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Abstract. Decentralized consensus protocols based on proof-of-work
(PoW) mining require nodes to download data linear in the size of
the blockchain even if they make use of Simplified Payment Verifica-
tion (SPV). In this work, we put forth a new formalization of proof-
of-work verification by introducing a primitive called Non-Interactive
Proofs of Proof-of-Work (NIPoPoWs). We improve upon the previously
known SPV NIPoPoW by proposing a novel NIPoPoW construction us-
ing superblocks, blocks that are much heavier than usual blocks, which
capture the fact that proof-of-work took place without sending all of
it. Unlike a traditional blockchain client which must verify the entire
linearly-growing chain of PoWs, clients based on superblock NIPoPoWs
require resources only logarithmic in the length of the chain, instead
downloading a compressed form of the chain. Superblock NIPoPoWs are
thus succinct proofs and, due to their non-interactivity, require only a
single message between the prover and the verifier of the transaction.
Our construction allows the creation of superlight clients which can syn-
chronize with the network quickly even if they remain offline for large
periods of time. Our scheme is provably secure in the Bitcoin Backbone
model. From a theoretical point of view, we are the first to propose a
cryptographic prover–verifier definition for decentralized consensus pro-
tocols and the first to give a construction which can synchronize non-
interactively using only a logarithmically-sized message.

1 Introduction

Proof-of-work blockchain clients such as mobile wallets today are based
on the Simplified Payment Verifications (SPV) protocol, which was de-
scribed in the original Bitcoin paper [18], and allows them to sychronize
with the network by downloading only block headers and not the entire
blockchain with transactions. However, such initial synchronization still
requires receiving all the block headers. In this work, we study the ques-
tion of whether better protocols exist and in particular if downloading
fewer block headers is sufficient to securely synchronize with the rest of
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the blockchain network. Our requirement is that the system remains de-
centralized and that useful facts about the blockchain (such as the Merkle
root of current account balances in Ethereum [7,25]) can be deduced from
the downloaded data.

Our contributions. We put forth a cryptographic security definition for
Non-Interactive Proofs of Proof-of-Work protocols which describes what
such a synchronization protocol must achieve (Section 2). We then con-
struct a protocol which solves the problem and requires sending only a log-
arithmic number of blocks from the chain. We construct a protocol which
can synchronize recent blocks, the suffix proofs protocol (Section 4). We
analyze the security and succinctness of our protocol in Section 5. In the
Appendix, we show a simple addition to the suffix proofs protocol which
allows synchronizing any part of the blockchain that the client may be
interested in, the infix proofs protocol (Section A). We give formal proofs
of security and succinctness, provide concrete parameters for the imple-
mentation of our scheme, present applications beyond superlight clients
including cross-chain applications, propose a mechanism with which our
scheme can be deployed to existing cryptocurrencies without a fork, and
propose a variable difficulty construction.

Previous work. The need for succinct clients was first identified by
Nakamoto in his original paper [18]. Predicates pertaining to events occur-
ring in the blockchain have been explored in the setting of sidechains [2]. It
has also been implemented for simple classes of predicates such as atomic
swaps [14,19], which do not allow full synchronization. Non-succinct cer-
tificates about proof-of-stake blockchains have been proposed in [12], but
their scheme is not applicable to proof-of-work. Superblocks were first
described in the Bitcoin Forum [17] and later formalized [15] to describe
their Proofs of Proof-of-Work which have limited applications due to in-
teractivity, lack of security, and inability to prove facts buried deep within
the blockchain. We improve upon their work with a security definition, an
interactive construction, and an attack against their scheme which works
with overwhelming probability.

2 Model and Definitions

Our model is based on the “backbone” model for proof-of-work cryp-
tocurrencies [10], extended with SPV. Following their model, we assume
synchrony (partial synchrony with bounded delay [20] is left for future
work) and constant difficulty (we briefly discuss variable difficulty in Ap-
pendix H).
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Backbone model. The entities on the blockchain network are of 3 kinds:
(1) Miners, who try to mine new blocks on top of the longest known block-
chain and broadcast them as soon as they are discovered. Miners commit
new transactions they receive from clients. (2) Full nodes, who maintain
the longest blockchain without mining and also act as the provers in the
network. (3) Verifiers or stateless clients, who do not store the entire
blockchain, but instead connect to provers and ask for proofs in regards
to which blockchain is the largest. The verifiers attempt to determine the
value of a predicate on these chains, for example whether a particular
payment has been finalized.

Our main challenge is to design a protocol so that clients can sieve
through the responses they receive from the network and reach a conclu-
sion that should never disagree with the conclusion of a full node who is
faced with the same objective and infers it from its local blockchain state.

We model proof-of-work discovery attempts by using a random ora-
cle [4]. The random oracle produces κ-bit strings, where κ is the system’s
security parameter. The network is synchronized into numbered rounds,
which correspond to moments in time. n denotes the total number of
miners in the game, while t denotes the total number of adversarial min-
ers. Each miner is assumed to have equal mining power captured by the
number of queries q available per player to the random oracle per round,
each query of which succeeds independently with probability p (a suc-
cessful query produces a block with valid proof-of-work). Mining pools
and miners of different computing power can be captured by assuming
multiple players combine their computing power. This is made explicit
for the adversary, as they do not incur any network overhead to achieve
communication between adversarial miners. On the contrary, honest play-
ers discovering a block must diffuse it (broadcast it) to the network at a
given round and wait for it to be received by the rest of the honest play-
ers at the beginning of the next round. A round during which an honest
block is diffused is called a successful round ; if the number of honest
blocks diffused is one, it is called a uniquely successful round. We assume
there is an honest majority, i.e., that t/n < 0.5 with a constant mini-
mum gap [10]. We further assume the network is adversarial, but there is
no eclipsing attacks [13]. More specifically, we allow the adversary to re-
order messages transmitted at a particular round, to inject new messages
thereby capturing Sybil attacks [8], but not to drop messages. Each hon-
est miner maintains a local chain C which they consider the current active
blockchain. Upon receiving a different blockchain from the network, the
current active blockchain is changed if the received blockchain is longer

3



than the currently adopted one. Receiving a different blockchain of the
same length as the currently adopted one does not change the adopted
blockchain.

