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Abstract. We consider the problem of securely computing the kth-
ranked element in a sequence of n private integers distributed among n
parties. The kth-ranked element (e.g., minimum, maximum, median) is
of particular interest in collaborative benchmarking and auctions. Previ-
ous secure protocols for the kth-ranked element require a communication
channel between each pair of parties. A server model naturally fits with
the client-server architecture of Internet applications in which clients
are connected to the server and not to other clients. It simplifies secure
computation by reducing the number of rounds and improves its perfor-
mance and scalability. In this paper, we propose different approaches for
privately computing the kth-ranked element in the server model, using ei-
ther garbled circuits or threshold homomorphic encryption. Our schemes
have a constant number of rounds and can compute the kth-ranked ele-
ment within seconds for up to 50 clients in a WAN.
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1 Introduction

Given n parties each holding a private integer, we consider the problem of se-
curely computing the kth-ranked element (KRE) of these n integers. This is a
secure multiparty computation (SMC) where several parties wish to compute a
function on their private input while revealing only the output of the compu-
tation. The computation of the kth-ranked element is of particular interest in
settings such as collaborative benchmarking and auctions, where the individual
inputs are sensitive, yet the KRE is of mutual interest to all parties [1, 22].
Benchmarking. A key performance indicator (KPI) is a statistical quantity
measuring the performance of a business process. Benchmarking is a manage-
ment process where a company compares its KPI to the statistics of the same
KPIs of a group of competitors from a peer group. A peer group is a group of
similar companies, usually competitors, wanting to compare against each other.
Confidentiality. Confidentiality is of the utmost importance in benchmarking,
since KPIs allow the inference of sensitive information. Companies are therefore



hesitant to share their business performance data due to the risk of losing a
competitive advantage [22]. The confidentiality issue can be addressed using
SMC [3,16,32], which guarantees that no party will learn more than the output
of the protocol, i.e., the other parties’ inputs remain confidential.
Communication Model. Generic SMC protocols [1, 3, 16, 32] can be used to
keep KPIs confidential. They require a communication channel between each
pair of parties. We will refer to this approach as the standard model. Protocols
in this model do not scale easily to a large number of parties as they are highly
interactive, resulting in high latency. Moreover, they are difficult to deploy as
special arrangements are required between each pair of parties to establish a
secure connection [10]. A promising approach for overcoming these limitations
is to use the help of a small set of untrusted non-colluding servers. We will
therefore refer to it as the server model. Relying on multiple non-colluding servers
requires a different business model for providers of a privacy-preserving service
[23]. We therefore use a communication model consisting of clients (with private
inputs) and a server. In this model, the server provides no input and does not
learn the output, but makes its computational resources available to the clients
[20, 22]. There are communication channels only between each client and the
server resulting in a centralized communication pattern, i.e., a star network. This
model naturally fits with the client-server architecture of Internet applications
and allows a service provider to play the server’s role. It simplifies the secure
protocol, and improves its performance and scalability [10,20].

Symbol Interpretation

µ Bitlength of inputs
n Number of clients
t Secret sharing threshold, t ≤ n
κ Bitlength of asymmetric ciphertext
λ Security parameter

x1, . . . , xn Client’s inputs
xbi = xiµ . . . xi1 Bit representation of xi with MSB xiµ

∣y∣ Bitlength of integer y, e.g., ∣xi∣ = µ
⟦xi⟧ xi’s ciphertext under public key pk
⟦xi⟧j xi’s ciphertext under public key pkj
⟦xbi⟧ Bitwise encryption (⟦xiµ⟧, . . . , ⟦xi1⟧)

i
$
← S Choose a random element i in set S

{i1, . . . , it}
$
← S Choose t random distinct elements in S

Sn Set of all permutations of {1, . . . , n}

(a) Notations.

#Rounds CR FT
Kre-Ygc 4 n − 1 ∣ 0 0
Kre-Ahe 4 t − 1 ∣ t n − t

Kre-She 2 t − 1 ∣ t n − t

[1] O(µ) t − 1 ∣ n/a n − t

(b) Schemes’ properties: Column
“#Rounds” is the number of rounds.
Column “CR” refers to the number
of parties that can collude - server
excluded | server included - without
breaking the privacy of non-colluding
clients. Column “FT” refers to the
number of parties that can fail without
preventing the protocol to properly
compute the intended functionality.

Table 1: Notations and Schemes’ properties

Contribution. In summary, we propose different approaches for securely com-
puting the kth-ranked element (KRE) in a star network using garbled circuits
(GC) or additive homomorphic encryption (AHE) or somewhat homomorphic
encryption (SHE). Our schemes are secure against a semi-honest adversary:
– Our first scheme Kre-Ygc uses Yao’s GC [2,28] to compare clients’ inputs.



Kre-Ygc Kre-Ahe Kre-She [1]

sym. asym.

CC-C O(nµ) O(n) O(nµ) O(µ) O(nµ2
)

CC-S O(n2µ) O(n logn) O(n2µ) O(n2µ logµ) n/a

BC-C O(nµλ) O(nκ) O(nµκ) O((µ + n)κ) O(nµ2λ)

BC-S 0 O(n2κ) O(n2µκ) O(nκ) n/a

Table 2: Schemes’ Complexity:
Rows CC-C/S and BC-C/S denote
the computation and communication
(bit) complexity for each client and
the server, respectively. The columns
“sym.” and “asym.” denote symmet-
ric and asymmetric operations in
Kre-Ygc.

– Our second scheme Kre-Ahe is based on threshold AHE. We perform the
comparison using the DGK protocol [12]. We also propose a modified variant
of the Lin-Tzeng comparison protocol [27] that can be used instead of DGK,
and that is faster at the cost of a small increase of the communication cost.

– The third scheme Kre-She is based on SHE and allows the server to non-
interactively compute the KRE such that the clients only interact to jointly
decrypt the result.

We compare the approaches in Tables 1b and 2 using the following measures:
– Rounds: In contrast to [1], our schemes have a constant number of rounds.
– Collusion-resistance: measures the number of parties that can collude with-

out violating the privacy of the non-colluding ones.
– Fault-tolerance: measures the number of parties that can fail without pre-

venting the protocol to properly compute the intended functionality.
– Complexity: This refers to the computation and communication complex-

ity. A summary is illustrated in Table 2. We provide a detailed analysis in
Appendix E.

Structure. The remainder of the paper is structured as follows. We begin by
presenting related work in Section 2 and some preliminaries in Section 3. We
present our security model in Section 4 and a technical overview in Section
5. The different approaches are presented in Sections 6 to 8. We discuss some
implementation details and evaluation results in Section 9, before concluding our
work in Section 10. We provide further details in the appendix.

2 Related Work

Our work is related to SMC. There are generic SMC protocols [13, 21] that
can be used to compute the kth-ranked element (KRE) of the union of n private
datasets. Aggarwal et al. [1] introduced the first specialized protocol for the KRE.
Their multiparty protocol performs a binary search in the input domain resulting
in O(µ) comparisons and, hence, requiring O(µ) sequential rounds. Each round
requires an SMC that performs two summations with complexity O(nµ) and
two comparisons with complexity O(µ). As a result each client performs O(nµ2)
operations and sends O(nµ2) bits. Our protocols perform O(n2) comparisons,
that can be executed in parallel, and have either 4 or 2 rounds. We stress that all
our O(n2) comparisons can be executed in parallel while the O(µ) comparisons
of Aggarwal et al. must be executed sequentially one per round. In our 4-round
schemes each client is involved in only O(n) comparisons while each comparison
in [1] involves all n clients. As a result, a client in our 4-round schemes has a
complexity of O(n) per round but must execute only 4 rounds, while a client in



[1] has a complexity of O(n) per round as well but must execute up to µ rounds.
In the 2-round scheme, all O(n2) comparisons are performed non-interactively
by the server which in our model is allowed to be computationally more powerful.
Our communication model allows to reduce the number of rounds from µ to 4
or 2. We note that µ = 32 in our experiments for the 4-rounds schemes and
µ = 16 for the 2-round scheme. A summary of the complexity of our schemes is
illustrated in Table 2.

