
End-to-End Verifiable Quadratic Voting
with Everlasting Privacy

Olivier Pereira1 and Peter B. Rønne2
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Abstract. Quadratic voting is an intriguing new method for public
choice suggested by Lalley and Weyl, which they showed to be utilitarian
efficient. Voters are given a budget of credits and can assign each of the
candidates a (perhaps negative) value, where the price paid for their vot-
ing choice is the sum of the squared values. From a security viewpoint,
we generally request elections to be private and have integrity, and even
further (end-to-end) verifiability which entails public bulletin boards.
Such public data might be troublesome when considering future adver-
saries capable of breaking current cryptographic primitives, either due
to computational power advances, broken primitives or scientific break-
throughs. This calls for election schemes with everlasting privacy and
perfectly private audit trails. In the case of quadratic voting this is even
more crucial since budget balances have to be linked between elections in
a verifiable way, and revealing old budget values partially break privacy
in later elections. In this paper, we suggest an efficient construction of
electronic quadratic voting with end-to-end verifiability and a perfectly
private audit trail inspired by the methods of Cuvelier, Pereira and Pe-
ters, but adapted to include the quadratic relations and keeping budget
balances everlasting private.

1 Introduction

Finding good public choice methods is a notoriously hard problem. Recently
a novel intriguing approach has appeared: quadratic voting [16]. The quadratic
voting method works by providing the voter with a budget b of credits for buying
votes, however, the voting credit does not have to be connected to a real financial
currency. The peculiarity is that a voter casting v votes for a candidate has to
pay a quadratic amount v2 of credits for this choice. That is, the voter assigns
vote values v1, . . . , vc to the c candidates, or choices, and has to pay the sum of
squared values which have to be within budget

v21 + · · ·+ v2c ≤ b .

The advantage of quadratic voting is that it theoretically satisfies utilitarian
efficiency at least in the asymptotic case [16], and in the finite case the ineffi-
ciency is suppressed by the number of voters, see also [8]. To put it differently,



the quadratic pricing gives incentive for the voter to buy a number of votes
corresponding to her internal value.

An enlightening example demonstrating the effect of quadratic voting on real
users can be found in [19]. Here voting was not directly considered but rather
closely related surveys. In a combined between-groups and within-subjects study,
participants were asked about their opinion on 10 proposals. One group of par-
ticipants gave answers on a Likert 7-choice scale ranging from “Very strongly
against” over “Neutral” to “Very strongly in favor” whereas another group gave
responses using quadratic voting with a total budget of 100 credits for all an-
swers i.e. being able to vote in the range {−10, . . . , 0, . . . , 10}. As is intuitive the
quadratic voting resulted in much less extreme answer but, further, the answers
were also much closer to being normal distributed. The quasi-normal distribu-
tion could be an indication that the answers were closer to expressing the true
internal value.

Once the vote is complete, the collected payments are redistributed among
the voters. The method suggested by Lalley and Weyl [16] is to split the rev-
enue of the election evenly among the voters. However, other solutions have been
proposed, including lotteries [17]. The actual choice is not essential for the utili-
tarian efficiency. For simplicity we will focus on the even split of revenue in this
paper.

Quadratic voting is also an interesting challenge from a security viewpoint,
as we have to cryptographically deal with squared values and checks of bud-
get balances. A first solution for running end-to-end verifiable elections with
quadratic voting is described by Park and Rivest [17]. Here security properties
of voting schemes are discussed, and the importance of budget privacy is stressed,
especially if revealing individual votes due to Italian attacks. Our scheme uses
homomorphic tallying, partially sidestepping the Italian attacks. Still, budget
balances should be kept private by the voters, as they could result in vote pri-
vacy leaks. Note that a very small leak in privacy is unavoidable since we reveal
the total revenue by refunding it to the voters. Park and Rivest also analyze
strategic voting and refunding rules for quadratic voting, and further suggest
schemes for in-person and electronic voting, with cryptography based on the
BGN encryption scheme [6], which allows to calculate squares of encrypted val-
ues, and to further homomorphically add those squares. Regarding the handling
of the payments, it is also mentioned as a possible option to use an anonymous
cryptocurrency such as Zerocash [20].