Blockchain blocks are generated by including the following data in
them: ctr, the nonce used to achieve the proof-of-work; x the Merkle
tree [16] root of the transactions confirmed in this block; and inter-
link [15], a vector containing pointers to previous blocks, including the id
of the previous block. The interlink data structure contains pointers to
more blocks than just the previous block. We will explain this further in
Section 3. Given two hash functions H and G modelled as random ora-
cles, the id of a block is defined as id = H(ctr,G(x, interlink)). In bitcoin’s
case, both H and G would be SHA256.

The prover and verifier model. In our protocol, the nodes include
a proof along with their responses to clients. We need to assume that
clients are able to connect to at least one correctly functioning node (i.e.,
that they cannot be eclipsed from the network [1,13]). Each client makes
the same request to every node, and by verifying the proofs the client
identifies the correct response. Henceforth we will call clients verifiers
and nodes provers.

The prover-verifier interaction is parameterized by a predicate (e.g.
“the transaction tx is committed in the blockchain”). The predicates of
interest in our context are predicates on the active blockchain. Some of the
predicates are more suitable for succinct proofs than others. We focus our
attention in stable predicates having the property that all honest miners
share their view of them in a way that is updated in a predictable manner,
with a truth-value that persists as the blockchain grows (an example of
an unstable predicate is e.g., the least significant bit of the hash of last
block). Following the work of [10], we wait for k blocks to bury a block
before we consider it confirmed and thereby the predicates depending on
it stable. k is the common prefix security parameter, which in Bitcoin
folklore is often taken to be k = 6.

In our setting, for a given predicate Q, several provers (including ad-
versarial ones) will generate proofs claiming potentially different truth
values for Q based on their claimed local longest chains. The verifier re-
ceives these proofs and accepts one of the proofs, determining the truth
value of the predicate. We denote a blockchain proof protocol for a pred-
icate Q as a pair (P, V ) where P is the prover and V is the verifier. P
is a PPT algorithm that is spawned by a full node when they wish to
produce a proof, accepts as input a full chain C and produces a proof π as
its output. V is a PPT algorithm which is spawned at some round (hav-
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ing only Genesis), receives a pair of proofs (πA, πB) from both an honest
party and the adversary and returns its decision d ∈ {T, F} before the
next round and terminates. The honest miners produce proofs for V using
P , while the adversary produces proofs following some arbitrary strategy.
Before we introduce the security properties for blockchain proof protocols
we introduce some necessary notation for blockchains.

Notation. Blockchains are finite block sequences obeying the blockchain
property : that in every block in the chain there exists a pointer to its pre-
vious block. A chain is anchored if its first block is genesis, denoted Gen.
For chain addressing we use Python brackets C[·] as in [21]. A zero-based
positive number in a bracket indicates the indexed block in the chain. A
negative index indicates a block from the end, e.g., C[−1] is the tip of the
blockchain. A range C[i : j] is a subarray starting from i (inclusive) to
j (exclusive). Given chains C1, C2 and blocks A,Z we concatenate them
as C1C2 or C1A. C2[0] must point to C1[−1] and A must point to C1[−1].
We denote C{A : Z} the subarray of the chain from A (inclusive) to Z
(exclusive). We can omit blocks or indices from either side of the range
to take the chain to the beginning or end respectively. The id function
returns the id of a block given its data, i.e., id = H(ctr,G(x, interlink)).

2.1 Provable chain predicates

Our aim is to prove statements about the blockchain, such as “The trans-
action tx is included in the current blockchain” without transmitting all
block headers. We consider a general class of predicates that take on val-
ues true or false. Since a Bitcoin-like blockchain can experience delays
and intermittent forks, not all honest parties will be in exact agreement
about the entire chain. However, when all honest parties are in agreement
about the truth value of the predicate, we require that the verifier also
arrives at the same truth value.

To aid the construction of our proofs, we focus on predicates that are
monotonic; they start with the value false and, as the blockchain grows,
can change their value to true but not back.

Definition 1. (Monotonicity) A chain predicate Q(C) is monotonic if
for all chains C and for all blocks B we have that Q(C)⇒ Q(CB).

Additionally, we require that our predicates only depend on the stable
portion of the blockchain, blocks that are buried under k subsequent
blocks. This ensures that the value of the predicate will not change due
to a blockchain reorganization.
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Definition 2. (Stability) Parameterized by k ∈ N, a chain predicate Q
is k-stable if its value only depends on the prefix C[: −k].

2.2 Desired properties

We now define two desired properties of a non-interactive blockchain proof
protocol, succinctness and security.