The server model for SMC was introduced in [15], used in Kerschbaum [23],
and cryptographic studied in [20]. The computation of the kth-ranked element
is also addressed in [4, 5] where the server is replaced by a blockchain.

3 Preliminaries

Garbled Circuit (GC). A GC [2, 14, 28, 33] can be used for secure 2-party
computation. To evaluate a function f on input xi, xj , a garbling scheme (F, e)←
Gb(1λ, s, f) takes a security parameter λ, a random seed s, a Boolean encoding
of f and outputs a GC F and an encoding string e that is used to derive garbled
inputs x̄i, x̄j from xi, xj , i.e. there is a function En such that x̄i ← En(e, xi) and
x̄j ← En(e, xj). The garbling scheme is correct if F (x̄i, x̄j) = f(xi, xj).
Homomorphic Encryption (HE). A HE consists of the usual algorithms
for key generation (pk, sk) ← KeyGen(λ), encryption Enc(pk,m) (we denote
Enc(pk,m) by ⟦m⟧), decryption Dec(sk, c). HE has an additional evaluation al-
gorithm Eval(pk, f, c1, . . . , cn) that takes pk, an n-ary function f and ciphertexts
c1, . . . cn. It outputs a ciphertext c such that if ci = ⟦mi⟧ then it holds:

Dec(sk,Eval(ek, f, ⟦m1⟧, . . . , ⟦mn⟧)) =Dec(sk, ⟦f(m1, . . . ,mn)⟧).

We require HE to be IND-CPA secure. If the scheme supports only addition,
then it is additively homomorphic. Schemes such as [24,30] are additively homo-
morphic and have the following properties:
– Add/Multiply: ∀m1,m2, ⟦m1⟧ ⋅ ⟦m2⟧ = ⟦m1 +m2⟧, and ⟦m1⟧m2 = ⟦m1 ⋅m2⟧,
– Xor: ∀a, b ∈ {0,1},Xor(⟦a⟧, b) = ⟦a⊕ b⟧ = ⟦1⟧b ⋅ ⟦a⟧(−1)b .

Threshold Homomorphic Encryption (THE) A THE [6] allows to share
the private key to the parties using a threshold secret sharing scheme such that a
subset of parties is required for decryption. Hence, instead of sk as above, the key
generation outputs a set of shares SK = {sks1, . . . , sksn} which are distributed
to the clients. The decryption algorithm is replaced by the following algorithms:
– m̃i ← Decp(sksi, c): The probabilistic partial decryption algorithm takes a

ciphertext c and a share sksi ∈ SK of the private key and outputs m̃i.
– m′ ←Decf(Mt): The deterministic final decryption algorithm takes a subset

Mt = {m̃j1 , . . . , m̃jt} ⊆ {m̃1, . . . , m̃n} of shares and outputs a message m′.
We refer to it as threshold decryption. It is correct if for all Mt = {m̃j1 , . . . , m̃jt}
such that ∣Mt∣ ≥ t and m̃ji =Decp(sksji , ⟦m⟧), it holds m =Decf(Mt).
When used in a protocol, we denote by combiner the party which executes
Decf(). It receives a set Mt = {m̃j1 , . . . , m̃jt} of partial decryption, runs m′ ←
Decf(Mt) and moves to the next step of the protocol specification.



4 Security Definition

This section provides definitions related to our model and security requirements.
We start by defining the kth-ranked element of a sequence of integers.

Definition 1. Let X = {x1, ..., xn} be a set of n distinct integers and x̃1, . . . , x̃n
be the corresponding sorted set, i.e., x̃1 < . . . < x̃n, and X = {x̃1, . . . , x̃n}. The
rank of an element xi ∈ X is j, such that xi = x̃j. The kth-ranked element (KRE)
is the element x̃k with rank k.

If the rank is k = ⌈n
2
⌉ then the element is called median. If k = 1 (resp. k = n)

then the element is called minimum (resp. maximum).

Definition 2. Let C1, . . . ,Cn be n clients each holding a private µ-bit integer
x1, . . . , xn and S be a server which has no input. Our ideal functionality FKRE

receives x1, . . . , xn from the clients, computes the KRE x̃k and outputs x̃k to
each client Ci. Moreover, FKRE outputs a leakage Li to each Ci and LS to S.

The leakage is specific to each protocol and contains information such as n, t, λ,
κ, µ (see Table 1a). It can be inferred from the party’s view. In case of collusion,
additional leakage might include comparison results or the rank of some inputs.

Definition 3. The view of the i-th party during an execution of the protocol on
input x⃗ = (x1, . . . , xn) is denoted by: Viewi(x⃗) = {xi, ri,mi1,mi2, . . .}, where ri
represents the outcome of the i-th party’s internal coin tosses, and mij represents
the j-th message it has received.

Since the server has no input, xi in its view will be replaced by the empty string.
We say that two distributions D1 and D2 are computationally indistinguishable
(denoted D1

c≡ D1) if no probabilistic polynomial time (PPT) algorithm can
distinguish them except with negligible probability. In this paper, we assume a
semi-honest adversary. That is, parties follow the protocol, but the adversary
tries to infer as much information as possible.

Definition 4. Let FKRE ∶ ({0,1}µ)n ↦ {0,1}µ be the functionality that takes n
µ-bit inputs x1, . . . , xn and returns their KRE. Let I = {i1, . . . , it} ⊂ {1, . . . , n+1}
be a subset of indexes of corrupted parties (Server’s input xn+1 is empty), x⃗ =
(x1, . . . , xn) and ViewI(x⃗) = (I,Viewi1(x⃗), . . . ,Viewit(x⃗)). A protocol t-privately
computes FKRE in the semi-honest model if there exists a PPT simulator SIM

such that: ∀I, ∣I ∣ = t, LI = ⋃i∈I Li: SIM(I, (xi1 , . . . , xit),FKRE(x⃗),LI)
c≡ ViewI(x⃗).

5 Technical Overview

In an initialization phase, clients generate and exchange cryptographic keys
through the server, i.e., using the help of a non-colluding trusted third party.
We stress that the initialization is run once and its complexity does not depend
on the functionality FKRE. We therefore focus on the actual computations.



Definition 5. Let xi, xj ,1 ≤ i, j,≤ n, be integer inputs of Ci,Cj. Then the com-
parison bit bij of the pair (xi, xj) is defined as 1 if xi ≥ xj and 0 otherwise. The
computation of xi ≥ xj is distributed and involves Ci,Cj, where they play differ-
ent roles, e.g., generator and evaluator. Similar to the functional programming
notation of an ordered pair, we use head and tail to denote Ci and Cj.

Lemma 1. Let x1, . . . , xn be n distinct integers, r1, . . . , rn ∈ {1, . . . , n} their
respective ranks and bij the comparison bit for (xi, xj). It holds ri = ∑nj=1 bij .

To make sure that inputs are indeed distinct before the protocol, one can
use the indexes of each Ci as differentiator [1]. Each Ci appends the logn-bit
string of i at the end of the bit string of xi, resulting in a new input of length
µ+ logn. Note that, the extended input will be used only for input comparison,
to avoid leaking the index of the winning client. For simplicity, we assume in the
remainder of the paper, that the xi’s are all distinct µ-bit integers. Therefore, it
is not necessary to compare all pairs (xi, xj), since bji = 1 − bij .

We would like to equally distribute the computation tasks among the clients.
As example for n = 3, we need to compute only 3 (instead of 9) comparisons
resulting in three head roles and three tail roles. Then we would like each of the
three clients to play the role head as well as tail exactly once. We use Definition
6 and Lemma 2 to equally distribute the roles head and tail between clients.

Definition 6. Let X = {x1, . . . , xn} be a set of n integers. We define the predicate
Paired as follows

Paired(i, j) ∶= (i ≡ 1 (mod 2) ∧ i > j ∧ j ≡ 1 (mod 2)) ∨ (1a)
(i ≡ 1 (mod 2) ∧ i < j ∧ j ≡ 0 (mod 2)) ∨ (1b)
(i ≡ 0 (mod 2) ∧ i > j ∧ j ≡ 0 (mod 2)) ∨ (1c)
(i ≡ 0 (mod 2) ∧ i < j ∧ j ≡ 1 (mod 2)). (1d)

Lemma 2. Let X = {x1, . . . , xn} be a set of n integers and the predicate Paired
be as above. Then comparing only pairs (xi, xj) such that Paired(i, j) = true is
enough to compute the rank of all elements in X.