We create a different solution, which offers several additional benefits:

– Our protocol offers a perfectly private audit trail (PPAT), that is, all the
data needed for public verifiability perfectly hide all the votes and budgets.
The previous solution requires publishing ciphertexts that would eventually
leak vote content.

– Our protocol is compatible with traditional threshold key generation pro-
tocols in the discrete log setting [18, 15], even in the malicious setting. The
BGN scheme requires the use of an RSA modulus with unknown factorisa-



tion, which is considerably more challenging to obtain (see discussion in [6]
for instance).

– Our solution is quite efficient: voter computation takes place in prime order
groups on elliptic curves (e.g., BN curves [2]), and only requires to compute
one pairing per election. The BGN based solution requires to compute on
curves with a modulus that has the size of an RSA modulus, and requires
the evaluation of pairings for each vote.

We believe that everlasting privacy of the audit data is an important improve-
ment for any secure election scheme: we want these data to be widely available
to the public, but then need to take care that votes do not leak in the future.
An adversary may benefit from the ever-increasing efficiency improvements in
computing, the breaking of believed-secure cryptographic assumptions or tech-
nical breakthroughs such as quantum computers. However, in quadratic voting
such future-proofing is even more essential, since the budget can be carried over
from election to election. Thus breaking the privacy of earlier elections might
(partially) leak the later budget in the present of the future adversary.

We also conjecture that handling the payments inside the voting system
(compared to relying on an externally managed cryptocurrency) is an interesting
feature: this avoids mixing the systems of incentive that come with cryptocur-
rencies with those in the election process, and it also makes it easier to control
that all voters start from an equal budget.

The outline of the paper is as follows. In Section 2 we present the necessary
cryptographic tools, that will be used in the cryptographic protocol presented
in Section 3. In Section 4 we discuss the security properties of the protocol. We
end with a conclusion and discussion of future research directions.

2 Background and Cryptographic Tools

2.1 Commitment Consistent Encryption

The first component of our quadratic voting protocol is commitment consistent
encryption (CCE) [12], a cryptographic tool that was proposed to facilitate the
design of universally verifiable voting schemes with a perfectly private audit trail.

A CCE scheme is a traditional public key encryption scheme offering an
extra feature: from any ciphertext, it is possible to derive a perfectly hiding
commitment, as well as an opening of that commitment to the value that is
encrypted. The commitment derivation operation, DCom, only requires using
the public key, while the computation of the opening, Open requires the secret
key.

It is convenient to have, associated to a CCE scheme, the possibility to use
efficient proof systems, which can serve several purposes, and which we will need
in our application:

– A proof of validity of a ciphertext, that guarantees election organisers that
the Open operation would succeed without performing it. Quite often, ci-
phertexts are never decrypted but rather homomorphically combined, e.g.,



in order to add votes. A single invalid ciphertext would then suffice to make
it impossible to open the election result.

– A proof of knowledge of the plaintext. This can be used to make ciphertexts
non-malleable [22, 5], and avoid attacks on privacy.

– A proof of validity of a plaintext, which guarantees that the plaintext that
is encrypted encodes a valid vote.

These will be discussed in the next subsection.
We use the PPATS encryption scheme of Cuvelier et al. [12], which is de-

scribed in Figure 1. This scheme works in an asymmetric bilinear group setting,
which can be obtained using BN curves [2] for instance. In the group G1, two
random generators (g1, h1) are given in order to produce Pedersen-like commit-
ments and, in the group G2, an ElGamal key (g2, h2) is produced. The main
twist of the scheme is to open a commitment gv1h

r
1 using gr2 and to verify it using

the pairing operator, instead of using r directly as with Pedersen commitments:
the pairing makes it possible to verify, after removal of the gv1 term, whether
e(hr1, g2) = e(h1, g

r
2). Using this alternate way of opening the commitment offers

two benefits: (i) the opening is now a group element, which can be conveniently
encrypted using the ElGamal key (ii) all the secret values are in exponents, which
eases compatibility with traditional, efficient, Σ-protocols.