Definition 3. (Security) A blockchain proof protocol (P, V ) about a pred-
icate Q is secure if for all environments and for all PPT adversaries A
and for all rounds r ≥ ηk, if V receives a set of proofs P at the begin-
ning of round r, at least one of which has been generated by the honest
prover P , then the output of V at the end of round r has the following
constraints:

– If the output of V is false, then the evaluation of Q(C) for all honest
parties must be false at the end of round r − ηk.

– If the output of V is true, then the evaluation of Q(C) for all honest
parties must be true at the end of round r + ηk.

Fig. 1. The truth value of a fixed predicate Q about the blockchain, as seen from the
point of view of 5 honest nodes, drawn on the vertical axis, over time, drawn as the
horizontal axis. The truth value evolves over time starting as false at the beginning,
indicated by a dashed red line. At some point in time t0, the predicate is ready to
be evaluated as true, indicated by the solid blue line. The various honest nodes each
realize this independently over a period of ηk duration, shaded in gray. The predicate
remains false for everyone before t0 and true for everyone after t0 + ηk.

t0
t

t0 + ηk

node 1
node 2
node 3
node 4
node 5

Some explanation is needed for the rationale of the above definition.
The parameter η is borrowed from the Backbone [10] work and indicates
the rate at which new blocks are produced, i.e., the number of rounds
needed on average to produce a block. If the scheme is secure, this means
that the output of the verifier should match the output of a potential
honest full node. However, in various executions, not all potential honest
full node behaviors will be instantiated. Therefore, we require that, if the
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output of the proof verifier is true then, consistently with honest behavior,
all other honest full nodes will converge to the value true. Conversely, if
the output of the proof verifier is false then, consistently with honest
behavior, all honest full nodes must have indicated false sufficiently long
in the past. The period ηk is the period needed for obtaining sufficient
confirmations (k) in a blockchain system. A predicate’s value has the
potential of being true as seen by an honest party starting at time t0.
Before time t0, all honest parties agree that the predicate is false. It
takes ηk time for all parties to agree that the predicate is true, which is
certain after time t0 + ηk. The adversary may be able to convince the
verifier that the predicate has any value during the period from t0 to
t0 +ηk. However, our security definition mandates that before time t0 the
verifier will necessarily output false and after time t0 +ηk the verifier will
necessarily output true.

Definition 4. (Succinctness) A blockchain proof protocol (P, V ) about
a predicate Q is succinct if for all PPT provers A, any proof π produced
by A at some round r, the verifier V only reads a O(polylog(r))-sized
portion of π.

It is easy to construct a secure but not succinct protocol for any com-
putable predicate Q: The prover provides the entire chain C as a proof
and the verifier simply selects the longest chain: by the common-prefix
property of the backbone protocol (c.f. [10]), this is consistent with the
view of every honest party (as long as Q depends only on a prefix of the
chain, as we explain in more detail shortly). In fact this is how widely-used
cryptocurrency clients (including SPV clients) operate today.

It is also easy to build succinct but insecure clients: The prover simply
sends the predicate value directly. This is roughly what hosted wallets
do [5].

The challenge we will solve is to provide a non-interactive protocol
that at the same time achieves security and succinctness over a large
class of useful predicates. We call this primitive a NIPoPoWs. Our par-
ticular instantiation for NIPoPoWs is a superblock-based NIPoPoW con-
struction.

3 Consensus layer support

3.1 The interlink pointers data structure

In order to construct our protocol, we rely the interlink data structure [15].
This is an additional hash-based data structure that is proposed to be
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included in the header of each block. The interlink data structure is a
skip-list [22] that makes it efficient for a verifier to process a sparse subset
of the blockchain, rather than only consecutive blocks.

Valid blocks satisfy the proof-of-work condition: id ≤ T , where T is the
mining target. Throughout this work, we make the simplifying assumption
that T is constant4. Some blocks will achieve a lower id. If id ≤ T

2µ we say
that the block is of level µ. All blocks are level 0. Blocks with level µ are
called µ-superblocks. µ-superblocks for µ > 0 are also (µ−1)-superblocks.
The level of a block is given as µ = blog(T )− log(id(B))c and denoted
level(B). By convention, for Gen we set id = 0 and µ =∞.

Observe that in a blockchain protocol execution it is expected 1/2 of
the blocks will be of level 1; 1/4 of the blocks will be of level 2; 1/8 will be
of level 3; and 1/2µ blocks will be of level µ. In expectation, the number
of superblock levels of a chain C will be Θ(log(C)) [15]. Figure 2 illustrates
the blockchain superblocks starting from level 0 and going up to level 3 in
case these blocks are distributed exactly according to expectation. Here,
each level contains half the blocks of the level below.

We wish to connect the blocks at each level with a previous block
pointer pointing to the most recent block of the same level. These pointers
must be included in the data of the block so that proof-of-work commits
to them. As the level of a block cannot be prediced before its proof-of-
work is calculated, we extend the previous block id structure of classical
blockchains to be a vector, the interlink vector. The interlink vector points
to the most recent preceding block of every level µ. Genesis is of infinite
level and hence a pointer to it is included in every block. The number of
pointers that need to be included per block is in expectation log(|C|).

Fig. 2. The hierarchical blockchain. Higher levels have achieved a lower target (higher
difficulty) during mining. All blocks are connected to the genesis block G.

The algorithm for this construction is shown in Algorithm 1 and is
borrowed from [15]. The interlink data structure turns the blockchain into
a skiplist-like [22] data structure.

4 We discuss how this assumption can be relaxed in the Appendix.
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The updateInterlink algorithm accepts a block B′, which already has
an interlink data structure defined on it. The function evaluates the inter-
link data structure which needs to be included as part of the next block.
It copies the existing interlink data structure and then modifies its entries
from level 0 to level(B′) to point to the block B′.

