log (for auditing) with the underlying linear Blockchain and reuses the non-fork
property of Blockchain for the non-fork application log. Briefly, Catena’s mechanism is to build a virtual chain
on BitCoin blockchain by (ab)using OP_RETURN transaction interface. Logging sends a BitCoin transaction and
auditing performs an ordered sequence of statement-verification calls in the log history. The statement verification
does not scan full history but simply runs the Bitcoin-validation logic (e.g., Simplified Payment Validation), which
ensures no BitCoin double-spending. Importantly, it enforces the rule that a Catena transaction spends the output of
its immediate predecessor for efficient validation. The genesis transaction is served as the ground truth of validation
and it assumes a broadcast channel to establish the consistent view of the Genesis transaction.
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Our TPAD is different from Catena in the following senses: 1) Catena is built on Bitcoin or the first-generation
blockchain, and TPAD leverages the smart-contract capabilities widely existing in the latest Blockchain systems,
such as Ethereum [2]. 2) More importantly, Catena only supports auditing which is essentially sequential reads.
TPAD supports verifiable random-reads. 3) While Catena claims to be low cost, the increasing rate of BitCoin
($700 per BitCoin at the time of Catena paper writing versus $17000 per BitCoin at early 2018) makes the Catena
more expensive. TPAD address the cost minimization of these repurposed Blockchains.

B. Outsourced Storage and ADS

Outsourcing data storage to a third-party host such as public cloud is a popular application paradigm. In the
presence of an untrusted host, it is important to ensure the data security, especially membership authenticity. An
authenticated data structure (ADS) is a protocol that formally the security property. Depending on the operations
supported (queries and updates), an ADS protocol can be constructed by different cryptographic primitives such as
secure hash and Merkle trees [32], SNARK [33], bilinear pairings [20], [34], etc.

VIII. CONCLUSION

This work proposes the TPAD system for securely outsourcing data storage on third-party hosts by leveraging
the Blockchain. Instead of using Blockchain as a time-ordered log, TPAD lays the log-structured merge tree (LSM
tree) over the Blockchain for efficient and lightweight logging. Realizing the design, a small state is persisted
in the Blockchain and computation-oriented compaction operations are carried out by smart contracts. With the
implementation in Ethereum/Solidity, we evaluate the proposed logging scheme and demonstrate its performance
efficiency and effectiveness in cost saving.
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Abstract.  
This paper discusses how to use blockchain tokens to represent real estate titles. 
Tokens on the blockchain as a technological concept is the closest solution to 
the legal concept of titles, because it provides for evidence of ownership and 
can be transferred from one address to another, while giving exclusive access to 
such an address to the owner. This paper contains the analysis of the concept of 
tokens in the context of its applicability to title rights on real estate. There is al-
so a discussion of the outcomes of conducted interviews with professionals in 
the field of Computer Science, technologies, blockchain and smart contracts. 
Some critical mismatches were found: tokens are not able to satisfy current de-
mand to manage title rights online. To develop a mature and sustainable elec-
tronic system, there are certain issues that need to be addressed: inheritance 
procedures, litigation, guardianship, delegation of rights and rights of third par-
ties (liens and encumbrances) as well as the legal concept of bundle of rights 
(possession, disposition, enjoyment, etc.), which requires a strong mathematical 
model. During the abovementioned interviews, some weaknesses were found in 
the existing ideas of the use of the blockchain for real estate, mostly related to 
the undesirable centralization and issues with security. As the result of this re-
search, it is obvious what needs to be developed is the concept of a high-level 
design of the technology, capable of managing title rights on the blockchain, 
which includes a three-level mechanism of 1) e-voting, which provides for a 
democratic implementation of governing algorithms; 2) Smart Laws, as the 
concept of high level "smart" algorithms that implement (by e-voting) existing 
laws related to property rights in a form of the program/protocol; and 3) smart 
contract templates which are based on the smart laws, that allow people to man-
age their title rights online. 

Keywords: Blockchain, Smart Contracts, Titles, Real Estate, Tokens, E-
Governance, E-Voting, E-Democracy. 
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1 Introduction 

A [crypto] token is a record of a number which is kept by a specific address on the 
blockchain and can be divided (usually up to 8 decimals) and transferred to another 
address within the ledger of the blockchain system [1], [2]. For the purposes of this 
paper, we do not distinguish between tokens and cryptocurrency. However, tokens 
have more features and may be considered as a technological evolution of the crypto-
currency, presented by someone who called himself Satoshi Nakamoto [1]. 

A few principal features make tokens ideal for the management of property rights:  
1. The blockchain protocol is designed to make transactions – the transfer of tokens 

from one address to another, while not allowing double spending [1], [3].  
2. Such address provides for exclusive access, because only a person who has a 

cryptographic private key may manage the token.  
3. The blockchain ledger is a complete, transparent history of records, which al-

lows a person to track each token from the moment of creation, including fractional 
transactions (decimals and less than 1) and transactions between any number of ad-
dresses. 

The three next features make tokens principally different and more developed 
compared to a traditional, centralized way of making ledgers that is typical for banks 
and public registries: 

1. The technology offers a decentralized way of keeping records; no one keeps all 
of the power in his hand, and that prevents usurpation of power and corruption. 

2. The immutability and the non-returnability of transactions, which means that it 
is practically unfeasible to delete or alter a record or in any other way to corrupt it.   

3. The next generation of blockchains (after Bitcoin) offers algorithms to introduce 
a high level of automation and security for the management of tokens and at the same 
time, excludes the necessity of a human to operate it manually. (See all critical fea-
tures in a diagram on Fig. 1.) 

 
Fig. 1 Critical features of the blockchain for the managing of titles 

 
Ethereum [4] and NXT [5] are examples of blockchain-based platforms that devel-

op such automated systems. However, they stand on different ideological grounds. 
Ethereum is a Turing-complete programming language platform [6] for the develop-
ing of so-called "smart contracts" [7], and NXT suggests ready-to-use user services 

Why blockchain tokens are 
good for titles

•Peer-to-peer transactions
•Exclusive access to the 

address by the private key
•Protection from double 

spending

Why blockchain is better 
then conventional registries

•Decentralized ledger
•Immutability and 

transparency 
•Automation by “smart” 

algorithms
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implemented into the core of the blockchain protocol with no need to develop applica-
tions.  

The mentioned features of the blockchain technology with smart contracts can be 
considered as an alternative technology to existing centralized land (real es-
tate/cadastral) registries and a way to protect and manage title rights. 

However, technological concepts appeared to be non-synchronized with legal con-
cepts. In the following sections, it is shown why titles are not tokens, and what should 
be developed to introduce the world to a sustainable electronic system, able to im-
prove the way how relations on real estate ownership is organized now. 

2 Comparative Analysis of the Legal Concept of Title Rights 
and the Technology Tokens 

The legal concept of titles and the technology of tokens have much in common, along 
with differences. 

A "title" is an evidence of ownership. The title represents the property rights of an 
estate; this is an equivalent of estate (land, for example), but on paper, which is legal-
ly recognized. The crypto-token is a technology that has the same purposes – the to-
ken can represent values and prove ownership. The only difference is that titles of real 
estate have a long tradition and legacy of regulation, and there is no place for tokens 
in the existing laws. That is why transactions that are made with real estate tokens 
will not have any legal consequences.  

Title deeds must be acknowledged in some countries before a notary, in some - be-
fore other authorized persons, and recorded in the public registry. Thus, the use of 
tokens for real estate requires legislative changes that legitimize new procedures of 
acknowledgement and recording on the blockchain. 

The title can be divisible, that is, what in the language of law means co-ownership, 
joint ownership, community property (also known as marital property) and some oth-
er concepts that exist in different jurisdictions. There are two main aspects of property 
rights: the type of ownership, and a set of specific rules which co-owners must follow 
to respect the rights of other co-owners.  

In the theory of law, there are two basic types of co-property: it may belong to per-
sons on the right of common share, or on the right of common joint ownership. In 
common share, there are no fractions; the property belongs to all co-owners equally 
(spouses, condominium owners, etc.). In joint ownership, owners have shares (1/2, 
1/3 etc.).  

As to a set of rules, the law and the agreement may establish some specific rules 
which co-owners must follow. For, example, there is a typical rule that one co-owner 
cannot convey his share in the title without the consent of the other owners. The other 
owners have the right to buy the share for the same price as the owner wants to sell it.  

The common property may become joint ownership. In the case, for example, that 
spouses divorce in some jurisdictions, they become 50/50 co-owners. 

Different jurisdictions may have some specifics in co-ownership law, as well as in-
dividual may have agreements between co-owners to establish specific rules. All 
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these rules in general can be represented in the theory of "property rights," which is 
further discussed. 

That is why when we are talking about tokens, it is clear that at least two layers of 
technology solutions must be applied to tokens: the first is a set of algorithms that 
establish general rules (laws) specific for certain jurisdictions, and the second, indi-
vidual rules based on contracts, that do not contradict general rules. 

However, co-owners are not the only category of third parties that can influence 
the property rights of an owner. There are two other categories of third parties: 

• third parties which are not owners but have interests in the property (the 
property rights of third parties) as per the law or agreement; and  

• third parties that have no interests but have legal access to the property 
and may influence it (judge, notary, parents, custodian, town's clerk (reg-
istrar) etc.). 

The concept of property rights includes a bundle of rights: the right to dispose, the 
right to possess and the right to use (enjoy)1. The owner is free to manage these rights 
and deeds that he concludes influence this bundle (See Fig. 2 "Components of owner-
ship: bundle of rights".)  

 
Fig. 2. Components of ownership: bundle of rights 

For example, when an owner rents out his property, he transfers his right to possess 
and own the property to the third party – the tenant. At the same time, he as a landlord 
is restricted in these rights (to possess and to use) while the contract is valid. He is 
also restricted in his right to dispose of the property in the sense of allowing the use of 
the property by others. However, he keeps the right to convey the title (for example, 
to sell it). So, if he sells the property, the tenant keeps the rights to possess and to use 
the estate (unless otherwise provided by the contract), and a new title owner is granted 
with the same restrictions. There also can be other limits to dispose: in a mortgage, 
the owner is not able to convey the title without the agreement of the creditor. 

As we see, the concept of property rights is complex, and the situation is more 
complicated by the existence of different jurisdictions and traditions of law. We see 
an essential need to present a mathematical model of property rights that matches the 

                                                        
1 There are a couple of main theories about property rights, and they vary from 3 to 5 main 

rights: possession, disposition, enjoyment (use), control, exclusion etc. However, they do 
not have principal differences for this stage of research, and so it is not critical to make a 
choice now which theory fits best to design the technology. Our aim here is just to argue that 
these kinds of legal concepts create the necessity to find a solution to develop the technolo-
gy. 