PPATS encryption
Setup(1λ) Return, as a public parameter pp, type-3 pairing-friendly groups

G1,G2,GT of prime order q s.t. |q| = λ, together with random generators
g1, h1 of G1 and g2 of G2. We assume that pp is available to all other
algorithms.

Gen(1n) Generate an ElGamal public encryption key pk = h2 = gx2 . The secret
key is the uniformly random sk = x ∈ Zq.

Encpk(v) Encrypt vote v as (d, c1, c2) = (gv1h
r
1, g

s
2, g

r
2h
s
2), using uniformly ran-

dom (r, s)← Z2
q.

Decsk(d, c1, c2) Return the discrete logarithm of e(h1, c
x
1/c2)e(d, g2) in basis

e(g1, g2).
DCompp(d, c1, c2) Derive and return the perfectly hiding commitment d.
Opensk(d, c1, c2) The commitment opening is computed as a = c2/c

x
1 .

Vrfypk(d, v, a) (v, a) is an opening of d iff e(h1, a) = e(d/gv1 , g2).

Fig. 1. The PPATS encryption scheme

2.2 Sigma protocols

A Sigma protocol [13], or Σ-protocol, for a relation R enables a prover P to
convince a verifier V that he knows a witness w for a statement x such that
(w, x) ∈ R.

Sigma-protocols are structured as follows: based on a joint input x, P sends
a commitment a to V , who answers with a uniformly random challenge e and,



finally, P sends a response f . Based on this response, V accepts or rejects the
proof.

Σ-protocols exhibit the following properties:

Completeness If P and V follow the protocol honestly and if P actually knows
a witness w for the statement x, then V accepts the proof.

Special honest verifier zero-knowledge There is a simulator S that, from
any valid statement x and challenge e from the set of possible challenges,
is able to produce a full valid protocol transcript (a, e, f). If e is uniformly
distributed, then this transcript is distributed exactly like a real protocol
execution. (Note that no valid witness w for x is given to S.)

Special soundness From any two valid proof transcripts (a, e1, f1) and (a, e2, f2)
for a statement x, with a single commitment a and two distinct challenges
e1 6= e2, it is possible to extract a witness w s.t. (w, x) ∈ R.

Σ-protocols come with two interesting features: (i) They can be efficiently
turned into non-interactive zero-knowledge in the random oracle model thanks
to the Fiat-Shamir heuristic [14, 5]; (ii) their perfect ZK property makes them
suitable to be published as part of a perfectly private audit trail.

We need to use several standard Σ-protocols, which we list below.

Opening of a commitment. We use a protocol πb
op(c) to prove knowledge of an

opening of a commitment c to a value b s.t. c = gbhr. This can be achieved using
Schnorr’s protocol [21], which takes a single exponentiation.

CCE ciphertext validity. We use a protocol πva(c) that proves the validity of a
PPATS ciphertext c, by demonstrating the knowledge of the vote v and random-
ness (r, s) used to produce c. This protocol guarantees to the talliers that they
will be able to run the tallying protocol successfully, as explained above. Such a
protocol has been constructed for PPATS by Cuvelier et al. [12] and requires 2
exponentiations in G1 and 3 exponentiations in G2.

Range proof. We use a protocol πn
r (c) that proves the ability to open a commit-

ment c = gvhr on a vote v that is included in the range [0, 2n], with n < log q−1.
Note that the notion of “positive” has a slightly unusual meaning here, as the
values we are committing to lie in Zq; this is the reason of our upper bound on n,
which guarantees that values do not “overflow” to negative values, interpreted
as those above (q − 1)/2.

This protocol will be used by the voters to prove that they are not over-
spending, that is, that their budget after each vote remains positive.