Algorithm 1 updateInterlink
1: function updateInterlink(B′)
2: interlink← B′.interlink
3: for µ = 0 to level(B′) do
4: interlink[µ]← id(B′)
5: end for
6: return interlink
7: end function

Traversing the blockchain. As we have now extended blocks to con-
tain multiple pointers to previous blocks, if certain blocks are omitted
from the middle of a chain we will obtain a subchain, as long as the
blockchain property is maintained (i.e., that each block must contain an
interlink pointer to its previous block in the sequence).

Blockchains are sequences, but it is more convenient to use set no-
tation for some operations. Specifically, B ∈ C and ∅ have the obvious
meaning. C1 ⊆ C2 means that all blocks in C1 exist in C2, perhaps with
additional blocks intertwined. C1 ∪ C2 is the chain obtained by sorting
the blocks contained in both C1 and C2 into a sequence (this may be not
always defined, as pointers may be missing). We will freely use set builder
notation {B ∈ C : p(B)}. C1 ∩ C2 is the chain {B : B ∈ C1 ∧ B ∈ C2}.
In all cases, the blockchain property must be maintained. The lowest
common ancestor is LCA(C1, C2) = (C1 ∩ C2)[−1]. If C1[0] = C2[0] and
C1[−1] = C2[−1], we say the chains C1, C2 span the same block range.

It will soon become clear that it is useful to construct a chain contain-
ing only the superblocks of another chain. Given C and level µ, the upchain
C↑µ is defined as {B ∈ C : level(B) ≥ µ}. A chain containing only µ-
superblocks is called a µ-superchain. It is also useful, given a µ-superchain
C′ to go back to the regular chain C. Given chains C′ ⊆ C, the downchain
C′↓ C is defined as C{C′[0] : C′[−1]}. C is the underlying chain of C′. The
underlying chain is often implied by context, so we will simply write C′↓ .
By the above definition, the C↑ operator is absolute: (C↑µ)↑µ+i= C↑µ+i.
Given a set of consecutive rounds S = {r, r+ 1, · · · , r+ j} ⊆ N, we define
CS = {B ∈ C : B was generated during S}.
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4 Non-interactive blockchain suffix proofs

In this section, we introduce our non-interactive suffix proofs. With fore-
sight, we caution the reader that the non-interactive construction we
present in this section is insecure. A small patch will later allow us to
modify our construction to achieve security.

We allow provers to prove general predicates Q about the chain C.
Among the predicates which are stable, in this section, we will limit our-
selves to suffix sensitive predicates. We extend the protocol to support
more flexible predicates (such as transaction inclusion, as needed for our
applications) which are not limited to the suffix in Section A.

Definition 5 (Suffix sensitivity). A chain predicate Q is called k-suffix
sensitive if its value can be efficienty computed given the last k blocks of
the chain.

Example. In general our applications will require predicates that are
not suffix-sensitive. However, as an example, consider the predicate “an
Ethereum contract at address C has been initialized with code h at least k
blocks ago” where h does not invoke the selfdestruct opcode. This can
be implemented in a suffix-sensitive way because, in Ethereum, each block
includes a Merkle Trie over all of the contract codes [7,25], which cannot
be changed after initialization. This predicate is thus also monotonic and
k-stable. Any predicate which is both suffix-sensitive and k-stable must
solely depend on data at block C[−k].

4.1 Construction

We next present a generic form of the verifier first and the prover after-
wards. The generic form of the verifier works with any practical suffix
proof protocol. Therefore, we describe the generic verifier first before we
talk about the specific instantiation of our protocol. The generic verifier is
given access to call a protocol-specific proof comparison operator ≤m that
we define. We begin the description of our protocol by first illustrating
the generic verifier. Next, we describe the prover specific to our protocol.
Finally, we show the instantiation of the ≤m operator, which plugs into
the generic verifier to make a concrete verifier for our protocol.

The generic verifier. The Verify function of our NIPoPoW construction
for suffix predicates is described in Algorithm 2. The verifier algorithm
is parameterized by a chain predicate Q and security parameters k,m; k
pertains to the amount of proof-of-work needed to bury a block so that
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it is believed to remain stable (e.g., k = 6); m is a security parameter
pertaining to the prefix of the proof, which connects the genesis block to
the k-sized suffix. The verifier receives several proofs by different provers
in a collection of proofs P at least one of which will be honest. Iterating
over these proofs, it extracts the best.

Each proof is a chain. For honest provers, these are subchains of the
adopted chain. Proofs consist of two parts, π and χ; πχ must be a valid
chain; χ is the proof suffix; π is the prefix. We require |χ| = k. For honest
provers, χ is the last k blocks of the adopted chain, while π consists of
a selected subset of blocks from the rest of their chain preceding χ. The
method of choice of this subset will become clear soon.

Algorithm 2 The Verify algorithm for the NIPoPoW protocol

1: function VerifyQm,k(P)
2: π̃ ← (Gen) . Trivial anchored blockchain
3: for (π, χ) ∈ P do . Examine each proof (π, χ) in P
4: if validChain(πχ) ∧ |χ| = k ∧ π ≥m π̃ then
5: π̃ ← π
6: χ̃← χ . Update current best
7: end if
8: end for
9: return Q̃(χ̃)

10: end function

The verifier compares the proof prefixes provided to it by calling the
≥m operator. We will get to the operator’s definition shortly. Proofs are
checked for validity before comparison by ensuring |χ| = k and calling
validChain which checks if πχ is an anchored blockchain.