Dispose

Use

Possess
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concept of tokens driven by smart contracts, taking into account all specifics the 
comes from the blockchain technology, i.e. immutability of records and smart con-
tracts, so all necessary high-level features must be developed by design not on the 
run. So, the mathematical model will become a metamodel for designing systems 
oriented on certain legal systems and jurisdictions. 

There is also another category that has no interests in property, but acts in the in-
terest of owners and other persons and may change property rights. 

The judicial system allows interested parties to contest rights in court, so judges 
and then bailiffs are those who can change the title and property rights and enforce 
these things.  

Another important group of third parties is a notary public. Notaries execute wills 
and apply inheritance laws. 

Another case of the disposition of estate without the will of an owner are parents' 
rights, guardianship, and custodianship in respect of the rights of minors and disabled 
persons.  

Parents, guardians, and custodians have the rights to act in the name of minors and 
disabled persons, including the right to dispose of estates and acquire property rights. 
Their rights may be unlimited or regulated by law and revised by a public body (cus-
todian committees/boards, etc.). 

The delegation of rights by contract is another case when the title is operated by 
the third party. In contrast to parents/custodians this delegation is not by law but by an 
agreement. The exact volume of rights is defined by law and by a contract and usually 
is confirmed by the power of attorney. 

The last case when a title is under the influence of third parties, is when it is under 
the obligation to obtain permission from the public body to convey the property. 
There can be variety of reasons to do so. In this way, a government can: 

• prevent illegal construction on the land; 
• enforce owners to pay taxes before selling the property; 
• oblige an appraisal of real estate (for some categories of owners, like state 

enterprises); or a  
• local community may protect its right to not let unwanted people live in 

their territory.  
Therefore, the approval and certain legal actions must be performed before a deed. 
Another case which requires further development is the separation and merging of 

titles. That happens when adjoined plots of land are united into one title or a plot is 
divided. So, the mechanism to separate and merge the tokens by linking them to a 
new survey2 is also required for a prospective electronic system. 

None of this is implemented in the existing electronic solutions, and yet needs to 
be designed in the system that aims to provide a full range of legal instruments to 
manage property rights by smart contracts. 
 

                                                        
2 Surveying or land surveying is the technique of determining the terrestrial or three-

dimensional positions of points and the distances and angles between embodied on the plan 
of the plot.  



6 

3 The High-Level Design of The System 

In preparation for this paper, 4 interviews were conducted and  an analysis was made 
of existing projects related to the blockchain and real estate, and some typical cases of 
ICOs.  
 Those interviewed were: 1) Vassilis Vutsadakis, Ph.D. in Science and Technology, 
Researcher at Propy3 (Blockchain Supermarket for Real Estate); 2) Matt McKibbin, 
Masters of Science in Industrial Hygiene, Co-founder and Business Development 
Director of "Ubitquity, LLC."4 (the blockchain-secured platform for real estate 
recordkeeping), Founder and Chief Decentralization Officer of "DecentraNet" (block-
chain consulting); 3) Mykhailo Tiutin, Masters in Information Security, Co-
Founder/CTO of "Vareger" (Blockchain Developer, Ukraine)5, smart contracts and 
blockchain developer, cryptographer and IT security expert; 4) Vadim Sukhomlinov, 
Masters in Computer Science, Software Engineer/Architect at Intel Corporation.  

The research includes the analysis of projects that develop different solutions in 
blockchain and real estate domain.  
• Velox.re6 (USA, since 2016) is ongoing startup that aims to digitize the process 

of purchase in Cook County on Illinois state by creating a Bitcoin based platform 
that unites professionals (intermediaries) of real estate industry around the world 
[8], [9], [10]. 

• Ubitquity.io7 (USA, since 2015) develops services on e-recording companies, 
title companies, municipalities, and custom clients to record of ownership [11]. 

• Bitland8 (Ghana, since 2016) is a partner of Ubitquity.io and currently is develop-
ing solutions for Real Estate Land Registration services to citizens of Ghana as 
well as companies and farm unions [12], [13]. 

• Chromaway9 (Sweden, since 2016) is piloting the first project to model a proper-
ty purchase using the blockchain and smart contract technology [14]. 

• Flip10 (USA, since 2016) is a peer-to-peer leasing marketplace in New York city 
[15]; 

• REX11 (USA, since 2016) is a peer to peer MLS12 built on Ethereum. REX aims 
to connect vendors, buyers and agents over an open network by using the block-
chain cryptocurrencies [16]. 

                                                        
3 http://propy.com/ 
4 https://www.ubitquity.io/web/index.html 
5 https://vareger.com/ 

6 https://www.velox.re/  
7 https://www.ubitquity.io/web/index.html  
8 http://bitlandglobal.com/  
9 https://chromaway.com  
10 https://flip.lease/  
11 http://rexmls.com/  
12 MLS is a standard of listing real estate and services of brokers, 
http://www.mls.com/   

https://www.velox.re/
https://www.ubitquity.io/web/index.html
http://bitlandglobal.com/
https://chromaway.com/
https://flip.lease/
http://rexmls.com/
http://www.mls.com/
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• Bitfury13 (Republic of Georgia, since 2016; Ukraine, since 2017) proposed a 
solution to protect records of the central cadastral registry by casting hashes of 
such records to the blockchain, mixing by fact two blockchain technologies: pri-
vate DLT14 EXONUM and Bitcoin [17], [18]. 

• Xinyuan Real Estate Co.15 (China, since 2016), a company that declared its inter-
est in the blockchain in the cooperation with IBM to develop a smart city in Chi-
na [19]. 

• Propy, Inc.16 (USA, since 2016), a company that develops the supermarket for 
real estate and platform for deeds based on Ethereum smart contracts.  

  Now let us summarize the aforesaid and the first section and discuss how to design 
the system in the best way. While doing interviews and researching, we distinguished 
some solutions which are not acceptable from our point of view. So, let us discuss 
first what we should not do and why. 
 The first is to use the blockchain as a database of records that reflects acts made 
offline. The blockchain in this case in not a primary source of evidence, but collects 
everything that is happening offline (on papers) or in the central database. Each new 
record is not necessary valid, but it helps to find the truth in a court while considering 
all possible paper evidences. We don't see much benefit in using the blockchain in this 
way because the central public registry does the same. The only thing the blockchain 
does is it protects against altering records, while a well-designed and protected central 
database can do the same. What is more important here, is that it does not require 
changes in the existing bureaucratic systems. But our aim is to find a better system 
that can reduce regulations and manual work.  

Another sub-option of this approach is just to store hashes on the blockchain of 
records made in the central database, which is almost the same, but does give more 
protection to the database against corruption, and adds a new bureaucratic procedure 
[20].  

  In this concept, a private company or a public body keeps copies of private keys, 
and/or use multi signatures (escrow mechanism) [21]. In case the token is stolen, the 
company will announce it invalid and reissue a new token (we remember that we 
cannot alter the transaction, so if it is stolen we cannot do anything), so the company 
needs to manually track the list of tokens17 and its validity. We see that this concept 
does not bring much value compared to the existing approaches because it is still 
centralized. There are too many examples of even large and well secured companies 
being hacked and losing personal data. A private company can lose not only the pri-
                                                        

13 http://bitfury.com/  
14 DLT is a Distributed Ledger Technology which means shared ledger technologies 
similar but not equal to the blockchain 
15 http://www.prnewswire.com/news-releases/xinyuan-real-estate-co-ltd-announces-
blockchain-powered-real-estate-finance-technology-platform-300299818.html  
16 www.propy.com  
17 During the research we also found some ideas not to use tokens, but only to make deed rec-

ords on the blockchain. However, the same as with tokens it requires a third party manually 
to track all legal facts which are occurred with the title and reflect its validity in case it has 
been recognized as invalid. 

http://bitfury.com/
http://www.prnewswire.com/news-releases/xinyuan-real-estate-co-ltd-announces-blockchain-powered-real-estate-finance-technology-platform-300299818.html
http://www.prnewswire.com/news-releases/xinyuan-real-estate-co-ltd-announces-blockchain-powered-real-estate-finance-technology-platform-300299818.html
http://www.propy.com/


8 

vate keys of users, but also their own keys; they can also be corrupted or even become 
bankrupt, which is especially an undesirable risk for people whose real estate is the 
only wealth they have. 

In the case that we use the public body instead of a private entity, we will have 
more trust and more authority, but at the same time, we will create the same high-
level regulations and bureaucracy. 

Another arguable solution found was a creation of an electronic compliance sys-
tem. For each transaction of a token, the owner uses a specific smart contract. As we 
remember, the smart contract is not a contract in the common sense, but just an elec-
tronic algorithm. For example, for a purchase: the program holds the transaction of 
the token until the buyer pays.  

In real life, the contract is not a self-sufficient and closed legal act. The contract re-
flects the agreement of parties as to essential conditions, but laws at the same time 
provide for norms that are not necessarily included in the agreement, and are followed 
as if they were in the contract. 

Sometimes it is almost impossible to include all of the provisions in the contract. 
So, the contract may only refer to the law, or even just presume that a law or a general 
practice will be applied to a missing part of the contract. A smart contract, which is a 
sort of a closed system, in this sense is flawed because cannot be influenced by exter-
nal factors (like the law). 

One solution is to use electronic compliance systems. Before a transaction, the 
compliance system will verify the token and the parties. In this case, we must ensure 
that such a system is good enough to protect the rights of parties according to the 
local jurisdiction and is not corrupted, which bring us similar issues to that of the 
previous example with the private company that manages keys and records. 

Considering these items, we see that the best way to proceed is to develop the sys-
tem so that the government will adopt it, is to implement by design existing specifics 
of jurisdictions according to the concept "code is law."18 The code implements re-
quired provisions from the legislation, and in case something goes wrong, parties will 
use mechanisms of litigation and arbitration. 

Algorithms adopted by the government will be a higher layer for smart contracts 
and will work as obligatory standards. Let us call these "smart laws." Smart laws will 
establish rules and mechanism of access of third parties to tokens and some basics 
principles of work (that reflect existing "paper" regulations). 

Combing this system with the concept of oracles19, which is proposed by 
V. Buterin [22], we will be able to keep track of authorized persons: the list of ad-
dresses of public notaries, judges, bailiffs, custodians, etc., that may perform transac-
tions.  

                                                        
18 The expression "code is law" was proposed by Lawrence Lessig in his Book "Code and Oth-

er Laws of Cyberspace" (1999) 
19 i.e. special servers, from which a smart contract receives reliable information from outside 

the smart contract 
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Any smart contract designed based on these smart laws will be able to provide the 
whole range of legal instruments, and if the situation with ownership and property 
rights is stuck, parties will be able to settle it in a court. 

For example, the smart contract does not "know" when the owner dies; that is why 
we need an oracle that tracks records on a public demographic registry, and will trig-
ger inheritance mechanisms of the smart contract. In this case a "smart will" would be 
executed.  