For example, if n = 3, we compute bij only for (x1, x2), (x2, x3), (x3, x1). If
n = 4, we compare only (x1, x2), (x1, x4), (x2, x3), (x3, x1), (x3, x4), (x4, x2).

The predicate Paired (Equation 1) is used in our schemes to reduce the num-
ber of comparisons and to equally distribute the computation task of the compar-
isons among the clients. As pointed out by an anonymous reviewer, Paired can
be simplified as: (i > j ∧ i ≡ j (mod 2)) ∨ (i < j ∧ i /≡ j (mod 2)).

Let #headi (resp. #taili) denote the number of times Paired(i, j) = true
(resp. Paired(j, i) = true) holds. For example, if n = 3, we have #headi =
#taili = 1 for all clients. However, for n = 4, we have #head1 = #head3 = 2,
#tail1 = #tail3 = 1, #head2 = #head4 = 1 and #tail2 = #tail4 = 2.



Lemma 3. Let X = {x1, . . . , xn} ⊂ N and assume the predicate Paired is used
to sort X. If n is odd then: #headi = #taili = n−1

2
. If n is even then:

#headi =
⎧⎪⎪⎨⎪⎪⎩

n
2

if i odd
n
2
− 1 if i even

#taili =
⎧⎪⎪⎨⎪⎪⎩

n
2
− 1 if i odd

n
2

if i even.

6 Protocol Kre-Ygc

Kre-Ygc is based on GC and consists of an initialization and a main part. It
does not tolerate collision with the server. An AHE ciphertext is denoted by ⟦⋅⟧.

6.1 Kre-Ygc Initialization

The initialization consists of public key distribution and Diffie-Hellman (DH)
key agreement. Each client Ci sends its public key pki of an AHE to the server
S. Then S distributes the pki to all Ci. In our implementation, we use Paillier’s
scheme [30] , but any AHE scheme such as [24] will work. Then each pair (Ci,Cj)
of clients runs DH key exchange through the server to generate a common secret
key ckij = ckji. The key ckij is used by Ci and Cj to seed the pseudorandom
number generator of the garbling scheme that is used to generate a comparison
GC for xi and xj , i.e. Gb(1λ, ckij , f>), where f> is a Boolean comparison circuit.
For comparison GC, we will use the schemes of Kolesnikov et al. [25, 26].

6.2 Kre-Ygc Main Protocol

Protocol 1 is a 4-round protocol in which we use GC to compare inputs and to
reveal a blinded comparison bit to the server. Then we use AHE to unblind the
comparison bits, compute the ranks and the KRE without revealing anything
to the parties. Let f> be defined as: f>((ai, xi), (aj , xj)) = ai ⊕ aj ⊕ bij , where
ai, aj ∈ {0,1}, i.e., f> computes bij = [xi > xj] and blinds the bits bij with ai, aj .
Comparing Inputs. For each pair (xi, xj), if Paired(i, j) = true the parties
do the following:
– Ci chooses a masking bit aiji

$← {0,1} and extends its input to (aiji , xi).
Then using the common key ckij , it computes (F ij> , e) ← Gb(1λ, ckij , f>)
and (āiji , x̄

ij
i )← En(e, (aiji , xi)), and sends F ij> , (āiji , x̄

ij
i ) to S.

– Cj chooses a masking bit aijj
$← {0,1} and extends its input xj to (aijj , xj).

Then using the common key ckji = ckij , it computes (F ij> , e)← Gb(1λ, ckji, f>)
and (āijj , x̄

ij
j )← En(e, (aijj , xj)), and sends only (āijj , x̄

ij
j ) to S.

– We have b′ij ← F ij> ((āiji , x̄
ij
i ), (āijj , x̄

ij
j )) = aiji ⊕ aijj ⊕ bij (i.e. bij is hidden to

S). The server then evaluates all GCs (Steps 1 to 5).
Unblinding Comparison Bits. Using AHE, the parties unblind each b′ij =
aiji ⊕a

ij
j ⊕ bij , where a

ij
i is known to Ci and aijj is known to Cj , without learning

anything. As a result ⟦bij⟧i and ⟦bij⟧j are revealed to S encrypted under pki and
pkj . This is illustrated in Steps 6 to 16 and works as follows:



– S sends b′ij to Ci and Cj . They reply with ⟦aijj ⊕ bij⟧i and ⟦aiji ⊕ bij⟧j .
– S forwards ⟦aiji ⊕ bij⟧j , ⟦aijj ⊕ bij⟧i to Ci, Cj . They reply with ⟦bij⟧j , ⟦bij⟧i.
– S sets ⟦bji⟧j = ⟦1 − bij⟧j .

Computing the Rank. The computation of the rank is done at the server by
homomorphically adding comparison bits. Hence for each i, the server computes
⟦ri⟧i = ⟦∑nj=1 bij⟧i. Then, it chooses a random number αi and computes ⟦βi⟧i =
⟦(ri − k) ⋅αi⟧i (Steps 17 to 19). The ciphertext ⟦βi⟧i encrypts 0 if ri = k (i.e., xi
is the kth-ranked element) otherwise it encrypts a random plaintext.
Computing the KRE’s Ciphertext. Each client Ci receives ⟦βi⟧i encrypted
under its public key pki and decrypts it. Then if βi = 0, Ci sets mi = xi other-
wise mi = 0. Finally, Ci encrypts mi under each client’s public key and sends
⟦mi⟧1, . . . , ⟦mi⟧n to the server (Steps 20 to 22).
Revealing the KRE’s Ciphertext. In the final steps (Steps 23 to 24), the
server adds all ⟦mj⟧i encrypted under pki and reveals ⟦∑nj=1mj⟧i to Ci.

Kre-Ygc protocol correctly computes the KRE. The proof follows from the
correctness of the GC protocol, Lemmas 1 and 2 and the correctness of the AHE
scheme. Kre-Ygc is not fault-tolerant and a collusion with the server reveals
all inputs to the adversary. In the next section, we address this using threshold
HE. We stress that using threshold HE in Kre-Ygc is not enough as the server
has all GCs and each client can decode all GCs involving its input.

Protocol 1: Kre-Ygc Protocol

1: for i ∶= 1, j ∶= i + 1 to n do
2: if Paired(i, j) then
3: Ci → S: F ij> , (āiji , x̄

ij
i )

4: Cj → S: (āijj , x̄
ij
j )

5: S: let b′ij ← F ij> (x̄iji , x̄
ij
j )

6: for i ∶= 1, j ∶= i + 1 to n do
7: if Paired(i, j) then
8: S → Ci: b′ij = aiji ⊕ aijj ⊕ bij
9: S → Cj : b′ij = aiji ⊕ aijj ⊕ bij
10: Ci → S: ⟦aijj ⊕ bij⟧i
11: Cj → S: ⟦aiji ⊕ bij⟧j
12: S → Ci: ⟦aiji ⊕ bij⟧j
13: S → Cj : ⟦aijj ⊕ bij⟧i

14: Ci → S: ⟦bij⟧j
15: Cj → S: ⟦bij⟧i
16: S: let ⟦bji⟧j ← ⟦1 − bij⟧j
17: for i ∶= 1 to n do
18: S ∶ ⟦ri⟧i ← ⟦∑nj=1 bij⟧i ▷ bii = 1
19: S → Ci: ⟦βi⟧i ← ⟦(ri − k) ⋅ αi⟧i, for a

random αi
20: for i ∶= 1 to n do

21: Ci: mi ∶=
⎧⎪⎪⎨⎪⎪⎩

xi if βi = 0

0 if βi ≠ 0

22: Ci → S: ⟦mi⟧1, . . . , ⟦mi⟧n
23: for i ∶= 1 to n do
24: S → Ci: ⟦∑nj=1mj⟧i

7 Protocol Kre-Ahe

In this section, we describe Kre-Ahe (Protocol 4) which instantiates the com-
parison with DGK [12]. We start by describing the initialization.