Many such proofs have been proposed, with their efficiency differing depend-
ing on the value of the range upper bound 2n (among other factors). As we work
in prime order groups and our range upper bound is a power of 2, we simply rely
on the protocol by Bellare and Goldwasser [3]. This protocol makes a sequence
of n commitments c0, . . . , cn on the individual bits v0, . . . , vi of the binary de-
composition of v, proves that each commitments actually commit to bits, and
then show that c/

∏
c2

i

i = hs for a known s.



If the 0/1 proofs are made using the disjunctive proofs of Cramer et al. [10],
which takes 3 exponentiations in the group in which the commitment lies, then
the total cost of such a proof is (i) n exponentiations for the bit commitments,
(ii) 3n exponentiations for the proofs that they can be opened on bits, (iii) 1
exponentiation for the final proof on s. The total is then 4n+1 exponentiations.

2.3 Proof of square

Finally, a key ingredient of our quadratic voting protocol is a proof πsq that
one can open two perfectly hiding commitments on values such that one is the
square of the other. This will be used by the voters to show that they commit
on an accurate payment based on their vote.

Such a proof can be achieved using the usual technique systematically de-
scribed by Camenisch [7]. We propose here a slightly more efficient method,
which we detail.

Suppose that P publishes two commitments c1 and c2 and wishes to demon-
strate that he knows pairs (v1, r1) and (v2, r2) such that c1 = gv1hr1 , c2 = gv2hr2

and v2 = v21 mod q. He can then follow the Square protocol depicted in Figure 2.

P (g, h, v, r1, r2) V (g, h, c1, c2)

a, s1, s2 ← Zq •

• e← {0, 1}n

• Accept iff gfht1 = d1c
e
1

and ht2 = d2c
e
2c

−f
1

d1 = gahs1 , d2 = gavhs2

e

f = a+ ev, t1 = s1 + er1,

t2 = s2 − ar1 + e(r2 − r1v)

Fig. 2. Square: a Σ-protocol for commitments on values in quadratic relation.

Theorem 1. The protocol πsq(c1, c2) described in Figure 2 is a Σ-protocol for

the relation {v, r1, r2|c1 = gvhr1 , c2 = gv
2

hr2}.

Proof. We show the completeness, the special soundness and the perfect honest
verifier ZK of the protocol.
Completeness: The perfect completeness of the protocol follows from the in-
spection of the verification equations. In particular, we see that d2c

e
2c
−f
1 is a

commitment on av + ev2 − v(a+ ev) = 0.
Special soundness: Let us imagine that we have two valid transcripts for
the same c1, c2, d1, d2, that is, we have (e, f, t1, t2) and (e′, f ′, t′1, t

′
2) that are

both consistent with the verification equations. Dividing the two versions of the

verification equations gives: gf−f
′
ht1−t

′
1 = ce−e

′

1 and ht2−t
′
2 = ce−e

′

2 cf
′−f

1 .



The first of these equations shows that v = f−f ′

e−e′ and r1 =
t1−t′1
e−e′ are a valid

opening of c1. Inserting the extracted v in the second equation gives ce−e
′

2 =

c
v(e−e′)
1 ht2−t

′
2 . Isolating c2, we can open it on the pair (v2, r1v +

t2−t′2
e−e′ ), and

observe that the second element of that pair equals r2.
Special HVZK: Given any e, we can select f, t1, t2 uniformly at random in
Zq, then compute d1 and d2 from the verification equations. If e is uniformly
random, then it is distributed as in the real protocol. The uniform selection of
a, s1, s2 in a real execution guarantees that f , t1, t2 are random in the absence of
d1 and d2, and those two commitments only enforce the verification equations.
Hence, the simulated view is distributed exactly as a real one. ut

The cost of this protocol is 3 exponentiations (considering that v is small),
which is slightly better than the 4 exponentiations that would be obtained using
the more common approach [7]. This may make this protocol of independent
interest.

3 Verifiable Quadratic Voting

We now describe the steps of our quadratic voting protocol in detail. The main
participants are the Election Authority with a set of Tally Tellers jointly holding
the election secret key, the Voters and a Public Bulletin Board used to publish
and verify the outcome of the election.