If the person did not leave a will, general rules "smart laws" will be applied. The 
smart contract also does not "know" which notary will manage the distribution of the 
inheritance. That is why the oracle will provide the valid list of addresses of notaries, 
and only a transaction that comes from the address on the trusted list will be executed 
by the system. 

Smart laws will provide necessary rules to run public oracles. Oracles require 
manual management: someone must add records in the demographic registry, update 
the notaries list, the custodians list, etc. But now this is performed by the government 
anyway; the only question is how well enough it is digitized and protected from cor-
ruption and fraud.  

Oracles assume a certain degree of centralization or at least we cannot think of it as 
a pure distributed system (as the blockchain is) because it requires actions of third 
parties. The fact is that it is merely possible with reasonable efforts on this stage of 
development of science and technology to automate and digitalize everything. For, 
example, how to digitize the fact of human's death and make it a system event that 
triggers smart contract execution? Someone must certify plenty of facts that occur in 
real world that have legal meaning for property rights.  

The centralization is not a threat it is only an environment where risks of corrup-
tion and excessive regulations arise from. Therefore, the question is how such oracles 
are well designed to protect from these risks. 

To protect smart laws that run oracles from the corruption, they must not allow any 
backdoor access of someone specific to change them. The code, once deployed, must 
remain unchanged. And here the blockchain plays a significant role, because as we 
see with the example of a "smart contract," we can deploy completely transparent and 
verifiable applications protected from someone's manual control. 

These closed, decentralized applications can work permanently secured from an al-
teration, and this is a benefit and a limit at the same time. The only way to change 
something here is to change the code of the blockchain protocol, which as we know 
requires a large consensus (usually 50+1% of nodes must support a "hard fork"). 

 However, we still must have access to update the system. That is why at the upper 
level will be algorithms of electronic voting on the blockchain. Voting will be a pub-
lic democratic mechanism of the control over smart laws systems and protect them 
from the corruption. 

If someone's token is stolen, an authorized third party from the public oracles list 
will bring back access. But in case any of the public oracles are compromised, i.e. 
hacked, or keys are lost, or similar threats when oracles become technically uncon-
trolled or controlled and corrupted by unauthorized persons, the general public and/or 
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specially governed body (committee) by the voting mechanism will recall and reissue 
private keys to the operator of the oracle. 

Finally, we have the mechanism of 4 layers of a democratic electronic governance 
(see Fig. 3):  

- Blockchain. On the top we have a public blockchain which protocol remains 
unchanged by the consensus of node owners. It is important to have as many 
as possible of the active citizens that share their resources to the network. 
Good Samaritans will give a critical mass of consensus that will not allow 
changing of the protocol. The software and the consensus mechanism must be 
affordable to allow as many as possible "good Samaritans" to have their nodes. 
In this sense Proof-of-Work is not good, since the mining rush leads to high 
costs of entrance into the business. And of course, the blockchain must be pub-
lic, so anyone can become a part of the network and receive crypto currency 
for its work. 

- E-Voting is an irrevocable mechanism for voting on implementing smart laws, 
as nobody can change this mechanism, except to change the blockchain proto-
col (which requires consensus). Ballots are recorded on the blockchain, and 
the result of the voting automatically triggers mechanism of implementation of 
a smart law. 

- Smart laws – the mechanism that controls public oracles and other basic 
mechanisms of the operating of tokens. Oracles keep lists of addresses that are 
authorized to change the status of smart contracts (judicial system, public no-
tary, social system of custodian and guardianship). 

- Smart contracts (templates of smart contracts) – owners will be able to use 
specific templates for their tokens (smart will, purchase, rent, mortgage). Each 
jurisdiction can use specific rules to introduce smart contracts. One of the pos-
sible scenarios is that in each state, local professionals (lawyer, notaries etc.) 
and IT developers will develop necessary templates of smart contracts in ac-
cordance with local jurisdiction. However, another way is when the govern-
ment takes this process in its hands and introduces smart contract templates as 
model solutions (similar to "Model Company Charter"20). 

                                                        
20 In many countries, governments adopt a "Model Company Charter" which people may use 

when they list a new company, so they do not need to write articles of incorporation (statute, 
charter) from scratch, but just to refer to this model paper which they submit as the official 
application to a registrar.  
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Fig. 3. The layers of the blockchain governing 
 
 
 

4 Conclusion 

Tokens on the blockchain as a technological concept is the closest solution to the 
issues of the legal concept of real estate titles. This paper distinguished the principal 
features that make the blockchain suitable for title rights and transactions: tokens can 
represent property rights, the technology protects from double spending while allow-
ing for conveyance, addresses that store records of tokens are designed in a way to 
provide for exclusive access to such addresses to the owner and immutably of records 
which protect from corruption and fraud. The blockchain technology addresses the 
inherent issues of conventional governing since it works in a decentralized manner. 
With the second generation of blockchains that integrate smart contracts and similar 
algorithms, one can automate tokens/titles management, which reduces the participa-
tion of third parties (brokers, notaries, agents) or even governments to manually con-
trol the relations in the real estate domain. All these features make the technology 
applicable to significantly improve relations in real estate and governance. 

This paper presented analysis of the concept of tokens in the context of its applica-
bility to the legal concept of title rights on real estate, there is also a discussion of the 
outcomes of the conducted interviews with professionals in the field of Computer 
Science, technologies, blockchain and smart contracts. It was found some critical 
mismatches: tokens are not able to satisfy current demand to manage title rights 
online. To develop mature and sustainable electronic system there are certain issues to 
be addressed: inheritance procedures, litigation, guardianship, delegation of rights and 
rights of third parties (liens and encumbrances) as well as the legal concept of bundle 
of rights (possession, disposition, enjoyment, etc.), which requires strong mathemati-

blockchain

eVoting 

Smart 
Laws

Smart 
Contracts
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cal model. During interviews it was found some weaknesses in existing ideas of the 
use of the blockchain for real estate: mostly related to the undesirable centralization 
and issues with security. It is clear that some standalone private companies cannot 
manually manage tokens, that does not bring any value, or even threaten title rights. 
In this sense the public authorities have more trust, however at the same time generate 
regulatory constraints and bureaucracy. We also found that such solution like hashing 
of title (deed) records in the cadastral/land registries will not significantly improve 
relations in the domain.  

As the result of this research it is developed the concept of a high-level design of 
the technology, capable to manage title rights on the blockchain which includes three-
level mechanism of 1) e-voting, which provides for a democratic implementation of 
governing algorithms; 2) Smart Laws, as the concept of high level "smart" algorithms 
that implement (by e-voting) existing laws related to property rights in a form of the 
program/protocol; and 3) smart contract templates which are based on the smart laws, 
that allows people to manage their title rights online. 
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Abstract. This is preliminary work on reconciling the apparent contra-

diction between the immutability of idealized smart contracts and the

real-world need to update contracts to fix bugs and oversights. Our pro-

posed solution is to raise the contract’s level of abstraction to guarantee

a specification ' instead of a particular implementation of that specifi-

cation. A combination of proof-carrying code and proof-aware consensus

allows contract implementations to be updated as needed, but so as to

guarantee that ' cannot be violated by any future upgrade.

We propose proof-carrying smart contracts (PCSCs), putting formal cor-

rectness proofs of smart contracts on the chain. Proofs of correctness for
a contract can be checked e�ciently by validators, who can enforce the

restriction that no update can violate '. We discuss architectural and

formal challenges, and include an example of how our approach could

address the well-known vulnerabilities in the ERC20 token standard.
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Abstract. Permission-less blockchains can realise trustless trust, albeit
at the cost of limiting the complexity of computation tasks. To explain
the implications for scalability, we have implemented a trust model for
smart contracts, described as agents in an open multi-agent system.
Agent intentions are not necessarily known and autonomous agents have
to be able to make decisions under risk. The ramifications of these general
conditions for scalability are analysed for Ethereum and then generalised
to other current and future platforms.
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1 Introduction

Turing-complete programming languages allow creating a generic programmable
blockchain by means of smart contracts [30]. A smart contract can be defined
as a decentralised application executed on the distributed P2P network that
constitutes the blockchain. The smart contract captures the formalisation of
electronic commerce in code, to execute the terms of a contract. However, a
smart contract is, in fact, neither smart nor a contract. In practice, it codes an
agreement about what will come to pass, in the form of a production rule. Since
there cannot be a breach of contract—which would happen only if one or more
parties would not honour the agreement—thanks to how this production rule
is coded, a smart contract is not a contract. Since there is no opportunity for
learning on the contract’s behalf, it is also not smart.

Smart contracts do code the preferences of their owners, and their negotiating
partners as appropriate, with respect to the decision under risk or uncertainty.
They react on events, have a specific state, are executed on a distributed ledger,
and are able to interact with assets stored on the ledger [28]. Ethereum o↵ers
smart contracts through its blockchain. The Ethereum Virtual Machine (EVM)
handles the states and computations of the protocol and can theoretically exe-
cute code of arbitrary algorithmic complexity [3]. Using Ethereum, developers
can implement smart contracts as lines of code in an account that execute au-
tomatically when transactions or function calls are sent to that account. The
outcome is final and agreed on by all participants and blockchains can thus
enable a system of trust.



In Ethereum, smart contracts can interact through function calls via their
Application Binary Interface (ABI). Single smart contracts or multiple smart
contracts together can act as decentralised autonomous organisations by encod-
ing the rules of interaction for the organisation’s inner and outer relationships
(e.g., The DAO, MakerDAO). Full nodes store the distributed ledger and validate
new blocks in the chain pro bono. Permission-less blockchains limit the complex-
ity of computation tasks and thus, the scalability of these blockchains. When
utilising smart contracts, external services can be required to circumvent these
computational limitations to code the preferences of their owners. The result of
computations performed by external parties are not subject to the consensus
protocol of the underlying blockchain, and their provided solution or correct ex-
ecution cannot be formally verified. Hence, the oft-cited benefit of blockchains
allowing for transparency over every transaction and enforced trust through a
consensus mechanism cannot be guaranteed with external entities [17]. A trust
model for smart contracts in permission-less blockchains is thus missing, a fact
that limits their adaptability. Earlier trust models used in related applications,
such as those devised for quantitative trading or speculative agent trading (see
the patent text [14] for a good indication of this range), need to be adjusted
for the inherent transparency and particular trust implications of blockchain
systems. We propose a model that incorporate all these aspects.

2 Method

We answer the following research questions:

1. Which models of trust can be applied to smart contracts to reflect public
permission-less blockchains?

2. What can be done to clarify the link between, on the one hand, the prefer-
ences and intentions of authors of smart contracts and, on the other hand,
the run-time properties of those smart contracts?