7.1 Kre-Ahe Initialization

We assume threshold key generation. Hence, there is a public/private key pair
(pk, sk) for an AHE, where sk is split in n shares sks1, . . . , sksn such that



client Ci gets share sksi and at least t shares are required to reconstruct sk.
Additionally, each Ci has its own AHE key pair (pki, ski) and publishes pki. We
denote by ⟦xi⟧, ⟦xi⟧j encryptions of xi under pk, pkj respectively (Table 1a).

7.2 DGK Comparison Protocol

We briefly reviewing DGK [12]. To determine whether xi ≤ xj or xi > xj , one
computes for each 1 ≤ u ≤ µ the following numbers zu: zu = s + xiu − xju +
3∑µv=u+1(xiv ⊕xjv). Let (pki, ski) be the key pair of Ci. Client Ci will be called
Generator and Cj Evaluator. Privately evaluating xi ≥ xj works as follows:
– Ci sends ⟦xiµ⟧i, . . . , ⟦xi1⟧i (encrypted under pki) to client Cj .
– Cj chooses a random bit δji, sets s = 1 − 2 ⋅ δji, computes ⟦zu⟧i as defined

above, sends (⟦zµ⟧i, . . . , ⟦z1⟧i) to Ci in a random order and outputs δji.
– If one ⟦zu⟧i decrypts to 0 then Ci sets δij = 1 else δij = 0. Ci outputs δij .

In our server model, clients run the protocol through the server such that after
the computation the server learns ⟦δij ⊕ δji⟧ encrypted under pk. That is, Cj
sends ⟦ziµ⟧i, . . . , ⟦zi1⟧i, ⟦δji⟧ to Ci via the server, where each ⟦ziu⟧i is encrypted
under pki and ⟦δji⟧ is encrypted under pk. Client Ci computes the shared bit
δij and sends back ⟦δij ⊕ δji⟧ to the server. In DGK, clients Ci and Cj perform
respectively O(µ) and O(6µ) asymmetric operations. We will denote a call to
the DGK comparison between Ci,Cj as DgkCompare(i, j).

7.3 Modified Lin-Tzeng Comparison Protocol

We now describe our modified version of the Lin-Tzeng comparison protocol [27],
which can be used instead of DGK. It is faster at the cost of sending µ more
ciphertexts for each comparison. The main idea of Lin and Tzeng’s scheme is to
reduce the greater-than comparison to the set intersection of prefixes.

Input Encoding. Let Int(yη⋯y1) = y be a function that takes a bit string of
length η and parses it into the η−bit integer y = ∑ηl=1 yl ⋅ 2l−1. The 0-encoding
V 0
xi and 1-encoding V 1

xi of an integer input xi are the following vectors: V 0
xi =

(viµ,⋯, vi1), V 1
xi = (uiµ,⋯, ui1), such that for each l, (1 ≤ l ≤ µ)

vil =
⎧⎪⎪⎨⎪⎪⎩

Int(xiµxiµ−1⋯xil′1) if xil = 0

r
(0)
il if xil = 1

uil =
⎧⎪⎪⎨⎪⎪⎩

Int(xiµxiµ−1⋯xil) if xil = 1

r
(1)
il if xil = 0,

where l′ = l + 1, r(0)il , r(1)il are random numbers of a fixed bitlength ν > µ (e.g.
2µ ≤ r(0)il , r

(1)
il < 2µ+1) with LSB(r(0)il ) = 0 and LSB(r(1)il ) = 1 (LSB is the least

significant bit). If the Int function is used the compute the element at position
l, then we call it a proper encoded element otherwise we call it a random encoded
element. Note that a random encoded element r(1)il at position l in the 1-encoding
of xi is chosen such that it is guaranteed to be different to a proper or random
encoded element at position l in the 0-encoding of xj , and vice versa. Hence,
it is enough if r(1)il and r

(0)
il are just one or two bits longer than any possible



proper encoded element at position l. Also note that the bitstring xiµxiµ−1⋯xil
is interpreted by the function Int as the bitstring yµ−l+1⋯y1 with length µ− l+1
where y1 = xil, y2 = xi(l+1), . . . , yµ−l+1 = xiµ. If we see V 0

xi , V
1
xj as sets, then xi > xj

iff they have exactly one common element.

Lemma 4. Let xi and xj be two integers, then xi > xj iff V = V 1
xi − V

0
xj has a

unique position with 0.

The Protocol. Let ⟦V 0
xi⟧i = (⟦viµ⟧i, . . . , ⟦vi1⟧i), ⟦V 1

xi⟧i = (⟦uiµ⟧i, . . . , ⟦ui1⟧i)
denote encryption of V 0

xi and V
1
xi . Let ⟦V

1
xi−V

0
xj⟧i = (⟦uiµ−vjµ⟧i, . . . , ⟦ui1−vj1⟧i).

Client Ci sends ⟦V 0
xi⟧i, ⟦V

1
xi⟧i to Cj via the server. Client Cj randomly chooses

between evaluating either ⟦V 1
xi −V

0
xj⟧i or ⟦V 1

xj −V
0
xi⟧i and sets δji ← 0 or δji ← 1

accordingly. Then it randomizes each ciphertext and sends them back to Ci in a
random order. If one of these ciphertexts decrypts to 0, Ci sets δij = 1 else δij = 0.
This is clearly faster than DGK at the cost of increasing the communication (µ
more ciphertexts are sent to Cj). Due to place constraint, we discuss in Appendix
A the difference of our modification to the original protocol [27].

7.4 Kre-Ahe Main Protocol

Kre-Ahe is a 4-round protocol in which inputs are compared interactively using
DGK. The comparison bits are encrypted under pk and revealed to the server
which then computes the ranks of the xi’s and triggers a threshold decryption.
Uploading Ciphertext. Each Ci sends ⟦xi⟧ (encrypted under pk) and ⟦xbi⟧i =
(⟦xiµ⟧i, . . . , ⟦xi1⟧i) (encrypted under its own public key pki) to the server. This
is illustrated in Step 2 of protocol 4. The server then initializes a matrix G =
[g11, . . . , gnn], where gii = ⟦1⟧ and gij(i ≠ j) will be computed using DGK as
gij = ⟦bij⟧ if Paired(i, j) is true, and an array X = [⟦x1⟧, . . . , ⟦xn⟧] (Step 3).
Comparing Inputs. In this step, pairs of clients run DgkCompare with the
server as explained above. If (i, j) satisfies the predicate Paired, then Ci runs
DGK as generator and Cj is the evaluator. After the computation, Ci and Cj
get shares δij and δji of the comparison bit and the server gets ⟦bij⟧ = ⟦δij ⊕ δji⟧
which is encrypted under pk (the server cannot decrypt ⟦bij⟧).
Computing the KRE’s Ciphertext. After all admissible comparisons have
been computed (and the result stored in the matrix G), the server uses Algorithm
2 to compute the rank of each input xi, i.e., ⟦ri⟧ = ⟦∑nj=1 bij⟧. Now, the server
has the encrypted ranks ⟦r1⟧, . . . , ⟦rn⟧, where exactly one ⟦ri⟧ encrypts k. Since
we are looking for the element whose rank is k, the server then computes yi =
(⟦ri⟧ ⋅ ⟦k⟧−1)αi ⋅ ⟦xi⟧ = ⟦(ri − k)αi + xi⟧ for all i, where αi is a number chosen
randomly in the plaintext space. Therefore, for the ciphertext ⟦ri⟧ encrypting k,
yi is equal to ⟦xi⟧. Otherwise yi encrypts a random plaintext.
Decrypting the KRE’s Ciphertext. In Step 12, the server distributes the
result Y = [y1, . . . , yn] of Algorithm 2 to the clients for threshold decryption. For
that, the array Y is passed as n × 1 matrix to Algorithm 3.