Our election setting and adversarial model is standard (we will discuss se-
curity in the next section) and similar to the one used by Cramer et al. [11] or
Helios 2.0 [1].

The Election Authority orchestrates the election, publishing the questions
and election public parameters (keys) on the public bulletin board, which is
assumed to behave as a trustworthy broadcast channel. The Election Authority
also handles the voter lists, and offers authenctication services to the voters if
needed.

We aim for an end-to-end verifiable protocol: the election result should be
verifiable without requiring to trust any particuliar entity or entities.

Regarding privacy, we want that votes remain computationally secret in front
of the Tally Tellers: Tally Tellers would only be able to break privacy if a compu-
tational assumption is broken, or if enough of them are malicious (the threshold
can be arbitrarily chosen). Furthermore, we want that all the data published
on the Bulletin Board guarantee the perfect privacy of the votes: someone who
can only access the Bulletin Board should never be able to learn the votes,
independently of the falsification of any computational assumption.

3.1 Election Setup

Parameter generation. Given a security parameter n, generate public parameters
pp = (G1,G2,Gt, q, g1, h1, g2) and a key pair (pk, sk) = (h2, x) for the PPATS
encryption scheme. The key pair may be generated in a distributed or threshold



fashion by the Tally Tellers. We define the commitment key as cpk = (g1, h1),
taken from pp.

Initialization. Before the voting starts, a public bulletin board is initialized, the
public parameters and keys (pp, pk, cpk) are published there, together with the
inital budget of every voter b and the first election question.

We assume that b is a reasonably small value, e.g., b < 220, so that it will be
possible to run the PPATS decryption of sum of the payments made by all voters
in an election. If we have less than a million voters, then the total payment will
be less than 240. A discrete logarithm of this size can be extracted in less than
a second, e.g., using a baby-step giant-step algorithm. We define the bound for
our range proofs n = dlog be, that is, 20 in our example above.

Each voter publishes a commitment cb = Comcpk(b; rb) = gb1h
rb
1 on his budget

b together with a proof of validity of this commitment πb
op(cb), and saves the

opening rb.

3.2 Voting

Ballot preparation. A voter who wishes to submit a vote of value v computes
two ciphertexts c = (d, c1, c2) ← Encpk(v) and ĉ = (d̂, ĉ1, ĉ2) ← Encpk(v

2) and
proofs πva and π̂va of the validity of these ciphertexts.

The commitments d and d̂ derived from these ciphertexts and a proof πsq(d, d̂)
is computed in order to prove that the right payment is committed to. Eventually,
we need to make sure that v lies in a proper range, that is, in [−2n/2, 2n/2]. This

can be done by computing a proof π
n/2+1
r (dgn/2). Note that if only positive votes

are allowed the factor gn/2 is simply left out.
In the case of several vote questions we need to repeat this process for each

question.

Budget update. The voter then updates his budget as cb := cb/d̂, and also records
the updated opening rb := rb − r̂d, where r̂d is the random exponent that was
used to compute d̂ = gv

2

1 h
r̂d
1 .

He then produces a proof that this budget is still positive, which can be done
by computing a range proof π̂n

r (cb). For several vote questions we only need to
do this once after having updated the budget with the vote payments for each
question.

We may wonder why both proofs πr and π̂r are needed: the πb
op and π̂r proofs

show that the initial budget is less than 2n and that the payment v2 that is made
is less than b. However, the proof πsq only proves that v2 is a square of v in Zq.
As a result, v2 could actually be any quadratic residue modulo q, which opens
to many undesirable values thanks to modulo reduction. Showing in πr that v
is actually with the [−2n/2, 2n/2] range makes sure that no reduction happens
during the squaring.

Still, the square proof πsq conveniently handles the case of negative votes:
both roots of v2 are valid witnesses.