At each loop iteration, the verifier compares the next candidate proof
prefix π against the currently best known proof prefix π̃ by calling π ≥m π̃.
If the candidate prefix is better than the currently best known proof pre-
fix, then the currently known best prefix is updated by setting π̃ ← π.
When the best known prefix is updated, the suffix χ̃ associated with the
best known prefix is also updated to match the suffix χ of the candidate
proof by setting χ̃ ← χ. While χ̃ is needed for the final predicate evalu-
ation, it is not used as part of any comparison, as it has the same size k
for all proofs. The best known proof prefix is initially set to (Gen), the
trivial anchored chain containing only the genesis block. Any well-formed
proof compares favourably against the trivial chain.

After the end of the for loop, the verifier will have determined the
best proof (π̃, χ̃). We will later prove that this proof will necessarily belong
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to an honest prover with overwhelming probability. Since the proof has
been generated by an honest prover, it is associated with an underlying
honestly adopted chain C. The verifier then extracts the value of the
predicate Q on the underlying chain. Note that, because the full chain is
not available to the verifier, the verifier here must evaluate the predicate
on the suffix. Because the predicate is suffix-sensitive, it is possible to do
so. As a technical detail, we denote Q̃ the predicate which accepts only
a k-suffix of a blockchain and outputs the same value that Q would have
output if it had been evaluated on a chain with that suffix.

Algorithm 3 The Prove algorithm for the NIPoPoW protocol
1: function Provem,k(C)
2: B ← C[0] . Genesis
3: for µ = |C[−k − 1].interlink| down to 0 do
4: α← C[: −k]{B :}↑µ
5: π ← π ∪ α
6: if m < |α| then
7: B ← α[−m]
8: end if
9: end for

10: χ← C[−k :]
11: return πχ
12: end function

The concrete prover. The NIPoPoW prover construction is shown in
Algorithm 3. The honest prover is supplied with an honestly adopted
chain C and security parameters m, k and returns proof πχ, which is a
chain. The suffix χ is the last k blocks of C. The prefix π is constructed
by selecting various blocks from C[: −k] and adding them to π, which
consists of a number of blocks for every level µ from the highest level
|C[−k].interlink| down to 0. At the highest possible level at which at least
m blocks exist, all these blocks are included. Then, inductively, for every
superchain of level µ that is included in the proof, the suffix of length
m is taken. Then the underlying superchain of level µ− 1 spanning from
this suffix until the end of the blockchain is also included. All the µ-
superblocks which are within this range of m blocks will also be (µ− 1)-
superblocks and so we do not want to keep them in the proof twice (we
use the union set notation to indicate this). Each underlying superchain
will have 2m blocks in expectation and always at least m blocks. This
is repeated until level µ = 0 is reached. Note that no check is necessary
to make sure the top-most level has at least m blocks, even though the
verifier requires this. The reason is the following: Assume the blockchain
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has at least m blocks in total. Then, when a superchain of level µ has less
than m blocks in total, these blocks will all be necessarily included into
the proof by a lower-level superchain µ − i for some i > 0. Therefore, it
does not hurt to add them to π earlier.

Figure 3 contains an example proof constructed for parameters m =
k = 3. The top superchain level which contains at least m blocks is level
µ = 2. For the m-sized suffix of that level, 6 blocks of superblock level 1
are included to span the same range (2m blocks at this level). For the last
3 blocks of the 1-superchain, blocks of level 0 spanning the same range
are included (again 2m blocks at this level). Note that the superchain at
a lower levels may reach closer to the end of the blockchain than a higher
level. Level 3 was not used, as it does not yet have a sufficient number of
blocks.

Fig. 3. NIPoPoW prefix π for m = 3. It includes the Genesis block G, three 2-
superblocks, six 1-superblocks, and six 0-blocks.

0 0 0 0 0 00

22

1 1 1 1

3

0

G

Algorithm 4 The algorithm implementation for the ≥m operator to
compare two proofs in the NIPoPoW protocol parameterized with security
parameter m. Returns true if the underlying chain of player A is deemed
longer than the underlying chain of player B.
1: function best-argm(π, b)
2: M ← {µ : |π↑µ {b :}| ≥ m} ∪ {0} . Valid levels
3: return maxµ∈M{2µ · |π↑µ {b :}|} . Score for level
4: end function
5: operator πA ≥m πB
6: b← (πA ∩ πB)[−1] . LCA
7: return best-argm(πA, b) ≥ best-argm(πB , b)
8: end operator

The concrete verifier. The ≥m operator which performs the compari-
son of proofs is presented in Algorithm 4. It takes proofs πA and πB and
returns true if the first proof is winning, or false if the second is winning.
It first computes the LCA block b between the proofs. As parties A and B
agree that the blockchain is the same up to block b, arguments will then
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be taken for the diverging chains after b. An argument is a subchain of a
proof provided by a prover such that its blocks are after the LCA block
b and they are all at the same level µ. The best possible argument from
each player’s proof is extracted by calling the best-argm function. To find
the best argument of a proof π given b, best-argm collects all the indices µ
which point to superblock levels that contain valid arguments after block
b. Argument validity requires that there are at least m µ-superblocks fol-
lowing block b, which is captured by the comparison |π↑µ {b :}| ≥ m. 0 is
always considered a valid level, regardless of how many blocks are present
there. These level indices are collected into set M . For each of these lev-
els, the score of their respective argument is evaluated by weighting the
number of blocks by the level as 2µ|π↑µ {b :}|. The highest possible score
across all levels is returned. Once the score of the best argument of both
A and B is known, they are directly compared and the winner returned.
An advantage is given to the first proof in case of a tie by making the ≥m
operator favour the adversary A.