Lemma 5 shows that the ciphertexts generated from Algorithm 3 allow to
correctly decrypt Y = [y1, . . . , yn]. The first part shows that each Ci receives a



Algorithm2: Computing the KRE’s ciphertext in Kre-Ahe

1: function ComputeKreAhe(G,X,k)
2: parse G as [g11, . . . , gnn]
3: parse X as [⟦x1⟧, . . . , ⟦xn⟧]
4: for i ∶= 1 to n do
5: ⟦ri⟧← gii
6: for j ∶= 1 to n (j ≠ i) do
7: if Paired(i, j) then

8: ⟦ri⟧← ⟦ri⟧ ⋅ gij
9: else
10: ⟦ri⟧← ⟦ri⟧ ⋅ ⟦1⟧ ⋅ g−1ji
11: for i ∶= 1 to n do
12: yi ← (⟦ri⟧ ⋅ ⟦k⟧−1)αi ⋅ ⟦xi⟧
13: return [y1, . . . , yn]

Algorithm3: Decryption Request in Kre-Ahe

1: function DecReq(Y, i, t, π)
2: parse Y as [y1, . . . , yn]
3: let Z(i) = [z(i)1 , . . . , z

(i)
t ]

4: for j ∶= 1 to t do
5: u← i − t + j mod n
6: if u ≤ 0 then

7: u← u + n ▷ 1 ≤ u ≤ n
8: I(i) = I(i) ∪ {u}
9: v ← π(u)
10: z

(i)
j = y′v

11: return (Z(i), I(i))

subset of t elements of Y . The second part shows that each yi is distributed to
exactly t different Ci which allows a correct threshold decryption of each row.

Lemma 5. Let X = {x1, . . . , xn} be a set of n elements, Xi = {xi−t+1, . . . , xi},
1 ≤ i ≤ n, where the indexes in Xi are computed modulo n, and t ≤ n. Then:
– Each subset Xi contains exactly t elements of X and
– Each x ∈ X is in exactly t subsets Xi.

In Step 16, the server S receives partial decryptions from the clients, forwards
them to the corresponding combiner (Step 18). Each combiner Cj performs a
final decryption (Step 21) resulting in a message x̃j whose bitlength is less or
equal to µ if it is the KRE. Combiner Cj then sets m(j) = x̃j if ∣x̃j ∣ ≤ µ, otherwise
m(j) = 0 (Step 22). Then m(j) is encrypted with the public key of all clients and
send to S (Step 23). Finally, the server reveals the KRE to each Ci (Step 25).

Kre-Ahe correctly computes the KRE. This follows from the correctness of
DGK [12], Lemmas 1 and 5 and the correctness of AHE. Kre-Ahe evaluates
comparisons interactively but requires threshold decryption for O(n) elements.
In Kre-Ahe, we can evaluate either the comparison or the rank at the server, but
not both. In the next scheme, we compute the KRE’s ciphertext non-interactively
at the server. Clients are only required for the threshold decryption.

8 Protocol Kre-She

This section describes Kre-She based on SHE. Hence, ⟦x⟧ now represents an
SHE ciphertext of the plaintext x. The initialization and threshold decryption
are similar to Kre-Ahe.

8.1 SHE Routines

Protocol Kre-She is based on the BGV scheme [9] as implemented in HElib [17]
and requires binary plaintext space and Smart-Vercauteren ciphertext packing



Protocol 4: Kre-Ahe Protocol

1: for i ∶= 1 to n do
2: Ci → S: ⟦xi⟧, ⟦xbi⟧i
3: S ∶ let G = [g11, . . . , gnn]
S ∶ let X = [⟦x1⟧, . . . , ⟦xn⟧]

4: for i ∶= 1, j ∶= i + 1 to n do
5: if Paired(i, j) then
6: Ci,Cj , S: gij ←DgkCompare(i, j)

7: S: Y ← ComputeKreAhe(G,X,k)
8: S: let π $← Sn be a permutation
9: S: parse Y as [y1, . . . , yn]
10: S: let Y ′ = [yπ(1), . . . , yπ(n)]
11: for i ∶= 1 to n do
12: S → Ci: Q(i) ←DecReq(Y ′, i, t, π)
13: Ci: parse Q(i) as (Z(i), I(i))

parse I(i) as [j1, . . . , jt]

parse Z(i) as [z(i)j1 , . . . , z
(i)
jt

]
14: for i ∶= 1 to n do
15: for each j in I(i) do
16: Ci → S: h(i)j ← ⟦Decp(sksi, z(i)j )⟧j
17: for j ∶= 1 to n do
18: S → Cj : (h(i1)j , . . . , h

(it)
j )

19: for j ∶= 1 to n do
20: Cj : du =Dec(skj , h(iu)j ), u = 1, . . . , t
21: Cj : x̃j ←Decf(d1, . . . , dt)

22: Cj : m(j) ∶=
⎧⎪⎪⎨⎪⎪⎩

x̃j if ∣x̃j′ ∣ ≤ µ
0 if ∣x̃j′ ∣ > µ

23: Cj → S: ⟦m(j)⟧1, . . . , ⟦m(j)⟧n
24: for i ∶= 1 to n do
25: S → Ci: ⟦∑nj=1m(j)⟧i
26: Ci: Dec(ski, ⟦∑nj=1m(j)⟧i)

(SVCP) technique [31]. Using SVCP, a ciphertext consists of a fixed number m
of slots encrypting bits, i.e. ⟦⋅∣ ⋅ ∣ . . . ∣⋅⟧. The encryption of a bit b replicates b to all
slots, i.e., ⟦b⟧ = ⟦b∣b∣ . . . ∣b⟧. However, one can pack the bits of xbi in one ciphertext
and will denote it by ⟦x⃗i⟧ = ⟦xiµ∣ . . . ∣xi1∣0∣ . . . ∣0⟧.

Each Ci sends ⟦xbi⟧, ⟦x⃗i⟧ to S as input to Algorithm 5 which uses built-in
routines to compute the KRE. We denote addition and multiplication routines
by the operators ⊕ and ⊙. Then addition of packed ciphertexts is defined as
component-wise addition mod 2: ⟦bi1∣ . . . ∣bim⟧⊕⟦bj1∣ . . . ∣bjm⟧ = ⟦bi1⊕bj1∣ . . . ∣bim⊕
bjm⟧. The multiplication is defined similarly: ⟦bi1∣ . . . ∣bim⟧⊙⟦bj1∣ . . . ∣bjm⟧ = ⟦bi1⊙
bj1∣ . . . ∣bim ⊙ bjm⟧, where biu ⊙ bju is a multiplication mod 2.

Let xi, xj be two integers, bij = [xi > xj] and bji = [xj > xi], the routine
SheCmp takes ⟦xbi⟧, ⟦xbj⟧, compares xi and xj and returns ⟦bij⟧, ⟦bji⟧. Note that
if the inputs to SheCmp encrypt the same value, then the routine outputs two
ciphertexts of 0. The comparison circuit has depth log(µ − 1) + 1 and requires
O(µ logµ) homomorphic multiplications [11].

Let bi1, . . . , bin be n bits such that ri = ∑nj=1 bij and let rbi = ri logn, . . . , ri1 be
the bit representation of ri. The routine SheFadder implements a full adder
on ⟦bi1⟧, . . . , ⟦bin⟧ and returns ⟦rbi ⟧ = (⟦ri logn⟧, . . . , ⟦ri1⟧).

There is no built-in routine for equality check in HElib. We implemented it
using SheCmp and addition. Let xi and xj be two µ-bit integers. We use SheE-
qual to denote the equality check routine and implement SheEqual(⟦xbi ⟧, ⟦xbj⟧)
by first computing (⟦b′i⟧, ⟦b′′i ⟧) = SheCmp(⟦xbi ⟧, ⟦xbj⟧) and then ⟦βi⟧ = ⟦b′i⟧ ⊕
⟦b′′i ⟧⊕ ⟦1⟧. This results in βi = 1 if xi = xj and βi = 0 otherwise.

8.2 Kre-She Main Protocol

In Kre-She, the server S receives encrypted inputs from clients. For each client’s
integer xi, the encrypted input consists of:



– an encryption ⟦xbi ⟧ = (⟦xiµ⟧, . . . , ⟦xi1⟧) of the bit representation and
– an encryption ⟦x⃗i⟧ = ⟦xiµ∣ . . . ∣xi1∣0∣ . . . ∣0⟧ of the packed bit representation.