Ballot preparation audit. The ballot preparation system of the voters is expected
to provide a verification mechanism for this process. A traditional solution is to
use a so-called Benaloh challenge [4]: the ballot preparation system commits to
the voter on the value of these ciphertexts and proofs, e.g., by displaying a hash
of all these values. The voter can then decide to challenge the ballot preparation
system who then needs to release all the randomness that it used to prepare the
ballot, which allows verifying the commitment on an independent device.

Ballot submission When the voter finished to challenge his ballot preparation
device, he sends his vote (c, ĉ, πva, π̂va, πsq, πr, π̂r) to the Election Authority.

The Election Authority verifies πva and π̂va, then publishes the vote audit
data (DCom(c),DCom(ĉ), πsq, πr, π̂r) next to the name of the voter on the public
bulletin board. (Publishing the names makes it possible to verify who voted, e.g.,
by interrogating the voters, and removes the need to trust an Election Authority,
or any other entity, for voter authentication – even if such authentication can
remain useful to protect from ballot flooding).

The publication of DCom(ĉ) is accompanied by an update of the commitment
cb on the budget available for the voter, which is publicly recomputed as cb :=
cb/DCom(ĉ) and posted on the bulletin board.

3.3 Election Tally

Computing the election results The PPATs ciphertexts are homomorphically
additive. So, multiplying the first series of PPATS cipehertexts, i.e., the c’s
together and decrypting the result yields the sum of the votes.

This decryption process can be made publicly verifiable without any addi-
tional proof: the authorities just need to publish the opening on the product of
the d commitments of all voters: correctness follows from the binding property
of the commitment scheme.

Budget updates. The same homomorphic addition can be performed on the sec-
ond series of ciphertexts, i.e., the ĉ, which, after decryption, reveals the total
amount spent during the election. This amount is posted on the bulletin board,
together with an opening of the product of the d̂ commitments of the voters.

That amount can now be equally split among the voters as a sum bu per voter,
and all the budget commitments on the board are then updated as cb := cbg

bu
2 .

Voters can verify their updated budget, and keep making new proofs based on
it, as the update process does not change the randomness of cb, which the voter
knows.

3.4 Election Audit

The various steps of the protocol can be verified in the natural way.



Parameter generation and initialization. The auditor verifies that pp have been
produced according to the expected security parameter, and possibly verify the
process of the generation of h1 (in order to avoid the risks of a trapdoor).

The auditor also verifies that the right budget has been announced, and that
the budget commitments cb posted by the voters come with valid proofs πb

op.

Vote validity. The auditor then verifies the validity of the πsq and πr proofs
associated to each vote, and their uniqueness on the board. He verifies that each
vote is associated to a legitimate voter, and questions voters (whether they are
reported to have voted or not) to check that they agree with what is posted on
the bulletin board on their behalf.

Tally validity. The auditor then computes the product of the d and d̂ commit-
ments in all the valid votes, and verifies that the Tally Tellers published a result
and total election payments that is an opening of these commitment products.

Budget verification. The auditor recomputes the value of budget redistribution
bu and that all individual voter budgets have been updated accordingly.

3.5 Protocol efficiency

Most of the computational cost of our protocol lies in two steps: ballot prepara-
tion, and election tally. The setup cost (key generation, initial budget commit-
ment) is essentially negligible (unless a large number of Tally Tellers is chosen,
but we expect it to be more in the range of 3-5).

We make a rough estimate of these costs, focusing on the cost of the expo-
nentiations in G1 and G2, and on the cost of multiplications when they come in
a potentially large number compared to the exponentiations, that is, during the
tally. We neglect the cost of computing hashes and of the arithmetic in Zq in the
NIZK proofs, which is expected to be smaller by a level of magnitude compared
to the cost of the exponentiations that these proofs contain.

Our estimate gives an idea of the order of magnitude of the timings and
of the practicality of our protocol. The exact performance will strongly depend
on the actual arithmetic and cryptographic libraries that are used, and on the
computing platform that is chosen.