3. How can properties of trust models be applied to verify computations in
permission-less blockchains?

Question 1 is analysed in two steps. First, the applicability of agent-based
trust models for smart contracts is evaluated by deducing their strong and weak
notions based on agent theory. Second, a trust model suitable for smart contracts
in permission-less blockchains is developed, based on a review of existing multi-
agent system trust models [23]. Question 2 is analysed deductively, based on
literature on decision theory and decision analysis, and on limitations of formal
representations of preference, and their logical closure, e.g., what can be derived
from them. Question 3 is investigated instrumentally, by developing an algo-
rithm for verifiable computations. The development of the algorithm followed a
deductive method of merging verifiable computation concepts using blockchains
[34] [29] with cloud and distributed systems research [6] [7]. This revolves around
preserving privacy of user data, whereby aspects of the blockchain are used to
enforce the algorithm [34], and on verifiable computation for Ethereum using



computation services inside the blockchain [29]. In the latter, a verification al-
gorithm with dispute resolution and an incentive layer were suggested, and the
relevant assumptions critically assessed to develop a new algorithm, since their
proposal had two practical issues: First, the verification game includes a ’jack-
pot’ to reward solvers and verifiers for their work. This introduces an incentive to
steal the jackpot by solvers and verifiers colluding to receive the jackpot without
providing a correct solution. Second, they propose to implement the computa-
tion tasks in C, C++, or Rust code using the Lanai interpreter implemented as
a smart contract on Ethereum. This limits the flexibility of computation services
by forcing them to use one of the three programming languages. The objective
of the here presented algorithm is to achieve:

1. execution of arbitrary computations requested from a smart contract in
Ethereum, and executed outside the blockchain;

2. verification of the computation result achievable within reasonable time, i.e.,
O(n);

3. guarantees that the result of the computation is correct without having to
trust the providing service.

Our development was experimental and explorative. Di↵erent parameters and
the agents they pertain to were first considered in a pen and paper exercise,
then validated via qualitative assessment as well as quantitative analysis. The
quantitative experiments constitute an evaluation basis for the last two algorithm
objectives.

3 Explicating Smart Contracts

Consensus protocols are used to decide upon the state of the distributed ledger
[21]. This ledger is in permission-less blockchains accessible to anyone partici-
pating in the network and through blockchain explorers even to entities outside
of the network. This means everyone is able to see for example which public
key owns the most Ether. Also, each transaction can be inspected, making it
possible for participating parties to monitor the progress of their transaction.
To provide an incentive to the miner and prevent unnecessary changes to the
ledger, blockchains introduce fees on executing transactions [21]. In Ethereum,
the blockchain stores transactions and the code of smart contracts as wellas
their state. Hence, the state of a smart contract needs to be updated in the
same fashion as executing a transaction including fees, consensus, and mining
time.

Smart contracts on Ethereum are executed by each node participating in the
P2P network and hence operations are restricted to protect the network [31].
To circumvent operational issues (e.g., someone executing a denial of service
attack on the network), Ethereum introduces a concept to make users pay for
execution of a smart contract functions, and the EVM supports only certain
defined operations [31], with each operation coming with a certain cost referred
to as gas. Before executing a state-changing function or a transaction, the user



has to send a certain amount of gas to the function or the transaction. Only
if the provided amount of gas is su�cient for the function or transaction to
execute, it will successfully terminate. Otherwise, the transaction or function
will terminate prematurely, with results contingent on the handling of the smart
contract function.

We now look at two ways of explicating the roles that smart contracts may
take on. First, the agent metaphor is employed to provide an informal under-
standing in terms of a widely accepted and understood terminology. Second, the
concept of utility is employed to provide a formal understanding of how the pref-
erences and intentions of smart contract owners may be encoded in the contract
itself.

3.1 Smart Contracts as Agent Systems

Agents have certain properties separable in weak and strong notions [32]. Weak
notions include autonomy, pro-activeness, reactivity, and social ability. Auton-
omy refers to the smart contract ability to operate without a direct intervention
of others and include control over their actions and state. In Ethereum, the state
of smart contracts is maintained on the blockchain, while the actions are coded
into the smart contract itself. These actions can depend on the state, thus provid-
ing a weak form of autonomy. Pro-activeness describes goal-directed behaviour
by agents taking initiative. This is somewhat limited in Ethereum, as smart con-
tracts currently act on incoming transactions or calls to their functions. However,
if one perceives an agent as a collection of multiple di↵erent parts, smart con-
tracts might well be extended by external programs triggering such initiatives.
Thereby, the limitations set by Ethereum can be circumvented and an agent with
pro-active notions can be created. The result is in e↵ect a multi-agent system
and can be analyzed as such. Reactivity is based on perception of an agent’s
environment and a timely response to those changes. By design, smart contracts
only have access to the state of the blockchain they are operating in. Reactivity
for state changes in Ethereum is reached via event, transaction, or function im-
plementation. To react to environment changes outside of the blockchain (e.g.
executing a function based on changes in stock market prices) requires import-
ing this information to the blockchain via e.g. Oracles [4]. Social ability enables
the potential interaction with other agents or humans through a communication
language. In Ethereum, users and contracts are identifiable by their public key
[31] and interaction is possible through transactions or function calls on smart
contracts.

Strong notions include properties such as beliefs and intentions, veracity,
benevolence, rationality, and mobility. As mentioned in the introduction above,
pro-activeness is somewhat limited in Ethereum smart contracts, and so these
properties are present only to a limited extent. The two properties veracity,
which refers to not knowingly communicating false information, and rationality,
describing the alignment of the agent’s actions to its preferences, both pertain
to the incentives an author of a smart contract might have to develop an agent
which is rational but not truthful, in order to maximise profits. This can be



deliberate so that the agent correctly encodes the true preferences of the smart
contract owner, or non-deliberate, in which case the owner preferences might
be inadequately coded. To deal with the uncertainty of agent intentions, three
approaches have emerged. First, security approaches utilise cryptographic mea-
sures to guarantee basic properties such as authenticity, integrity, identities, and
privacy [23]. Within blockchains, this is mainly achieved through cryptographic
measures, which do not provide trust in the content of the messages. Second,
institutional approaches enforce behaviour through a centralised authority. This
entity controls agents’ actions and can penalise undesired behaviour. Gover-
nance functions enforcing behaviour not defined in the core protocol do not
exist. Third, social approaches utilise reputation and trust mechanisms to e.g.
select partners, punish undesired behaviour, or evaluate di↵erent strategies. In
blockchains, there is no system of trust implemented in the core protocol, which
would rate behaviour according to certain standards. These three approaches are
complementary and can be used to create a system of trust [23]. Trust research
and current implementations are primarily focused on the first two approaches.
This allows creating agents on a platform that enforces these defined trust mea-
surements [1] [26] [24] [20].

3.2 Utility and Risk

Some researchers believe that all game-theoretical aspects of making decisions
can be pinned down by logical axiomatizations: it is only a matter of finding the
right axioms. Game-theoretical studies often concentrate on two-person games,
one reason being that many conflicts involve only two protagonists. In any game,
the players may or may not be allowed to cooperate to mutual advantage. If co-
operation is allowed, the generalized theory of n-person games can sometimes
be reduced to the one for two-person games, since any group of cooperating
players may be seen as opposing the coalition of the other players. In the case of
smart contracts, this would allow for an owner of multiple contracts (in e↵ect,
a multi-agent system) to maximize the utility of interplaying contracts by em-
ploying game theory, at least on paper. For a given set of smart contracts, the
problem is how to determine a rule that specifies what actions would have been
optimal for the smart contract owner. Actions could here pertain to details of a
particular contract, or to the order of their execution, for instance. Comparing
di↵erent rules measures the risk involved in consistently applying a particular
rule, e.g., a chain of smart contract employment. Formally, we wish to determine
a decision function that minimizes this risk. The simpler case of handling risk
is in decisions under certainty. This means that the owner of one or more smart
contracts can predict the consequences of employing them. This represents the
ideal case in which all smart contracts execute as intended. Thus, the owner
simply chooses the alternative whose one and only possible consequence has a
value not less than the value of any other alternative. This seems simple enough,
but it is necessary to investigate a bit further what the value of a consequence
denotes. The preferences of the owner should be compatible with the following
axioms (A is not preferred to B is henceforth denoted by A  B).



 is a weak ordering on the set of preferences P:
A1. (i) Transitivity: If A  B and B  C, then A  C, for all A, B, and C in P.
A1. (ii) Comparability: A  B or B  A, for all A and B in P.
From this, we may derive the relation of indi↵erence and strict preference, and
we state the consistency criteria for these:
A2. (i) A = B is equivalent to A  B and B  A, for all A and B in P.
A2. (ii) A  B is equivalent to A  B and not B  A, for all A and B in P.
However, A1 implies that the owner has to admit to all consequences being
comparable. This is typically not the case in smart contracts, and it becomes
necessary to replace Comparability with Reflexivity, yielding a partial ordering
instead:
A1. (iii) Reflexivity: A  A, for all A in P.

There is much to be gained by representing the preference ordering as a real-
valued order-preserving function. If we cannot find such a function there is not
much sense in speaking of the numerical value of a sequence of employed smart
contracts, and we might as well throw a coin for deciding. Assuming axioms A1
and A2 hold, we must find a function f(X) with the property f(A)  f(B) i↵
A  B, which we can always do fairly easily for decisions under certainty [13],
but we now turn to decisions under risk, which is the class of decisions that nor-
mally pertain to owners of smart contracts. In the Bayesian case, with subjective
probabilities, we can think of a smart contract employment S as consisting of a
matrix of probabilities p1, ..., pn and their corresponding consequences c1, ..., cn.
Then the real-valued function f(X) we seek lets us compute the value of S as
⌃pif(ci). This fixes one possible definition of an agent as rational, by making it
maximize its own utility (in accordance with its preferences, i.e. with the prefer-
ences it codes). Formally, an agent accepts the utility principle i↵ it assigns the
value ⌃pivi to S, given that it has assigned the value vi to ci. Any ordering ⌦ of
the alternatives is compatible to the principle of maximizing the expected utility
i↵ a⌦b implies that the expected value of a is higher than the expected value
of b. In other words, we are now free to start experimenting with various axiom
systems for governing the owners, or at least recommending them actions based
on the smart contracts they have at hand. While game-theoretic axiom systems
have been favoured among agent researchers, a wide variety of axiomatizations
are surveyed in the more formal literature [12] [19].

4 A Trust Model for Smart Contracts

From the 25 models covered in [23], five consider global visibility and nine con-
sider cheaters. The overlap of those models leaves one model focusing on repu-
tation of actors in electronic markets [25]. The core idea is to use incentives to
encourage truthful behaviour of agents in the system by social control. Social
control implies that actors in the network are responsible for enforcing secure
interactions instead of using an external or global authority.