Looking ahead, the core of the security argument will be that, given
a block b, it will be difficult for a mining minority adversary to produce
blocks descending from b faster than the honest party. This holds for
blocks of any level.

5 Analysis

We now give a sketch indicating why our construction is secure. The fully
formal security proof, together with a detail in the construction which
ensures statistical goodness and is necessary for withstanding full 1/2
adversaries, appears in the appendix.

Theorem 1 (Security). Assuming honest majority, the Non-interactive
Proofs of Proof-of-Work construction for computable k-stable monotonic
suffix-sensitive predicates is secure with overwhelming probability in κ.

Proof (Sketch). Suppose an adversary produces a proof πA and an honest
party produces a proof πB such that the two proofs cause the predicate Q
to evaluate to different values, while at the same time all honest parties
have agreed that the correct value is the one obtained by πB. Because of
Bitcoin’s security, A will be unable to make these claims for an actual
underlying 0-level chain.

We now argue that the operator ≤m will signal in favour of the honest
parties. Suppose b is the LCA block between πA and πB. If the chain forks
at b, there can be no more adversarial blocks after b than honest blocks
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after b, provided there are at least k honest blocks (due to the Common
Prefix property). We will now argue that, further, there can be no more
disjoint µA-level superblocks than honest µB-level superblocks after b.

To see this, let b be an honest block generated at some round r1
and let the honest proof be generated at some round r3. Then take the
sequence of consecutive rounds S = (r1, · · · , r3). Because the verifier re-
quires at least m blocks from each of the provers, the adversary must have
m µA-superblocks in πA{b :} which are not in πB{b :}. Therefore, using
a negative binomial tail bound argument, we see that |S| must be long;
intuitively, it takes a long time to produce a lot of blocks |πA{b :}|. Given
that |S| is long and that the honest parties have more mining power, they
must have been able to produce a longer πB{b :} argument (of course,
this comparison will have the superchain lengths weighted by 2µA , 2µB

respectively). To prove this, we use a binomial tail bound argument; in-
tuitively, given a long time |S|, a lot of µB-superblocks |πB{b :}| will have
been honestly produced.

We therefore have a fixed value for the length of the adversarial ar-
gument, a negative binomial random variable for the number of rounds,
and a binomial random variable for the length of the honest argument.
By taking the expectations of the above random variables and applying a
Chernoff bound, we see that the actual values will be close to their means
with overwhelming probability, completing the proof. ut

We formalize the above proof sketch in the Appendix.
Lastly, the following theorem illustrates that our proofs are succinct.

Intuitively, the number of levels exchanged is logarithmic in the length of
the chain, and the number of blocks in each level is constant. The formal
proofs are included in the Appendix.

Theorem 2 (Optimistic succinctness). In an optimistic execution,
Non-Interactive Proofs of Proof-of-Work produced by honest provers are
succinct with the number of blocks bounded by 4m log(|C|), with over-
whelming probability in m.
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Appendix

Our Appendix is structured as follows. In Section A we discuss how to
extend our scheme to prove facts buried deep within the blockchain. This
ability can be easily added to our protocol, but is important in order to
be able to show that a transaction took place in the past. In Section B
we measure the concrete probability of success of our scheme in order to
provide concrete parameters for implementors. In Section C we give fur-
ther applications of NIPoPoWs beyond the context of a simple client, in
particular a multiblockchain wallet and a cross-chain ICO. We also imple-
ment our scheme and perform measurements to give concrete performance
numbers. Section D gives lemmas and proofs about the statistical prop-
erties of chains, which are useful for further results. Section E contains
an attack against these statistical properties, which mandates that a full
construction needs to check for them. Section F gives a formal proof of
our security claims through a computational reduction. Section I includes
the formal proof that our construction is succinct. In Section G, we illus-
trate gradual deployment paths. One of our techniques allows adoption
of our scheme without requiring miner consensus. We term this technique
a velvet fork in contrast to the classical soft and hard forks which require
approval by a majority of miners. This technique is a novel contribution
and may be of independent interest for other blockchain protocols. We
conclude with Section H which gives an intuition about creating a con-
struction for variable difficulty NIPoPoWs by modifying the construction
presented in this paper.

A Non-interactive blockchain infix proofs

In the main body we have seen how to construct proofs for suffix predi-
cates. As mentioned, the main purpose of that construction is to serve as
a stepping stone for the construction of this section that presents a more
useful class of proofs. This class of proofs allows proving more general
predicates that can depend on multiple blocks even buried deep within
the blockchain.

More specifically, the generalized prover for infix proofs allows proving
any predicate Q(C) that depends on a number of blocks that can appear
anywhere within the chain (except the k suffix for stability). These blocks
constitute a subset C′ of blocks, the witness, which may not necessarily
form a chain. This allows proving useful statements such as, for example,
whether a transaction is confirmed. We next formally define the class of
predicates that will be of interest.
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Definition 6 (Infix sensitivity). A chain predicate Qd,k is infix sensi-
tive if it can be written in the form

Qd,k(C) =

{
true, if ∃C′ ⊆ C[: −k] : |C′| ≤ d ∧D(C′)
false, otherwise

where D is an arbitrary efficiently computable predicate such that, for
any block sets C1 ⊆ C2 we have that D(C1)→ D(C2).