Then the server runs Algorithm 5 which uses SheCmp to pairwise compare
the inputs resulting in encrypted comparison bits ⟦bij⟧. Then SheFadder is
used to compute the rank of each input by adding comparison bits. The result
is an encrypted bit representation ⟦rbi ⟧ of the ranks. Using the encrypted bit
representations ⟦kb⟧, ⟦rbi ⟧ of k and each rank, SheEqual checks the equality
and returns an encrypted bit ⟦βi⟧. Recall that because of SVCP the encryption
of a bit βi is automatically replicated in all slots, i.e., ⟦βi⟧ = ⟦βi∣βi∣ . . . ∣βi⟧, such
that evaluating ⟦y⃗i⟧ ← ⟦x⃗i⟧ ⊙ ⟦βi⟧, 1 ≤ i ≤ n, and ⟦y⃗1⟧ ⊕ . . . ⊕ ⟦y⃗n⟧ returns the
KRE’s ciphertext. Correctness and security follow from Lemma 1, correctness
and security of SHE. The leakage is LS = Li = {n, t, κ, λ, µ}.

Algorithm5: Computing the KRE’s Ciphertext in Kre-She

1: function ComputeKreShe(X,Z, c)
2: parse X as [⟦xb1⟧, . . . , ⟦xbn⟧]

parse Z as [⟦x⃗1⟧, . . . , ⟦x⃗n⟧]
parse c as ⟦kb⟧

3: for i ∶= 1 to n do
4: ⟦bii⟧← ⟦1⟧
5: for j ∶= i + 1 to n do
6: (⟦bij⟧, ⟦bji⟧)← SheCmp(⟦xbi⟧, ⟦xbj⟧)

7: for i ∶= 1 to n do
8: ⟦rbi ⟧← SheFadder(⟦bi1⟧, . . . , ⟦bin⟧)
9: for i ∶= 1 to n do
10: ⟦βi⟧← SheEqual(⟦rbi ⟧, ⟦kb⟧)
11: for i ∶= 1 to n do
12: ⟦y⃗i⟧← ⟦x⃗i⟧⊙ ⟦βi⟧
13: return ⟦y⃗1⟧⊕ . . .⊕ ⟦y⃗n⟧

9 Evaluation

This section presents our evaluation results. We implemented Kre-Ygc and
Kre-Ahe as client-server Java applications while using SCAPI [14]. As Kre-
She mostly consists of the homomorphic evaluation by the server, we imple-
mented Algorithm 5 and n-out-of-n threshold decryption using HElib [17,18].

Experimental Setup. For Kre-Ygc and Kre-Ahe, we experimented using for
the server a machine with a 6-core Intel(R) Xeon(R) E-2176M CPU @ 2.70GHz
and 32GB of RAM, and for the clients two machines with each two Intel(R)
Xeon(R) CPU E7-4880 v2 @ 2.50GHz. The client machines were equipped with
8GB and 4GB of RAM, and were connected to the server via WAN. Windows 10
Enterprise was installed on all three machines. For each experiment, about 3/5 of
the clients were run on the machine with 8GB RAM while about 2/5 were run
on the machine with 4GB RAM. Since the main computation of Kre-She is
done on the server, we evaluate only Algorithm 5 on a Laptop with Intel(R)
Core(TM) i5-7300U CPU @ 2.60GHz running 16.04.1-Ubuntu.

Results. We evaluated Kre-Ygc, Kre-Ahe at security level λ = 128, bitlength
µ = 32 and (minimal) threshold t = 2 for threshold decryption. We instantiated
Kre-Ahe with Elliptic Curve ElGamal using curve secp256r1. We implemented
ElGamal using CRT-based technique of Hu et al. [19] and pre-computation of the



(a) Time Kre-Ygc (b) Time Kre-Ahe∗ (LinTzeng)

(c) Time Kre-Ahe (DGK) (d) Communication Cost

(e) Server Time Kre-She (f) Threshold Decryption Kre-She

Fig. 6: Results for Kre-Ygc, Kre-Ahe, Kre-She

logarithm table [7] for fast threshold decryption [8]. Figure 8 shows our results
which are summarized in Table 3 for n = 100.

Kre-Ygc is the most efficient in both computation and communication and
takes 197 seconds to each client to compute the KRE of 100 clients in a WAN
setting. The communication is 0.31 MB for each client and 5.42 MB for the
server. However, Kre-Ygc is neither collusion-resistant nor fault-tolerant.

Kre-Ahe is the second most efficient and is collusion-resistant and fault-
tolerant. In Kre-Ahe, the comparisons can be evaluated non-interactively using
LinTzeng or interactively using both LinTzeng and DGK. The non-interactive
variant (denoted by Kre-Ahe∗) requires O(n2) threshold decryptions. It com-
putation cost is illustrated in Figure 6b. The interactive one, whose cost is illus-
trated in Figure 6c, requires only O(n) threshold decryptions. In Table 3, we also
illustrate the costs when t = 1 (i.e., each Ci knows sk) for both Kre-Ahe and
Kre-Ahe∗ and when t = n (i.e., all Ci run the decryption) for Kre-Ahe.

Table 3: Performance Compari-
son for 100 clients: C-Bits (resp.
S-Bits) denotes the number of
bits sent by each client (resp. the
server). t is the number of clients
for the treshold decryption.

Kre-Ygc Kre-Ahe Kre-Ahe∗

t n/a 1 2 100 1 2
Time (s) 197.00 353.00 336.00 441.00 1024.00 1749.00
C-Bits (MB) 0.31 0.30 0.30 0.32 0.56 1.11
S-Bits (MB) 5.42 56.07 56.12 60.56 111.37 222.67



n

10 11 12 13 14 15 16 17 18
[1] time (s) 2.09 3.37 3.88 6.26 6.30 13.50 14.48 21.69 23.38

B-C (MB) 13.50 18.21 20.03 25.69 27.83 50.13 53.71 64.97 69.03

Kre-Ygc time (s) 1.20 1.31 1.59 2.02 2.34 2.43 3.02 3.31 3.76

B-C (KB) 30.62 33.24 37.02 39.64 43.43 46.05 49.83 52.46 56.23

B-S (KB) 68.55 81.36 95.24 110.22 126.27 143.40 161.62 180.92 201.28

Kre-Ahe time (s) 3.45 3.96 4.74 4.84 5.31 5.71 5.98 6.70 6.86

B-C (KB) 28.41 34.66 35.22 41.47 42.02 48.27 48.83 55.08 55.63

B-S (KB) 575.15 701.25 840.15 991.21 1155.15 1331.14 1520.10 1721.06 1935.05

Table 4: Performance Comparison to [1]: Rows B-C/S is the communication for each client/server.

We evaluated Algorithm 5 of Kre-She at security level at least 110. The
result is illustrated in Figure 6e for inputs with bitlength µ = 16. The computa-
tion is dominated by the inputs’ comparison and takes less than one hour for 25
clients. We also evaluated in Figure 6f the performance of the threshold decryp-
tion with a n-out-of-n secret sharing. For up to 40 clients threshold decryption
costs less than 0.15 second. Kre-She is practically less efficient than all other
schemes, but has the best asymptotic complexity.

As a result Kre-Ygc is suitable if the server is non-colluding and clients
cannot fail. If collusion and failure are an issue, then either Kre-Ahe or Kre-
She is suitable. Kre-She has the best asymptotic complexity, but, requires more
efficient SHE.

Comparison to [1]. We implemented the semi-honest scheme of Aggarwal et
al. [1] using MP-SPDZ [29] which is the state-of-the-art framework for secret
sharing based multiparty computation. We evaluated Kre-Ygc, Kre-Ahe and
[1] on a machine with a 6-core Intel(R) Xeon(R) E-2176M CPU @ 2.70GHz and
32GB of RAM. The input bitlength is 32. For evaluating [1], we used MP-SPDZ’s
option for semi-honest Shamir. A summary of the evaluation in Table 4 shows
that our schemes scale better for increasing values of n.