Assuming a rational agent, there is a possible motivation to break protocol
if this maximizes utility. Speculation-free protocols have been recommended for



some agent applications, but the Ethereum smart contract environment is much
too complex to allow for such control features, which require equilibrium markets
[27]. To provide a certain level of trust, new agents have to deposit a certain
cryptocurrency value for participation, and this deposit is returned when an
agent decides to stop participating. However, dishonest or corrupt agents can be
penalised by either destroying their deposit or distributing it to honest agents.
This is in line with norm-regulation of agent systems [2] and does not make any
other strong requirements on models. Norm-regulation has been formalized for
multi-agent systems, e.g., in the form of algebra [22].

Gossiping can be used to communicate experiences with other agents in a
P2P fashion and thereby establish trust or reputation. In the protocol of Bit-
coin or Ethereum gossiping is the basis for propagating new transactions and
subsequently validating blocks [10]. A similar approach can be taken for smart
contracts, whereby agents could exchange knowledge or experiences of other
agents [8]. Reputation of an agent is based on its interaction with other agents,
whereby agents mutually need to sign a transaction if they are satisfied with the
interaction. Over time, an agent collects these signed transactions to build up
its reputation. However, this model is prone to colluding agents boosting their
reputation [5]. Trust can also be implemented by relying on independent review
agents [15] [16] [9]. However, both gossiping and review agents are subject to
detection rate issues.

5 Applying Trust Measures to Verifiable Computation

Due to the restrictions set by the EVM (i.e. gas cost of operations), implementing
functions in Ethereum with a complexity greater than O(n) is not feasible. To
circumvent these limitations, computations can be executed outside of Ethereum
and results stored on the blockchain. We present an algorithm to achieve ver-
ifiable computations outside of Ethereum through measures presented in the
trust model. Agents’ rational behaviour can be aligned to the overall objective
of the algorithm. The actors involved in the verifying computation algorithm
are presented in Fig.1. Users request solving a specific computation problem.
They provide an incentive for solving and verifying the problem. Computation
services provide computation power in exchange for receiving a compensation.
For participation, they are providing a deposit. One of the computation services
acts as a solver and at least one other computation service acts as a verifier.
Judges decide whether basic mathematical operations are correct or not. They
are neutral parties and are not receiving any incentives. An arbiter enforces the
verifiable computation algorithm when users request a new computation.

Users are assumed as agents with the objective to receive a correct com-
putation. They are required to send a fee to reward solvers and verifiers for
executing the computation. This fee depends on the complexity of the com-
putation to be performed, the complexity of the input data, and the number
of verifiers. Computation services are assumed to optimise their incentive. They
might purposely communicate false information to maximise their incentive. Fur-



Fig. 1: Overview of actors in the verification algorithm.

ther, enough computation services are available (i.e. a minimum of 2) to execute
the computation with at least one verifier. The probability of detecting a false
computation depends on the number of verifiers in the algorithm. The arbiter
and judge are trusted by participating parties, respectively enforcing the algo-
rithm and reaching a verdict. This is a strong assumption in a trustless system
and needs to be justified. To limit their incentive for undesired behaviour (i.e.
cheating) in the algorithm, these two agents are not rewarded for taking part in
the computations. Thus, their work is pro bono and only the operational cost in
gas are covered.

Alternatively and not further covered in this paper, other approaches limit
or eliminate trust in arbiter and judge. First, following the trust is risk approach
[18], a network of trusted entities with a fixed amount of deposited value could
be created to find arbiters and judges trusted commonly between computation
services and users. Second, a user might create their own arbiter and judge, while
storing the fee in an escrow contract between user and computation services.
The computation services store an encrypted hash of the result in the escrow
contract. Upon completion of the protocol, the user issues the payment and
receives the result in full. Third, the protocol could be executed with di↵erent
test cases while results would be publicly stored on the blockchain. Thus, a user
and computation service could verify correct execution of the protocol, if arbiter
and judge remain unchanged.

5.1 Algorithm

The algorithm is initiated when a user requests a computation by sending the
input data, the operation to be performed, and the desired number of verifiers
to the arbiter. One computation service is randomly determined as a solver, and
the other(s) are randomly assigned as verifiers by the arbiter. The user instructs
the arbiter to forward the input data and operation to the computation ser-
vices smart contracts, triggering the o↵-chain computation by sending a request



through an oracle. This requires sending a fee for the computation as well as
providing the fee for using the oracle. Verifiers and the solver report their result
back to the arbiter. If all results are reported back, then the user can trigger
the arbiter to compare the available results. If the solver and all participating
verifiers agree on one solution, the algorithm is finished and the user can collect
the result. However, if at least one verifier disagrees with the solver the user
can initiate a dispute resolution algorithm. The dispute resolution is inspired
by a technique introduced in [7], [6], and [29]: to split up the operation into
simple parts with intermediary results until the computation is simple enough
for the judge to solve it. Overall and intermediary results are stored in a Merkle
tree for the solver, and each verifier challenging the solver. The comparison is
achieved through a binary search on the trees. The root of the tree encodes the
overall result, while the leaves in the lowest layer encode the input data. Leaves
in between represent intermediary results.

5.2 Interactions

Under the assumption that arbiter, judge, and user behave rational and follow
the algorithm, computation services have a combination of four di↵erent be-
haviours with respect to their role as solver S or verifier V . The behaviours
are summarised in Table 1 with either verifiers accepting the solution (i.e. VA)
or challenging the solution (i.e. VC). S profits the most if it provides a correct
solution, which is challenged by V , while V profits the most when S provides
a false solution and V is able to challenge it. The problematic case is that the
incentives for accepting a false or correct solution are the same. To prevent this
from happening we will consider the behaviour of V and S in detail.

Table 1: Possible behaviours of computation services as solver S and verifier V ,
whereby all verifiers behave the same.

S
correct solution false solution

V
challenge

S receives S fee share
S receives VC fee share
VC receives nothing

S receives nothing
VC receives VC fee share
VC receives S fee share

accept
S receives S fee share
VA receives VA fee share

S receives S fee share
VA receivesVA fee share

Case 1: S provides a correct solution and no V challenges the solution.
Agents behave as intended by the algorithm. As no V challenges the solution,
the judge is not triggered and the fee is equally split between S and the involved
V .

Case 2: S provides a correct solution and at least one V challenges the
solution. This is an undesired behaviour since the solution provided is actually



correct. This triggers the dispute resolution with a verdict by the judge determin-
ing S as correct. In this case S profits from the extra work due to the additional
dispute steps by receiving the fee share of VC . VA receive their part of the fee
since their amount of work remained the same.

Case 3: S provides a false solution and no V challenges the solution. S and
all V would receive their share of the fee. This is an undesired behaviour in
the algorithm as it would flag a false result as correct. To prevent this from
happening two measures are used. First, computation services do not know their
role in advance as they are randomly assigned by the arbiter. If several services
collude to provide false solutions, all of them would need to work together to
provide the “same wrong” result. However, if just one VC exists, it profits by
gaining the fee shares of itself, S, and all VA. Thus, second, the user is able to
determine the number of V for each computation. The probability of having at
least one VC depends on the prior probability p of V providing correct or false
solutions and the number n of V in the computation.

Case 4: S provides a false solution and at least one VC challenges the solu-
tion. Hereby, S and VA are not receiving their share of the fee, which goes to all
VC . This is based on the verdict by the judge. However, this is also an undesired
case since the user does not receive a solution to his computation.

Considering the four scenarios, rational S is trying to receive its share of the
incentive and get a chance to receive fees of any V challenging a correct solution.
The strategy for S considering V is to provide a correct solution to the problem.
V profits the most form challenging a false solution. A rational V provides the
correct solution to a computation to receive its fee share or to have the chance
of becoming a challenger to a false solution. Arguably, S and V could try to
deliver a false solution to save up on computation cost or trick the user. In this
case, the probability of discovering the false solution relies on the number of V s
and the prior probability of cheating V s. If a V delivers a false solution, it must
be the same solution as S’ to not trigger the dispute resolution. Moreover, by
destroying the services’ deposits and excluding them from the algorithm after
detected cheating, the prior probability of having such a service can be reduced.

5.3 Implementation and experiments

The algorithm was implemented using Solidity smart contracts and AWS Lambda
external computation services. The quantitative analysis is conducted by execut-
ing experiments with one exemplary type of computation. The computation is a
multiplication of two integers to simplify the verification steps in the algorithm.
The results depend on external and internal parameters of the algorithm. Exter-
nally, the prior probability of computation services providing false solutions is
considered. Internally, the number of verifiers the user requests for each compu-
tation are examined. Experiments are executed for each di↵erent configuration
of parameters to determine gas consumption and outcome of the computation.
Assuming a potentially large number of computation services (> 10, 000), this
gives a confidence level of 95% and a maximum confidence interval of 3.1 for the
three di↵erent prior probabilities. Before each iteration of the experiment, the



environment is initialised with a new set of smart contracts. Experiments are
executed within TestRPC [11].

Reporting the amount of gas used equals the time and space complexity of
the algorithm, as gas consumption is determined by the type and number of
operations in the EVM. It further excludes the time used for sending transac-
tions or calls. Independent of the prior probability of false solutions, the µ gas
consumption increases linearly as presented in Fig.2. Further, � decreases with
an increasing number of verifiers. At a low number of verifiers, the dispute reso-
lution is less likely triggered, leading to a higher � in gas consumption. With an
increasing number of verifiers, the probability of triggering the dispute resolution
increases. As the dispute resolution is almost always triggered, � is reduced.

(a) 30% of computation services provid-
ing incorrect solutions.

(b) 50% of computation services provid-
ing incorrect solutions.

(c) 70% of computation services provid-
ing incorrect solutions.

Fig. 2: Total amount of gas used by algorithm with di↵erent number of verifiers
and percentage of computation services providing incorrect solutions. Each com-
bination of specific number of verifier(s) and percentage of computation services
with incorrect solutions with N = 1000.

The algorithm is tested for three di↵erent cases of verification: First, the
algorithm can accept a correct solution. Second, each verifier agrees with the
solver although the solution is not correct. The dispute resolution is not triggered
and the user receives a false solution marked as correct. Third, at least one



verifier disagrees with the solver providing a false solution and the judge rules
that the solver’s solution is false. For the second case, invoking the dispute
resolution depends on the prior probability of computation services providing
false solutions described by P (VC) = 1�pn. The experiments as shown in Table
2 indicate that the expected and actual value are similar for p = 0.5. However,
for p = 0.3 and p = 0.7 the actual values are below the expected ones. Since the
experiment is executed with a confidence level of 95% and interval of 3.1, those
changes are accounted towards sampling size not being a perfect representative
of the actual distribution. Also, the random assignment of false and correct
computation services could be a cause for having a higher detection rate.

Table 2: Comparison of expected and actual probabilities of accepting a false
solution in the algorithm.