Note that C′ is a blockset and may not necessarily be a blockchain.
Furthermore, observe that for all blocksets C′ ⊆ C we have that Q(C′)→
Q(C). This will allow us to later argue that adding more blocks to a
blockchain cannot invalidate its witness.

Similarly to suffix-sensitive predicates, infix-sensitive predicates Q can
be evaluated very efficiently. Intuitively this is possible because of their
localized nature and dependency on the D(·) predicate which requires
only a small number of blocks to conclude whether the predicate should
be true.

Example. We next show how to express the predicate that asks whether
a certain transaction with id txid has been confirmed as an infix sensitive
predicate. We define the predicate Dtxid that receives a single block and
tests whether a transaction with id txid is included. The predicate Qtxid1,k

is defined as in Definition 6 using the predicate Dtxid and the parameter
k which in this case determines the desired stability of the assertion that
txid is included (e.g., k = 6). Q alone proves that a particular block
is included in the blockchain. Some auxiliary data is supplied by the
prover to aid the provability of transaction inclusion: the Merkle Tree
proof-of-inclusion path to the transactions Merkle Tree root, similar to
an SPV proof. This data is logarithmic in the number of transactions in
the block and, hence, constant with respect to blockchain size. In case of
a vendor awaiting transaction confirmation to ship a product, the proof
that a certain transaction paid into a designated address for the particular
order is sufficient. In this scheme it is impossible to determine whether
the money has subsequently been spent in a future block, and so must
only be used by the vendor holding the respective secret keys.

In the above example, note that if the verifier outputs false, this be-
havior will generally be inconclusive in the sense that the verifier could be
outputting false either because the payment has not yet been confirmed
or because the payment was never made.
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Fig. 4. An infix proof descend. Only blue blocks are included in the proof. Blue blocks
of level 4 are part of π, while the blue blocks of level 1 through 3 are produced by
followDown to get to the block of level 0 which is part of C′.

0 0

1

2

0 0

1

3

0 0

1

0

44

EE’

B

Algorithm 5 The Prove algorithm for infix proofs
1: function ProveInfixm,k(C, C′, height)
2: aux← ∅
3: (π, χ)← Provem,k(C) . Start with a suffix proof
4: for B ∈ C′ do
5: for E ∈ π do
6: if height[E] ≥ height[B] then
7: aux← aux ∪ followDown(E,B, height)
8: break
9: end if

10: end for
11: end for
12: return (aux ∪ π, χ)
13: end function

A.1 Construction

The construction of these proofs is shown in Algorithm 5. The infix prover
accepts two parameters: The chain C which is the full blockchain and C′
which is a sub-blockset of the blockchain and whose blocks are of interest
for the predicate in question. The prover calls the previous suffix prover
to produce a proof as usual. Then, having the prefix π and suffix χ of
the suffix proof in hand, the infix prover adds a few auxiliary blocks to
the prefix π. The prover ensures that these auxiliary blocks form a chain
with the rest of the proof π. Such auxiliary blocks are collected as follows:
For every block B of the subset C′, the immediate previous (E′) and next
(E) blocks in π are found. Then, a chain of blocks R which connects E
back to B is found by the algorithm followDown. If E′ is of level µ, there
can be no other µ-superblock between B and E′, otherwise it would have
been included in π. Therefore, B already contains a pointer to E′ in its
interlink, completing the chain.
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The way to connect a superblock to a previous lower-level block is
implemented in Algorithm 6. Block B′ cannot be of higher or equal level
than E, otherwise it would be equal to E and the followDown algorithm
would return. The algorithm proceeds as follows: Starting at block E,
it tries to follow a pointer to as far as possible. If following the pointer
surpasses B, then the procedure at this level is aborted and a lower level
is tried, which will cause a smaller step within the skiplist. If a pointer
was followed without surpassing B, the operation continues from the new
block, until eventually B is reached, which concludes the algorithm.

Algorithm 6 The followDown function which produces the necessary
blocks to connect a superblock E to a preceeding regular block B.
1: function followDown(E, B, height)
2: aux← ∅; µ← level(E)
3: while E 6= B do
4: B′ ← blockById[E.interlink[µ]]
5: if height[B′] < height[B] then
6: µ← µ− 1
7: else
8: aux← aux ∪ {E}
9: E ← B′

10: end if
11: end while
12: return aux
13: end function

An example of the output of followDown is shown in Figure 4. This
is a portion of the proof shown at the point where the superblock levels
are at level 4. A descend to level 0 was necessary so that a regular block
would be included in the chain. The level 0 block can jump immediately
back up to level 4 because it has a high-level pointer.

The verification algorithm must then be modified as in Algorithm 7.

The algorithm works by calling the suffix verifier. It also maintains a
blockDAG collecting blocks from all proofs (it is a DAG because interlink
can be adversarially defined in adversarially mined blocks). This DAG
is maintained in the blockById hashmap. Using it, ancestors uses simple
graph search to extract the set of ancestor blocks of a block. In the final
predicate evaluation, the set of ancestors of the best blockchain tip is
passed to the predicate. The ancestors are included to avoid an adversary
who presents an honest chain but skips the blocks of interest. In partic-
ular, such an adversary would work by including a complete suffix proof,
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but “forgetting” to include the blocks generated by followDown for the
infix proof pertaining to blocks in C′.