10 Conclusion

In this paper, we considered the problem of computing the KRE (with applica-
tions to benchmarking) of n clients’ private inputs. We proposed and compare
different approaches based on garbled circuits or threshold HE. The computa-
tion is supported by the server which coordinates the protocol and undertakes
as much computations as possible. The server is oblivious, and does not learn
the input of the clients. We also implemented and evaluated our schemes.
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A Difference of our Modification to the original LinTzeng
protocol

We discuss in this section the difference of our modification to the original pro-
tocol of Lin and Tzeng [27]. In contrast to the original scheme [27], we note the
following differences. Firstly, we use additively HE instead of multiplicative. It
suits best with our setting and can be implemented using ElGamal on elliptic
curve with better performance and smaller ciphertexts. Although decryption re-
quires solving the discrete logarithm, this is not necessary since we are looking
for ciphertexts encrypting 0. Secondly, instead of relying on a collision-free hash
function as [27], we use the Int function which is simpler to implement and more
efficient as it produces smaller values. Thirdly, we choose the random encoded
elements as explained above and encrypt them, while the original protocol uses
ciphertexts chosen randomly in the ciphertext space. Fourthly, in the original
protocol, the evaluator has access to xj in plaintext and does not need to choose
random encoded elements. By encoding as explained in our modified version, we
can encrypt both encodings and delegate the evaluation to a third party which is
not allowed to have access to the inputs in plaintext. In fact, we can executes all
O(n2) comparisons non-interactively at the server, but this requires threshold
decryption for O(n2) elements. That is, computing the comparisons interactively
turned out to be more efficient.

B Decryption of Additive ElGamal

In our evaluation of Kre-Ahe, we use additive ElGamal which requires solving
the discrete logarithm. First, we stress that in the comparison protocols (both



DGK and LinTzeng), computing the discrete logarithm is not necessary as the
generator is looking for a ciphertext of zero. Recall that an additive ElGamal
ciphertext for a plaintext m looks like (gr, gsr+m), where r is random number,
g is the generator of the group, and s is the private key. Hence, checking if the
ciphertext is encrypting 0, is done by computing grs from the first component
and then checking if the result equals the second component.

The problem of computing the discrete logarithm in the decryption of addi-
tive ElGamal is similar to the somewhat encryption scheme of Boneh et al. [7]
(BGN) and several pairing-based schemes. As stated in [7], one can limit the
message space to short messages and pre-compute a logarithm table such that
the decryption occurs in constant time. To handle larger messages, we use CRT
ElGamal [19], which decomposes a large message in smaller messages according
to the chinese remainder theorem (CRT) and encrypts the smaller messages. We
briefly describe it and refer to [19] for more details.

Let sk = s be the private key and g be the generator of the group. Choose l
small moduli di ∈ Z+ such that gdc(di, dj) = 1 for i ≠ j. Then the plaintext space is
M = {0, . . . ,N} where N < d =Π l

i=1di. The public key is (g, h = gs, ⟨d1, . . . , dl⟩).
To encrypt a message m ∈ M, compute ⟨(gr1 , hr1gm1), . . . , (grl , hrlgml)⟩,

where mi =m mod di and ri is a random number.
To decrypt a ciphertext ⟨(u1, v1), . . . , (ul, vl)⟩, compute

CRT −1(⟨logg(v1u−s1 ), . . . , logg(vlu−sl )⟩),

where CRT −1(⟨x1, . . . , xl⟩) = ∑li=1 xi ddi (
d−1

di
mod di) mod d, and logg(⋅) denotes

the logarithm w.r.t g.
Given several ciphertexts, it is straightforward to compute the ciphertext

encrypting the sum of the corresponding plaintexts. This is done by multiplying
the given ciphertexts componentwise.

C Proof of Lemmas

C.1 Proof of Lemma 1

Proof. Since ri is the rank of xi, xi is by definition larger or equal to ri ele-
ments in {x1, . . . , xn}. This means that ri values among bi1, . . . , bin are 1 and
the remaining n − ri values are 0. It follows that ∑nj=1 bij = ri.

C.2 Proof of Lemma 2

Proof. Let P = {(xi, xj) ∶ xi, xj ∈ X ∧ i ≠ j}, P1 = {(xi, xj) ∶ xi, xj ∈ X ∧
Paired(i, j) = true}, P2 = {(xi, xj) ∶ xi, xj ∈ X ∧Q(i, j) = true}, where Q(i, j) is
defined as follows:

Q(i, j) ∶= (i ≡ 1 (mod 2) ∧ i < j ∧ j ≡ 1 (mod 2)) ∨ (2a)
(i ≡ 0 (mod 2) ∧ i > j ∧ j ≡ 1 (mod 2)) ∨ (2b)
(i ≡ 0 (mod 2) ∧ i < j ∧ j ≡ 0 (mod 2)) ∨ (2c)
(i ≡ 1 (mod 2) ∧ i > j ∧ j ≡ 0 (mod 2)). (2d)



Clearly, P contains the maximum number of comparisons required to compute
the rank of every xi ∈ X. Now it suffices to show that:
1. P1 and P2 form a partition of P
2. ∀ (xi, xj) ∈ P ∶ (xi, xj) ∈ P1 ⇔ (xj , xi) ∈ P2

P1 and P2 are clearly subsets of P. For each (xi, xj) ∈ P, (i, j) satisfies exactly
one of the conditions (1a), . . . , (1d), (2a), . . . , (2d), hence P ⊆ P1∪P2. Moreover,
for each (xi, xj) ∈ P, either Paired(i, j) = true or Q(i, j) = true. It follows that
P1 ∩P2 = ∅ which concludes the proof of claim 1. To prove claim 2, it suffices to
see that, (i, j) satisfies condition (1a) if and only if (j, i) satisfies condition (2a).
The same holds for (1b) and (2b), (1c) and (2c), (1d) and (2d).

C.3 Proof of Lemma 3

Proof. This is actually a corollary of the proof of Lemma 2. It follows from the
fact that (xi, xj) ∈ P1 ⇔ (xj , xi) ∈ P2 and any xi is involved in n−1 comparisons
(since we need bi1, . . . , bin to compute ri = ∑nj=1 bij , where we have bii = 1 without
comparison). This proves the case when n is odd. If n is even then the odd case
applies for n′ = n − 1. Then for each i ∈ {1, . . . , n′}, we have Paired(i, n) = true
if i is odd (condition 1b) and Paired(n, i) = true if i is even (condition 1c).

C.4 Proof of Lemma 4

Proof. If V = V 1
xi −V

0
xj has a unique 0 at a position l, (1 ≤ l ≤ µ) then uil and vil

have bit representation yµ−l+1⋯y1, where for each h,µ−l+1 ≥ h ≥ 2, yh = xig = xjg
with g = l + h − 1, and y1 = xil = 1 and xjl = 0. It follows that xi > xj .
If xi > xj then there exists a position l such that for each h,µ ≥ h ≥ l+1, xih = xjh
and xil = 1 and xjl = 0. This implies uil = vil.

For h,µ ≥ h ≥ l + 1, either uih bit string is a prefix of xi while vjh is random,
or uih is random while vjh bit string is a prefix of xj . From the choice of r(0)ih ,
r
(1)
ih , we have uih ≠ vih.

For h, l − 1 ≥ h ≥ 1 there are three cases: uih and vih (as bit string) are both
prefixes of xi and xj , only one of them is prefix, both are random. For the first
case the difference of the bits at position l and for the other cases the choice of
r
(0)
ih imply that uih ≠ vih.

C.5 Proof of Lemma 5

Proof. It is clear from the definition that Xi ⊆ X for all i and since i−(i−t+1)+1 =
t, Xi has exactly t elements. Let xi be in X, then from the definition, xi is element
of only the subsets Xi,Xi+1, . . . ,Xi+t−1, where indexes of the Xi are computed
mod n. Again, it holds (i + t − 1) − i + 1 = t.



D Security Proofs

Let the inherent leakage be L = {k,n, t, κ, λ, µ}, i.e., protocol’s parameters.

Theorem 1. If the server S is non-colluding and the AHE scheme is IND-CPA
secure, then Kre-Ygc 1-privately computes FKRE in the semi-honest model with
leakage LS = Li = L. Hence, there are simulators SIMCi for each Ci and SIMS

for S such that:
SIMS(∅,LS)

c≡ ViewS(x1, . . . , xn) and

SIMCi(xi,FKRE(x1, . . . , xn),Li)
c≡ ViewCi

(x1, . . . , xn).

Proof (Sketch). The leakage is clear as parties see only random strings. ViewCi

consists of:

(F ij
>
, (āiji , x̄

ij
i ), b′ij , ⟦aijj ⊕ bij⟧i, ⟦aiji ⊕ bij⟧j , ⟦bij⟧j)1≤j≤n(i≠j), ⟦βi⟧i, βi.