Prior p Verifiers n Expected false [%] Actual false [%]
0.3 1 9.0 2.7
0.3 2 2.7 0.0
0.3 3 0.81 0.0
0.3 4 0.243 0.0
0.3 5 0.0729 0.0
0.3 6 0.02187 0.0
0.5 1 25.0 28.6
0.5 2 12.5 12.2
0.5 3 6.25 4.6
0.5 4 3.125 1.2
0.5 5 1.5625 0.0
0.5 6 0.78125 0.0
0.7 1 49.0 41.2
0.7 2 34.3 24.4
0.7 3 24.01 12.1
0.7 4 16.807 4.9
0.7 5 11.7649 2.9
0.7 6 8.23543 0.0

6 Discussion

Within the presented trust model, deposits are simple to implement in permission-
less blockchains that already have a cryptocurrency. However, the deposit value
can be volatile. This poses two risks: Either the escrow or independent entity
maintaining the deposit may be motivated to steal the deposits, or the deposit
value might be so little that its trust-building attribute vanishes. To prevent
this, the deposit value could be bound to a fiat currency or a stable asset. The
deposit can also be dynamically adjusted and deposits only kept a short time or
one iteration of interactions. Gossiping could be used as a basis to communicate



experiences with other agents. In permission-less blockchains, the agents can
use a common protocol to exchange this information and use a rating approach
[33]. Yet, gossiping can be misused by agents to boost their own reputations by
executing Sybil attacks. Review agents can be used that reach a verdict on a
specific issue or problem. Their implementation is simple and potential scenarios
to manipulate agents’ reputations are prevented. However, the judge or review
agent needs to be trusted by other agents. The algorithm is based on its actors
and their interaction. The idea of arbiter, judge, user, and computation services
is strongly influenced by [29] and [34]. The main di↵erences are in the idea of
using a jackpot to reward verifiers as well as the implementation either entirely
on Ethereum or using external computation services. Moreover, the algorithm
defers from [34] as its goal is to deliver verifiable computations for entities (i.e.
users or smart contracts) on the blockchain, while [34] primarily delivers privacy-
preserving computations, where blockchain enables the algorithm.

The algorithm cannot guarantee to detect false solutions. It is based on the
assumption that solvers and verifiers behave as desired (i.e. delivering correct
solutions), as their strategy is aligned with the incentives provided by the al-
gorithm. This assumption is based on game-theoretic properties. The algorithm
leaves no dominant strategy considering the interactions in Table 1. S can choose
either to provide a correct or false solution and V can challenge or accept. Only
when considering both agents, a Nash equilibrium exists. If there is a (high)
probability that a VC exists, the only valid strategy for S is to provide a cor-
rect solution. Consequently, V in turn has to provide a correct solution, which
accepts correct S and challenges false S. In the algorithm, both S and V provid-
ing correct solutions gives a Pareto e�cient result. If they change their strategy
under the assumption that no VC exists, their utility remains the same. How-
ever, a V has an incentive to challenge a false solution, which would increase
his utility and reduce the utility of the others. Social welfare considers the sum
of all agent’s utilities depending on their strategy which can be disregarded in
permission-less blockchains since overall the agent wants to optimise his utility
independent of the overall utility. Specifically, the overall utility is potentially
unknown to an individual agent, since he is unable to determine with certainty
the utility of other agents.

7 Conclusion

On permission-less blockchains like Ethereum, rational agents through smart
contracts code the preferences of their owners. This could motivate maximizing
their utility by dishonest behaviour, and hence, further social control mecha-
nisms are required. We have presented a trust model for smart contracts in
permission-less blockchains that incorporate state-of-the-art research into de-
posits, reputation, and review agents for social control. Trust can be extended
to entities outside of permission-less blockchains through applying the trust mea-
sures presented in our model. An example application is an algorithm implement-
ing verifiable computation. The model includes users requesting computational



tasks, computational services providing solutions and acting either as solver or
verifier, arbiters enforcing the algorithm, and judges resolving disputes. Due to
the incentive structure and the potential penalty cause by cheating, providing
correct solutions to the computation task is a Nash equilibrium. Under the as-
sumption that arbiter and judge are trusted, the algorithm detects false solutions
provided based on a probability distribution. The algorithm is realised as So-
lidity smart contracts and AWS Lambda functions, implementing verification of
multiplying two integers. Experiments show that with six verifiers the algorithm
detects cheaters with prior probabilities of 30%, 50%, and 70% dishonest com-
putation services. Experiments show that the algorithm performs overall with a
linear time and space complexity depending on the number of verifiers.

As future work, we leave eliminating trust requirements regarding arbiter
and judge by a fully decentralised algorithm.
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Abstract. Lending has been posited as an application of blockchain
technology but it has seen little real deployment. In this paper, we dis-
cuss the roadblocks preventing the e↵ortless lending of cryptocurrencies,
and we survey a number of possible paths forward. We then provide a
novel system, U. gw. o, consisting of experimental smart contracts written
in Solidity and deployed on Ethereum to demonstrate how a decentral-
ized lending infrastructure might be constructed.

1 Introductory Remarks

Lending has been posited as an application of blockchain technology but we have
seen little real deployment of lending. In Section 2, we discuss roadblocks and
possible paths forward. We do this in service of other researchers who might want
to look at this issue—we view our own contributions as an initial look and not
the final word in this complex area. We outline our agenda in a few steps: (1) we
review the role of lending in a modern economy, (2) we identify the key tensions
between cryptocurrencies like Bitcoin and Ethereum and lending, (3) we review
proposals for lending, and (4) we suggest how to move forward. In Section 3,
we present our lending infrastructure U. gw. o which incorporates the points we
discuss. U. gw. o is designed to be flexible and extensible; traditional fiat-based
lending is not one-size-fits-all and consists of a patchwork of loan structures,
instruments, and intermediaries. We show some basic types of loans and basic
types of risk mitigation as examples of what could be added to U. gw. o to support
an infrastructure for lending.

2 A Research Agenda for Cryptocurrency Lending

2.1 The role of lending in a modern economy

It is di�cult to overstate the role of lending in a modern economy. Take, as an il-
lustrative example, the role of a central bank; one of the main national institutes
(along with the treasury) that cryptocurrencies aim to displace. First and fore-
most, a central bank is an actual bank, providing accounts for its member banks
to deposit money and earn interest. Member banks provide interest-earning ac-
counts to the public. Interest is paid to the public because banks use the de-
posited money to form loans. Because central bank interest rates are low, banks
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prefer to lend to other banks any excess cash they hold at day’s end instead of de-
positing them (other banks borrow to meet liquidity requirements). These loans
earn interest, and central banks target this specific lending rate when they inter-
vene in the economy. The most common intervention is the buying (circulating
new money) or selling (removing circulating money) of government bonds, which
are interest-earning loans from investors to the government. Central banks will
also provide loans (of ‘last resort’) to banks unable to secure loans from other
banks, typically during some sort of liquidity crisis. An economy without loans
would have no interest rates, no bonds, and essentially nothing for a modern
central bank to do.

2.2 Two critical issues for lending with cryptocurrencies

The crypto-economy is e↵ectively an economy without loans. We identify two
primary roadblocks:

• Monetary instability.While a loan might be in anything of value, it is typ-
ically done with money. Cash loans work best when the value of the money
is relatively stable. By contrast, cryptocurrencies have historically appreci-
ated in value over time (as of the time of writing). In a lending situation,
this means the cash taker will end up owing far more than he borrowed. If
the scenario were reversed and the currency depreciated rapidly, the cash
provider would prefer to spend the money rather than locking it up in a
loan where it will shed value over time. Even without long-term upward or
downward drifts in value, short-term volatility adds risk to a loan for both
the cash taker and the cash provider.

• Counter-party risk. While the hype surrounding blockchain technology
centers on how it can enable trustless financial systems, there is no way to
blockchain your way out of counter-party risk. If Alice truly lends money
to Bob—truly in the sense that Bob fully owns it and can do with it as he
pleases—then Bob can abscond with the money.

2.3 Existing proposals

A number of companies have launched loan products or systems based on cryp-
tocurrencies. In the most common architecture, a central company arranges loans
and the loans are simply denominated in cryptocurrencies like Bitcoin. These
services vary from at interest bearing accounts to peer-to-peer lending for invest-
ment purposes to social justice orientations like mirco-lending for the unbanked
or the subprime market. As opposed to our system U. gw. o, these do use smart
contracts to structure the actual loans.

2.4 Dealing with monetary instability

We summarize a few suggestions for adding stability to cryptocurrencies.
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Counter-Party Risk

Almost full mitigation

Partial mitigation

Full
Collateral

Repurchase
Agreement (Repo)
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Reputation

Insurance Credit Default Swap

Fig. 1. Standard approaches to dealing with counter-party risk.

• The rate of release of new currency into the system could be modified to en-
able new currency to be introduced at (i) a more insightful rate or (ii) based
on some internal metrics of the system like number of transactions. [Remark:

an insightful rate has been elusive despite many alt-coins customizing the
schedule and it is di�cult to see how metrics could not be gamed].

• A cryptocurrency can also use explicit pegging but it is no better suited to
this system than standard currencies.

• A central bank could manage currency circulation while allowing other as-
pects to be decentralized [4]. [Remark: Central banks have been historically
unsuccessful at using money circulation as a target [7]].

• The loan could be use the cryptocurrency as the medium of exchange but
use a stable (e.g., government) currency as the unit of account.

In U. gw. o, we use the last approach. In other words, a loan could be $100 USD
paid in Ether at the exchange rate at loan time and repaid 3 months later at
$110 USD paid in Ether at the new exchange rate. This approach requires the
smart contract to be aware of the exchange rate which introduces a trusted third
party, called an oracle [11] and is discussed further in the next section.

2.5 Dealing with counter-party risk

In Figure 1, we outline the basic approaches from finance for dealing with
counter-party risk.

• Full Collateral: It is common for Bitcoin-based solutions, e.g., for fair ex-
change [1,3,10] or payment channels [5,9], to deal with counter-party risk by
requiring full collateral. This is a simple approach but one unlikely to scale
to an entire economy: economic actors are chagrinned to leave money where
it earns no interest and economic benefit.

• Repurchase Agreement: A loan collateralized fully with same currency as the
loan is not a loan therefore collateral only works if it is something di↵erent of
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the same value. If this something is on-blockchain (say a token representing
something of value), the cash provider can have the collateral sit locked up
in escrow (where it benefits neither the cash provider or taker) or could take
full ownership of the collateral with the promise of returning it when the
loan is repaid. This is a repurchase agreement and is common when the cash
provider is perceived to be at less risk of absconding than the cash taker.

• Partial Collateral: The cash taker might stake something of lesser value than
the loan in collateral, a third party to a loan might use partial collateral to
insure a loan (see below), or sometimes loans are internal to a system such as
leveraged positions in financial markets where the manager can liquidate the
loan if the partial collateral (margin) dissipates due to market conditions.