Our timings are based on the benchmark of the PandA library of Chuengsa-
tiansup et al. [9], and on the execution of the protocol on a single core of a
2012 Intel i5-3210M processor running at 2.5GHz. Their numbers are given in
number of CPU cycles, which we convert into time based on the processor clock
frequency.

Cost of ballot preparation. We consider a budget upper bound of 2n = 220 and a
single choice question (which is the typical application case of quadratic voting).
The operation count for the preparation of a ballot is available in Table 2. The
resulting timing, based on the performance in Table 1, is then less than 8.4ms.



G1 G2 GT
Fixed base exponentiation 51 µs 135 µs 244 µs
Single multiplication 2.4 µs 6.4 µs 3 µs

Table 1. Cost of the main group operations

G1 G2

c 1 3
ĉ 1 3
πva 2 3
π̂va 2 3
πsq 3 0
πr 2n + 1 0
π̂r 4n + 1 0
πop 1 0

Total: 6n+ 12 12

Table 2. Count of exponentiations for ballot preparation.

Cost of the election tally. The bulk of the cost of the election tally will come from
the verification of the validity of the individual ballots, which will be essentially
the same as the cost of producing all the NIZK proofs. The marginal cost per
ballot coming from the homomorphic addition of the votes and costs is indeed
negligible: 1 multiplication in G1 and 2 multiplications in G2, that is, around
15µs. The decryption operation has a cost that is constant and independent
of the number of voters and will then be negligible as soon as we have a few
thousand voters. The cost of the final discrete logarithm operation, needed to
obtain the actual number of votes and election budget, will be around

√
m2n

multiplications in GT using the baby-step giant-step algorithm in an election
with m ballots. If m = 220, we obtain a timing around 3 seconds.

4 Protocol analysis

We briefly discuss the security properties of the quadratic voting protocol pre-
sented in last section, their main assumptions and give arguments why the prop-
erties are satisfied.

4.1 Protocol correctness

The correctness of the protocol essentially follows from the additive homomor-
phic property of the PPATS encryption scheme and of Pedersen commitments.

As in traditional schemes based on homomorphic encryption, votes are en-
crypted, but now with their value that can be any integer (provided that the
corresponding payment can be made). Tally tellers homomorphically add these
votes and decrypt the election result.



The same happens with the encrypted quadratic payments. The balance of
each voter is then adjusted twice: once after submission of the vote, then after
redistribution of the election spendings.

4.2 Ballot privacy

The protocol offers computational privacy against the Election Authorities, pro-
vided that sufficiently many of them are honest (as defined by the threshold key
generation protocol). These authorities receive ballots that are encrypted with
a CPA secure encryption scheme, accompanied with various Σ-protocols that
prove, among other things, the knowledge of the vote content.

This combination of encryption and proof of knowledge has been shown
to lead to an NM-CPA non-malleable encryption scheme. This combination is
known to be sufficient to offer ballot privacy when duplicate ballots are re-
jected [5].

Note that the amount of information revealed on the bulletin board is also
very minimal, that is, we only reveal the total votes for each candidate/question
and the total budget amount spent in the election.

4.3 Perfectly private audit trail

The protocol offers a perfectly private audit trail, or everlasting privacy in front
of adversaries who can only access the election bulletin board. This follows from
the fact that the only information posted by voters on the board is perfectly
hiding commitments and perfect zero-knowledge proofs, and that the result of
the election is posted as a simple opening of a perfectly hiding commitment on
that result.

So, provided that the voters have access to good sources of randomness when
they prepare their vote, the content of the board is simply statistically indepen-
dent of each vote content.

Note that for usability, it might be better for the voters to hold only a single
long-term key that can generate openings to their budgets via a pseudorandom
generator, instead of having to update the key in each election. However, this
would endanger the everlasting privacy.

4.4 Verifiability

Cast-as-intended verifiability The Benaloh challenge allows the voter to verify
that the ballot preparation system prepares ciphertexts that match the voter
intent.