For each m ∈ ViewCi
, SIMCi chooses random bit strings of length ∣m∣. The view

of the server consists of:

⟨F ij
>
, (āiji , x̄

ij
i ), (āijj , x̄

ij
j ), b′ij , ⟦aijj ⊕ bij⟧i, ⟦aiji ⊕ bij⟧j , ⟦aiji ⊕ bij⟧j , ⟦aijj ⊕ bij⟧i,

⟦bij⟧j , ⟦bij⟧i⟩Paired(i,j)=true, ⟨⟦ri⟧i, ⟦βi⟧i⟩1≤i≤n, ⟨⟦mi⟧j⟩1≤i,j≤n.

For each m ∈ ViewS, SIMS chooses random bit strings of length ∣m∣.

Theorem 2. Let t ∈ N and τ < t. If the server S is non-colluding and the
AHE scheme is IND-CPA secure, then Kre-Ahe τ -privately compute FKRE in
the semi-honest model with leakage LS = Li = L. Hence, let I = {i1, . . . , iτ},
LI = ⋃i∈I Li, there exists a simulator SIMI such that:

SIMI((xi1 , . . . , xiτ ),FKRE(x1, . . . , xn),LI)
c≡ ViewI(x1, . . . , xn).

Proof (Sketch). The leakage is clear as parties see only random strings (IND-
CPA ciphertexts, random shares or random bits).

In Kre-Ahe , all messages can be simulated by choosing random bit strings of
the corresponding length. However, the simulation of Step 18 must be coherent
with Step 22. Each client receives random shares in Step 18, runs the final
decryption Decf(.) in Step 22 and learns a random message. To simulate Steps
18 and 22, the simulator chooses t random values for Step 18 such that running
Decf(.) returns the random message simulated in Step 22.

For example, if the underlying AHE is ECC ElGamal (ECE), then a cipher-
text has the form c = (α1, α2) = (r ⋅ P,m ⋅ P + r ⋅ pk). For each ECE ciphertext
c = (α1, α2) = (r ⋅P,m ⋅P +r ⋅pk) that must be final decrypted in Step 22, Cj gets
α2 and t partial decryption results α11, . . . , α1t of α1 in Step 18. To simulate this,
the simulator chooses a random message m and a random α̃2. Then it computes
α̃1 = α̃2 −m ⋅ P and generates random α̃11, . . . , α̃1t such that ∑ti=1 α̃1i = α̃1 in G.



Theorem 3. Let t ∈ N and τ < t. If the server S is non-colluding and the
SHE scheme is IND-CPA secure, then Kre-She τ -privately computes FKRE

in the semi-honest model with leakage LS = Li = L. Hence, let I = {i1, . . . , iτ}
denote the indexes of corrupt clients, LI = ⋃i∈I Li denote their joint leakages
and ViewI(x1, . . . , xn) denote their joint views, there exists a simulator SIMI

such that:

SIMI((xi1 , . . . , xiτ ),FKRE(x1, . . . , xn),LI)
c≡ ViewI(x1, . . . , xn).

Proof (Sketch). The leakage is clear as parties see only random strings (IND-CPA
ciphertexts or partial decryption results). The security is also straightforward as
the computation is almost completely done by the server alone and encrypted
under an IND-CPA encryption. Moreover, the partial decryption reveals only
partial result to each decryptor.

Recall that our adversary is semi-honest. In Kre-Ygc, a server collusion
reveals all inputs to the adversary. In Kre-Ahe, a server collusion only increase
the leakage as long as the number of corrupted clients is smaller than t. For
example, the adversary can learn the rank of corrupted clients. In Kre-She, the
KRE is homomorphically computed by the server such that the clients are only
required for the decryption of one ciphertext encrypting the KRE. Moreover, the
ciphertexts are encrypted using the threshold public key. As a result, assuming
semi-honest adversary and a collusion set containing less than t clients, a server
collusion leaks no more information than k,n, t, κ, λ, µ.

E Complexity analysis

In this section, we discuss the complexity of our schemes. We will use κ and λ
as length of asymmetric ciphertext and symmetric security parameter.

E.1 Kre-Ygc Protocol

A GC for the comparison of two µ-bit integers consists of µ AND-gates resulting
in 4µ symmetric ciphertexts [25, 26]. It can be reduced by a factor of 2 using
the halfGate optimization [33] at the cost of performing two cheap symmetric
operations (instead of one) during GC evaluation.

We do the analysis for the case where n is odd (the even case is similar). From
Lemma 3, each client generates (n − 1)/2 GCs resulting in (n − 1)µ symmetric
operations. The computation of encrypted comparison bits (Steps 6 to 16) and
the computation of the KRE’s ciphertext require O(n) asymmetric operations
to each client. Finally, each client has to decrypt one ciphertext in Step 23.
As a result, the computation complexity of each client is therefore O((n − 1)µ)
symmetric and O(2n+1) asymmetric operations. In communication, this results
in nκ bits for the asymmetric ciphertexts, 2µλ(n − 1)/2 bits for the GCs and
µλ(n− 1)/2 for the garbled inputs and nκ bits for handling the server’s leakage.
In total each client sends 2nκ + 3µλ(n−1)

2
.



The server evaluates n(n−1)/2 GCs each consisting of 2µ symmetric cipher-
texts. Computing the rank (Steps 17 to 19) requires O(n logn+n) operations to
the server. Finally, the server evaluates logn+n asymmetric operations to com-
pute the KRE ciphertext for each client (Steps 23 to 24). The total computation
complexity of the server is O(n(n−1)µ) symmetric and O((n+1) logn+2n). In
communication, the server sends n(n − 1) asymmetric ciphertexts in Steps 6 to
16, n asymmetric ciphertexts in Steps 17 to 19 and n asymmetric ciphertexts in
Steps 23 to 24. This results in a total of (n2 + n)κ bits.

E.2 Kre-Ahe Protocol

Since Kre-Ahe also requires the predicate Paired as Kre-Ygc, we do the
analysis for the case where n is odd (the even case is similar).

Each client performs O(µ+1) operations in Step 2, O( 7µ(n−1)
2

) operations in
Step 6, O(t) operations in Step 16 and O(log t) in Step 21, O(n) operations in
Step 23 and O(1) operations in Step 26. This results in a total of O(µ+ 7µ(n−1)

2
+

t + log t + n + 1) asymmetric operations.
Each client sends (µ+1)κ bits in Step 2, κ(n−1)

2
bits (when the client is head)

and (µ+1)κ(n−1)
2

(when the client is tail) in Step 6, tκ bits in Step 16 and nκ bits
in Step 23. This results in a total of (µ (n+1)

2
+ 2n + t)κ bits for each client.

The cryptographic operations of the server happen in ComputeKreAhe
(Algorithm 2) that is called in Step 7 of Protocol 4. The server performs O(n2+n)
asymmetric operations.

The server sends (µκ+(µ+1)κ)n(n−1)
2

bits in Step 6, ntκ bits in Steps 12 and
18, nκ bits in Step 25. This results in a total of ( (2µ+1)n(n−1)

2
+2nt+n)κ bits for

the server.

E.3 Kre-She Protocol

Each client has O(µ) computation cost (µ + 1 encryptions and eventually one
partial decryption and a communication cost of (µ + n + 1)κ bits.

The cryptographic operations of the server happen in ComputeKreShe
(Algorithm 5). The SHE comparison circuit has depth log(µ−1)+1 and requires
O(µ logµ) homomorphic multiplications [11]. For all comparisons the server per-
forms, therefore, O(n2µ logµ) multiplication. In Step 10 of Algorithm 5, the
computation of ⟦∏n

j=1,j≠k(ri − j)⟧ has depth logn and requires O(n logn) ho-
momorphic multiplications. Step 12 of Algorithm 5 adds an additional circuit
depth and requires O(n) homomorphic multiplications. As a result, Algorithm
5 has a total depth of log(µ−1)+ logn+2 and requires O(n2µ logµ+n logn+n)
homomorphic multiplications. The server sends (t + nt)κ bits in the threshold
decryption.