• Reputation: A more abstract form of collateral is one’s reputation and lend-
ing history. The di�culty with reputation is that it requires strong identities,
something missing from decentralized currencies, as rogue entities can regen-
erate a new identity if the reputation of their old identity su↵ers and they can
generate fake histories by lending to themselves with fake identities. These
are not impossible to address but are di�culties.

• Insurance: Consider the case where Alice lends to Bob and does not trust
him. If Alice trusts Carol and Carol trusts Bob, then Carol could insure the
loan. Of course, Carol in this case could also just lend the money to Bob but
there are a few scenarios where she might let Alice lend the money. One is
if Carol’s assets are not liquid. A second is that Carol might employ partial
collateral: she could insure 100 loans of similar value but only stake 10% of
the lent money as a margin against defaults. This costs her less than making
the loans herself, and provides the cash providers insurance assuming the
default rate is less than 10%. One standard financial instrument to implement
this type of insurance, with some additional complexities discussed later, is
a credit default swap (CDS).

3 The U. gw. o Lending Infrastructure

U. gw. o is an extensible system of smart contracts to enable di↵erent types of
lending on Ethereum.3 It is centred around recording credit events—when a
party fails to fulfill the terms written in a loan contract—in a common ledger
called a Credit Event object. We considered two implementation approaches:

• Internal Variable. In one approach, a loan has a credit event object within
itself where the credit event is a variable contained within the loan contract.
The issue with this approach is one of encapsulation: any external contract
protecting the loan (via insurance or collateral) would have to reach inside
the loan object when all it needs to know to function is whether a credit
event occurred or not.

• Object Oriented Approach. It would be interesting if the Credit Event object
sat at its own address such that protection contracts could be externally

3
https://github.com/MildredOkoye/Ugwo

https://github.com/MildredOkoye/Ugwo
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Fig. 2. The U. gw. o lending infrastructure showing how the various loan and protection
objects interface with the Credit Event object.

deployed and would not have to be worried about each loan that they insure
individually. Protection would be external contracts and would just have
a global view of all credit events from a single address given specific loan
identifier (such as the loan address). To ensure compatibility, we can use
interfaces which in object oriented programming specify the functions that
must exist. Interfaces are similar to abstract classes in that they do not have
any definition of functions contained within. An interface provides developers
a guide as to how to implement the contract. Thus the Credit Event object
is the core of extendable system where new loan types can be added and
new protection types.

In U. gw. o, we implement two interfaces: a Loan interface and Protection In-
terface. The Loan interface forces any loan object that would like to interact
with the Credit Event object to implement certain functions that would enable
the interaction. This same concept applies for the Protection Interface. These
interfaces and their links to the loan objects are shown in Figure 2.

3.1 Overview of loan objects

Peer to peer lending. We start with a basic loan contract constructed by the
cash provider. The loan has parameters such as the address of the cash provider
and cash taker, the principal amount to be lent, the start and end dates of the
loan, the repay value and repay schedule. The cash provider runs the constructor
and funds the contract. The cash taker runs a function in the loan contract to
retrieve the principal in the contract. At maturity, the borrower calls a function
to pay back the principal with the corresponding interest. As with all of our
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objects, modifiers ensure that only the stated party can run each a function in a
contract, and an internal state machine governs at which phase of the contract
each function can be called. If the borrower does not show up to retrieve the
principal from the contract, the lender’s money would remain the loan contract
forever. To combat this, a kill function was implemented such that the lender
can retrieve the money from the contract if the borrower does not retrieved the
money after a timeout.

If the cash taker fails to pay back the loan within the timeframe, the loan ob-
ject itself cannot transition states without someone calling a function. In U. gw. o,
a default function can be triggered by any person watching or monitoring the
loan if the borrower fails to pay after the due term. This default function when
run, updates the Credit Event object discussed below. This is how a loan moves
into a default state and it relies one someone having an incentive to transition
the loan (otherwise it is likely inconsequential if it sits dormant).

Bonds and commercial paper. We implement a simple ‘zero coupon’ bond.
The contract uses an external library implementing EIP20 tokens.4 The cash
taker, generally an organization or corporation in this case, creates a set of tokens
that represent units of cash it will accept (and later repay) from individual cash
providers. The cash taker runs the constructor (with variables for start date,
end date, bond value, repay value, etc.) and funds the contract with tokens. A
function is used to accept payment from investors where tokens representing the
amount borrowed is sent to the investors. The token is calculated as the value
deposited over the price of the bond. An event is created that informs watchers
of the contract of all bonds sold. The bond is a bearer bond in the sense that
the bond contract does not track the addresses of who owns each bond. The
token can be transferred from one person to another without interacting with
the bond contract (however, the interaction is performed with the standard
token contract). To get paid at maturity, only the token needs to be submitted
irrespective of the bearer of the token. Defaults are implemented the same as in
the P2P lending contract. The default function can be triggered by any person
watching or monitoring the bond if the organization defaults on its payment
after the due term.

3.2 Overview of protection objects

Collateral. Two types of collateral are defined in U. gw. o—a token collateral and
an ether collateral. A token collateral contract accepts a EIP20 token which
might represent a token from a ICO, DAO-style contract, loan contract or any-
thing else with value that the cash provider is willing to accept. The constructor
function of the contract states the amount of tokens the cash taker is willing to
put up as collateral. A separate function allows the cash taker to instantiate all
agreements with the cash provider; they were not included in the constructor
function to allow the collateral function to be run by any investor. If at the end

4
https://github.com/ConsenSys/Tokens
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of the term the cash taker defaults, a function to get the token out of escrow
can be run by the cash provider. The function first checks for a credit event, or
triggers a credit event if the conditions for a default are met. An ether collateral
accepts ether as collateral—since the loan itself is in Ether, this is useful for par-
tial collateral functions or when the collateral is backing insurance rather than
a loan.

Credit default swaps. A credit default swap (CDS) is an agreement between
two parties (a seller and a buyer) where the CDS seller fulfils the debt of a loan
to the CDS buyer if a credit event occurs on the loan. The CDS seller then takes
ownership of the loan. If more there is more than one seller of a CDS per loan
(as is permitted and common in financial markets for speculation), the loan is
auctioned and the market clearing price is used to settle the swaps.5 A CDS
seller subsumes the same risk position as the actual cash provider in the loan
but the benefit to the CDS seller is not having to liquidate any assets (she can
have e↵ectively no cash on hand if an event never happens). The benefit to the
cash provider is that a loan with a CDS only defaults if both the cash taker and
the CDS seller default.

CDSs have a bad reputation after the 2008 financial crisis in the United
States, where the CDS market was unlit and considered by many to be under-
regulated. In U. gw. o, the CDS market is transparent and CDS buyers can have
enforced reserves that automatically settle with CDS buyers when a credit event
occurs on an insured loan. CDS sellers themselves an be given a Credit Event
object. Our implementation is rudimentary (without naked CDSes, auctions,
or other features) and we expect that a full-fledged, decentralized CDS market
would constitute an entire research paper by itself.

3.3 Overview of the CreditEvent object

It would be simpler to implement a CreditEvent object within each loan (P2P or
Bond) contract. One reason to pull it out and make it an object of its own is to
prevent redundancy in the use of code. This is a basic principle of object oriented
programming. Another reason is to create a somewhat central place where all
the loans can be monitored.

The simplest model of a CreditEvent object begins with a contract that holds
all default variables such as defaulter’s address, the lender’s address and the
defaulted amount. It implements a struct variable that is used to hold all the
values pertaining to each loan. The contract implements the zero coupon pay-
ment model and hence has only one value for defaults. The value of the defaults
could either be a string (yes or no) or a number (the amount defaulted). This
contract has a constructor that is triggered by a loan contract. The major task
of the constructor is to allocate memory for the loan that triggered it and set
the necessary parameters (defaulter’s address, the lender’s address). An update
function within the CreditEvent contract is triggered by loans to insert default

5
http://www2.isda.org/
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value into the struct variable. A defaultlist function acts as a getter function
and returns all the values within the contract. This contract by itself performs
no specific action beside receiving information from loans linked to it and acting
as a global table visible to di↵erent protection objects and users.

In U. gw. o, each loan’s constructor triggers the CreditEvent function to insert
arguments such as the lender’s and debtor’s address. A payback function con-
tained within the loan is triggered by the debtor in other to pay back the principal
and interest. It takes into factor the state of the contract as well as the matu-
rity date of the loan. If the amount being paid by the debtor is less than the
total amount (principal and interest), the amount is paid to the cash provider
and a default written to the CreditEvent contract. A value of zero is written if
the amount being paid covers the total amount or is in excess (in this case, the
surplus is returned to the cash taker). A report function can be triggered by
anyone watching the contract if the borrower defaults on its loan. This would
set the loan to a default state such that anyone watching the loan can tell that
the borrower defaulted on the loan.

4 Discussion

4.1 Exploring the use of oracles for exchange rates

It is not uncommon to encounter use cases that require a smart contract to
trigger or change state in response to an event external to the blockchain. For
example, an insurance contract might pay farmers based on the temperature and
sunlight for a given period. A hypothetical smart contract might listen for any
change in the weather, parse this information from an external source such as
a URL, and then trigger payments or other events based on this information.
As simple as this contract might sound, it is not possible to run contracts on
Ethereum this way. This is because the blockchain follows a consensus-based
model that ensures all inputs can be validated. Externally fetched data might
di↵er between nodes, some nodes may not be able to access the data due to
networking issues, and the amount of gas that should be consumed by the miner
for spending time fetching the data is di�cult to determine objectively.

In the case of our lending infrastructure, we want to implement a loan where
the unit of account for the loan is based on the value of a fiat currency. The actual
loan will be in Ether but the amount owed will be based on its current exchange
rate with the underlying currency. This is side-step the monetary instability
of Ether which makes it unattractive for lending. Thus in nominal terms, the
amount of ether being paid back might be more or less than the amount borrowed
depending on whether it’s value increased or decreased relative to the fiat dollar.
Bonds do not only o↵er an investment opportunity, but they allow investors to
speculate or hedge on rates of inflation.

Since contracts cannot fetch external data, a service has emerged, called an
oracle, which is trusted external entity that puts data onto the blockchain where
it can be accessed by other contracts. In U. gw. o, we use Oraclize6 to feed the
6
https://github.com/oraclize

https://github.com/oraclize
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exchange rate of Ether with USD into our contracts. Using an oracle is not
foolproof and we note a few challenges in using an oracle. The first challenge
is that the price is needed at each execution of the contract. Another challenge
is that in order to feed the current exchange value into the blockchain, a link
to any exchange has to be manually inserted into the oracle’s code; if the link
goes down, the oracle will not be able to provide the appropriate data into the
blockchain to be used by the miners. Finally oracles are trusted parties that
can lie about the exchange rate and collude with cash takers to steal from cash
providers. We remark that oracles do have a reputation and in most countries,
stealing is still subject to legal recourse even if it is on a blockchain.