Recorded-as-cast verifiability The bulletin board, assumed honest, displays the
perfectly hiding part of the submitted ballot, which the voter can control to
be correct. If it is correct, then the voter is guaranteed that his vote cannot
be interpreted in an unexpected way, provided that the commitment scheme’s
binding property is not broken.



The Election Authorities are prevented from claiming that the vote is actually
invalid due to an issue in the non-published part, because they are required to
verify that validity (thanks to the corresponding πva proofs) before publishing a
ballot on the board. (Of course, authorities could also reject a valid ballot and
not publish it, arguing that the voter transmitted it incorrectly. But this is the
case of any verifiable remote voting scheme: the voter can only know that his
vote will be taken into account after his vote is included on the bulletin board.)

Eligibility verifiability The bulletin board includes the name of every voter next
to the ballot that it submitted. This is enough for an auditor to interrogate the
voters, ask them whether they submitted a ballot or not and, if they did, ask
them if it is accurately displayed on the bulletin board.

This mechanism protects form malicious authentication authorities who would
submit votes on behalf of potential voters who would not pay attention to the
election. The use of an authentication mechanism of course remains important
in order to avoid that voters submit arbitrary ballots on behalf of arbitrary vot-
ers, which would simply result in declaring the election invalid as soon as it is
observed.

Actually the eligibility verifiability is also strengthened by the extra budget
structure compared to ordinary PPAT voting schemes. In order to vote, and pay
for your vote, you need to hold an opening to your budget commitment. If a
voter has already voted in an earlier election, this prevents ballot stuffing on
their behalf. As an example, if the adversary somehow knows a voter will not
be paying attention to the bulletin board e.g. being without internet connection
for some time, then the adversary cannot abuse this and vote on his behalf. For
first time voters we can, however, not give such guarantees.

Budget verifiability The cb commitments and πb
op proofs make it possible for

anyone to observe that every voter received his correct initial budget.
The update of the voter budget is publicly performed, using the spending

amount DCom(ĉ) committed to as part of the ballot. The proof π̂r makes it
possible to verify that the spending is within the correct range, and the proof
πr ensures that the actually paid amount is the square value of the vote, seen as
integers, as mentioned in last section.

Tallied-as-recorded verifiability After verification of the ballots that need to be
included in the tally, any auditor can multiply the vote commitments DCom(c)
together and obtain a commitment on the election result. The Tally Tellers
are able to open that commitment thanks to the openings that they received
for each individual vote. The finding of any different opening would break the
computational binding property of the commitment scheme, which relies on the
DDH assumption.

Budget update verifiability The opening of the total spendings in an election can
be verified just as the vote tally. From this, the voter refund can be recomputed,
and the updated commitments of every voter budget cb can also be recomputed.



5 Conclusion and Outlook

In this paper we have presented an efficient protocol for electronic quadratic
voting with everlasting privacy and end-to-end verifiability. The protocol uses
perfectly hiding commitments for both vote choices and budgets to create a
perfectly private audit trail. The constructions also facilitates easy threshold
sharing of the secret election. In total, we have improved many aspects of the
earlier protocol suggested in [17].

As it stands we don’t allow transfer between different voters’ budgets. This
could easily be changed, but we think that both the everlasting privacy, universal
verifiability and non-coupling to real currencies is an advantage over solutions
using anonymous cryptocurrencies such as Zerocash. Note that allowing budget
transfers also opens up to strategic voting since it would be more favorable to
have equal-sized budgets when voting [17].

An improvement of the scheme would be to achieve receipt-freeness. In the
present scheme, the commitments and corresponding openings could be used
directly to prove to a vote-buyer that you voted according to his instructions.
It is an important piece of future work to improve on this situation. If we allow
budget transfers, it would maybe also impede strategic voting since you cannot
get proof that the budget you give away will be used according to your prefer-
ence. Note that whereas the receipt-freeness of the vote choice can follow similar
ideas in other e-voting schemes, the budget is less straight-forward since in our
construction we hold a key to unlock the budget. This might be less important
for vote-buying resistance, but for coercion-resistance it is seems desirable to
hide the budget from the coercer.
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