4.2 Automatic actions

Many Ethereum beginners have to adjust their mental model of smart contracts
to the fact that a contract will not run unless if one of its functions is called. It
cannot automatically perform actions, say, after some period of time has passed.
In U. gw. o, loans like bonds have a default function that checks if there has been a
default by the cash taker. This default function has to be triggered by someone
in order to default the loan and update the CreditEvent object. An option is to
use the Ethereum Alarm Clock 7 to trigger the function monthly. It is a trusted
third party service that supports scheduling of transactions such that they can be
executed at a later time on the Ethereum blockchain. This is done by providing
all of the details for the transaction to be sent, an up-front payment for gas
costs, which would allow your transaction to be executed on ones’ behalf at a
later time. The drawback is its heavy integration with the loan contract, as well
as arranging payments to the service. Would it be possible for an actor in the
loan contract to run the function monthly in other to avoid the heavy integration
and cost of using the Ethereum alarm clock? Which actor in the loan contract
would have a higher incentive to run the default function? All answers point
towards the cash provider. Due to the fact that the insurance or collateral can
only be claimed after a default occurs, the cash provider in the contract would
have more incentive to run the function every month. Hence, we did not deploy
the alarm clock.

4.3 Implementing the monthly array object

To implement a monthly payment, we could reference either time (e.g., now or
block.timestamp) or block interval (e.g., block.number). Timestamps are not
reliable and be manipulated by miners. This is due to the decentralization of
the system; there is no wall clock for reference and node’s local clocks can never
be perfectly synchronized (i.e., to the millisecond). Ethereum permits a 900
millisecond lead or lag in time. When using block numbers, there is also a lack
of precision. One could estimate that a 31 day month would be something like

7
http://www.ethereum-alarm-clock.com/

http://www.ethereum-alarm-clock.com/
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179 759 blocks.8 While this is a challenge for applications that need near real-
time fidelity but for loan payments, we would argue that time slippage is not
critical for loans. We utilize time not blocks. If a loan lies dormant for longer than
a month, with Ethereum’s model of function-initiated state changes, the loan’s
state will not change. However the next function to be called, whether a payment
or default check, will update the previously skipped months in CreditEvent while
writing the current result of the called function.

4.4 Implementing the CreditEvent contract

Choosing an appropriate data structure for CreditEvent presented some chal-
lenges. We want loans to be individually encapsulated with the addresses of the
cash provider and cash taker, and some data structure to hold a credit score
for the loan (such as an array of values that indicate for each month whether
the payment was repaid, late, defaulted, etc.). Note that it is not up to the
CreditEvent object to penalize credit events. It passively records them and then
protection objects can chose how to act. CreditEvent should be agnostic of what
type of loan it is representing (e.g., peer-to-peer, bond, etc.). In U. gw. o, each bond
is an individual loan. Protection objects, like credit default swaps, are generally
written to monitor credit events across the entire issue of bonds, not just one
individual bond. We leave for future work improvements to how sets of loans
can be insured.

This credit history could be a struct, mapping or array. According to solidity
documentation, in order to restrict the size of a struct, a struct is prevented from
containing a member of its own type. However, the struct can itself be the value
type of a mapping member. Following that, another way is to have a mapping to
another struct outside of itself that contains the monthly defaults. In Solidity,
mappings are like hash tables that are initialized dynamically with key/value
pairs. Unmapped keys return an all zero byte-representation. However, it is not
possible to iterate through the contents of a mapping and therefore, the best
implementation was to have an array contained within a struct. In all cases, the
inner container cannot be visible within the interface of the Ethereum wallet even
if the outside container is made public. For example, if you implement a struct
inside another struct and on, eventually the interface would give up trying to
display all the subviews within it. To make the contract more developer friendly,
we use getter functions to reach inside structs and expose the contents to the
wallet interface.

In other to uniquely identify loans in the CreditEvent contract, when a loan
calls the CreditEvent contract to pass in the initial parameters, a loan id number
is created by the CreditEvent contract. This loan id number can be used by a
protection object to monitor a loan. Using a loan id number creates an extra
variable that floats around the contract that might not necessarily be needed.
A better approach is to use the loan address as a unique identifier. This way
the protection object do not need to keep the loan id number of every loan

8 Blocks 4652926 to 4832685 were mined in December 2017.
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they monitor as the address of the loan by itself serves as a unique identifier.
This however, is not a hard rule as either a loan ID number or address can be
used to uniquely identify a loan without causing any mishap in general. Even in
situations where two loans are created at the same time, the id of the loans is set
by the miner in the order in which they are place within the block. The interface
of the Ethereum wallet for the CreditEvent object contains the parameters for
identifying each loan on the CreditEvent object. The loan address is used to
retrieve this information. The months which have no default are represented
with zero and 300000000000000000 wei (0.3 ether) is the default amount for the
second month. To pay out this default, any protection object would just need to
fetch the value from the CreditEvent object.

4.5 Implementing a Credit Default Swap

In the implementation of loan insurance, such as through a credit default swap,
it is ironic that such a contract operates as both a protection object against
counter-party risk and also introduces new counter-party risk (that the insurer
will default on paying the insurance). The CDS contract is drawn up by the
CDS seller who initializes agreed upon facts such as the CDS buyer, amount to
be insured, premium, among others. During the payment by the CDS buyer, the
function allocates space in the CreditEvent object to hold information regarding
the standings of payments made to the CDS buyer.

If a default occurs on a loan that has been insured with a CDS, the default
function would be run by the CDS buyer (the buyer has a higher stake and
more incentive to run the function). This function would update the CreditEvent
object with the balance of the loan to be paid. This is because when a default
occurs, the rest of the debt is paid to the CDS buyer and the CDS seller takes
over the loan (this is where the swap occurs). The idea behind this is that we
wanted the CDS contract to fetch the balance of the debt directly from the
CreditEvent object just as the Collateral object gets the default for the month
from the CreditEvent object and pays out to the cash provider. This way the
amount to be paid cannot be manipulated by either the CDS seller or anyone
and the payment can be made automatically when triggered.

When the payment is made to the CDS buyer, a change of ownership occurs.
This could be implemented in two ways. One way is to have a new contract
created for the change of ownership where the CDS seller becomes the Lender in
the loan contract. This would create a new contract which might be hard to track
as it would have a new address with no relation to the old address. The other
way, which we implemented, is to have the same loan contract implemented for
the CDS change the owner name. This way the new owner (CDS seller) is tied
to the loan contract and anyone who had the address for watching the CDS loan
would be aware that a credit swap occurred. The change of ownership is also
reflected in the CreditEvent object.
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Contract Gas Ether USD

Base System

Tokens 857,106 0.018 $5.00
Token Transfer 51,501 0.001 $0.30
Oraclized 154,711 0.003 $0.90
Credit Score 462,453 0.010 $2.70

Peer to Peer Lending

P2P Lending 2,198,423 0.046 $12.82
Receive Money 474,112 0.009 $2.77
Payback 105,827 0.002 $0.62
Report Default 60,605 0.001 $0.35
Kill 25,098 0.001 $0.12

Bond

Bond 2,229,084 0.047 $13.00
Purchase Bond 231,397 0.005 $1.35
Withdraw 292,787 0.006 $1.71
Repay 415,213 0.009 $2.42
Report Default 55,798 0.001 $0.33

Table 1. Cost of running the basic and loan contracts

5 Evaluation

Our contracts were developed in Remix and tested on Ethereum’s test network.

5.1 Security

Solidity (and Serpent) is notorious for security issues [6,8,2]. We made our con-
tract resilient to the re-entrancy bug by ensuring that all checks are performed
before transfers (such as, does the sender have enough ether?) and also ensuring
that state variables are changed before transfers. Mishandled exceptions have the
potential to allow unauthorized access to functions or result in denial of service
attacks on individual smart contracts. We handle this in our contracts with the
use of modifier functions that act as an access control mechanism. This allows
only authorized users to access functions and also sanitizes inputs to reduce the
likelihood of exceptions. Transaction-ordering dependence and timestamp de-
pendence attacks do not break our contract due to the nature of our project.
Although timestamps (as opposed to block numbers) are used in our project, our
contract is not time dependent and any modification of the time by factor of 900
seconds by the miner will not break the contract. Last, the price for a bond in
our system is fixed by the bond issuer and cannot be changed after deployment.
Therefore, the contracts are not susceptible to a transaction ordering attacks.
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Contract Gas Ether USD

Collateral

Collateral 442,035 0.009 $2.58
Serve 204,509 0.004 $1.20
Get Ownership 312,667 0.007 $1.82
Cancel 27,664 0.001 $0.16

Credit Default Swap

CDS Contract 452,035 0.009 $2.58
Monthly Premium 204,509 0.004 $1.20
Report Default 61,709 0.001 $0.16
Kill 27,664 0.001 $0.16

Table 2. Cost of running the protection contracts

In order to test our system for known security bugs, we use a symbolic ex-
ecution tool called Oyente [8].9 The tool has been proved in successfully iden-
tifying critical security vulnerability, such as a famous incident called the DAO
vulnerability. The various APIs used by both contracts were analyzed together
simulating the exact same way it would be deployed. None are vulnerable to any
of the tests.

5.2 Cost

In this section we would analyze the gas cost of using our contracts. As of
this writing, the current price per gas is 21 gwei (0.000000021 Ether) while the
current price of 1 ether = $277.78. For any contract, the gas cost = gas * gas
price. As of this writing, it is useful to note that any transfer of ether from one
account to another has a gas of 21,000, a gas cost of 0.00044 Ether resulting to
$0.12 USD. Table 1 and 2 represents the cost of running each smart contract
and its functions contained therein on the Ethereum Virtual Machine. The cost
of deploying the P2P lending contract and the Bond contract is roughly about
$13.00 respectively. This is due to the API’s called by those contracts, the more
API’s a contract import the more the code needed to be executed by the miners
and the higher the gas consumption. In particular, the high gas consumption is
attributed to the Oraclized API. However, once deployed, the cost of running
the rest of the function inside the contract is less than $3.00.

5.3 Concluding Remarks

We have present U. gw. o, an Ethereum implementation of a lending infrastructure.
We use the term infrastructure because U. gw. o is not a single system, but rather
a central component (CreditEvent) with two interfaces for an extensible system,

9
https://github.com/ethereum/oyente

https://github.com/ethereum/oyente
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where new loan and loan protection techniques can be added. Future work might
deploy more exotic bonds or commercial paper arrangements, or other types of
protection techniques like reputation systems and repurchase agreements.
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10. T. Ru�ng, A. Kate, and D. Schröder. Liar, liar, coins on fire!: Penalizing equivo-
cation by loss of bitcoins. In CCS, 2015.

11. F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. Town crier: An authen-
ticated data feed for smart contracts. In CCS, 2016.



 