Algorithm 7 The verify algorithm for the NIPoPoW infix protocol
1: function ancestors(B, blockById)
2: if B = Gen then
3: return {B}
4: end if
5: C ← ∅
6: for id ∈ B.interlink do
7: if id ∈ blockById then
8: B′ ← blockById[id]
9: C ← C ∪ ancestors(B′, blockById) . Collect into DAG

10: end if
11: end for
12: return C ∪ {B}
13: end function
14: function verify-infxD`,m,k(P)
15: blockById← ∅
16: for (π, χ) ∈ P do
17: for B ∈ π do
18: blockById[id(B)]← B
19: end for
20: end for
21: π̃ ← best π ∈ P according to suffix verifier
22: return D(ancestors(π̃[−1], blockById))
23: end function

B Implementation & Parameters

We now discuss the size of NIPoPoW proofs and evaluate concrete param-
eters. Organizing the interlink data structure as a Merkle tree of log(|C|)
items, a proof-of-inclusion is provided in log log(|C|) space in expectation;
the proof need not include 0-level pointers, but must include the gene-
sis block. Transaction inclusion 5 can be proved in the block header in
log(|x|) using the standard Merkle tree of transactions, where x denotes
the vector of all transactions included in the particular block. This makes
the proof size require log(|x|) + log log(|C|) hashes per block for a to-
tal of (2m(log |C| − logm) + m)(log |x| + log log |C|) hashes. In addition,
m(log(|C|)− log(m)) headers and coinbase transactions are needed. As an
example, given that currently in bitcoin |C| = 464,185 and |x| = 2000, we

5 This additional data is needed if a soft or hard fork is to be avoided. For more
information about gradual deployment paths, consult the relevant section in the
appendix.
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have log(|C|) = 18, log log(|C|) = 5, log(|x|) = 11. For the k-suffix, only k
headers are needed. We set k = 6 and see that headers are 80 bytes and
hashes 32 bytes. For the k-suffix as well as the 2m 0-blocks in π, neither
coinbase data nor prev ids are needed, limiting header size to 48 bytes.
The root and leaves of the pointers tree can be omitted from coinbase
when transmitting the proof. In fact, no block ids need to be transmit-
ted. From these observations, we estimate our scheme’s proof sizes for
various parameterizations of m in Table 1.

Concrete parameterization. To determine concrete values for security
parameter m, we focus on a particular adversarial strategy and analyze
its probability of success. The attack is an extension of the stochastic
processes described in [18] and [23].

The experiment works as follows: m is fixed and some adversarial com-
putational power percentage q of the total network computational power
is chosen; k is chosen based on q according to Nakamoto [18]. The number
of blocks y during which parallel mining will occur is also fixed. The ex-
periment begins with the adversary and honest parties sharing a common
blockchain which ends in block B. After B is mined, the adversary starts
mining in secret and in parallel with the honest parties on her own private
fork on top of B. She ignores the honest chain, so that the two chains
remain disjoint after B. As soon as y blocks have been mined in total,
the adversary attempts a double spend via a NIPoPoW by creating two
conflicting transactions which are committed to an honest block and an
adversarial block respectively on top of each current chain. Finally, the
adversary mines k blocks on top of the double spending transaction within
her private chain. After these k blocks have been mined, she publishes
her private chain in an attempt to overcome the honest chain.

Table 1. Size of NIPoPoWs applied to Bitcoin today (≈450k blocks) for various values
of m, setting k = 6.

m NIPoPoW size Blocks Hashes

6 70 kB 108 1440
15 146 kB 231 2925
30 270 kB 426 5400
50 412 kB 656 8250
100 750 kB 1206 15000
127 952 kB 1530 19050

We measure the probability of success of this attack. We experiment
with various values of m for y = 100, indicating 100 blocks of secret paral-
lel mining. We make the assumption that honest party communication is
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perfect and immediate. We ran 1,000,000 Monte Carlo executions6 of the
experiment for each value of m from 1 to 30. We ran the simulation for
values of computational power percentage q = 0.1, q = 0.2 and q = 0.3.
The results are plotted in Figure 5. Based on these data, we conclude
that m = 5 is sufficient to achieve a 0.001 probability of failure against
an adversary with 10% mining power. To secure against an adversary
with more than 30% mining power, a choice of m = 15 is needed.

Fig. 5. Simulation results for a private mining attacker with k according to Nakamoto
and parallel mining parameter y = 100. Probabilities in logarithmic scale. The hori-
zontal line indicates the threshold probability of [18].

C Evaluation & Applications

In this section we evaluate the cost of NIPoPoWs when used in realistic
blockchain applications. First we simulated the resources savings resulting
from the use of a NIPoPoW-based client compared to ordinary SPV.
We model the arrival of payments in each cryptocurrency as a Poisson
process and assume that the market cap of a cryptocurrency is a proxy for
usage. Currently, a total of 731 cryptocurrencies are listed on coin market
directories7. We narrow our focus to the 80 cryptocurrencies that have
their own PoW blockchains with a market cap of over USD $100,000.

6 Our experiment can be reproduced by running our code available under an
open source MIT license at https://github.com/dionyziz/popow/tree/master/

experiment
7 https://coinmarketcap.com/
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In Table 2 we show aggregate statistics about these 80 cryptocurren-
cies, grouped according to the their PoW puzzle. While the entire chain in
Bitcoin only amounts to 40 MB, taken together, the 80 cryptocurrencies
comprise 10 GB of proofs-of-work, and generate 10 MB more each day. In
Table 3 we show the resulting bandwidth costs from simulating a period
of 60 days with m = 24, k = 6, with varying rates of payments received.
For the näıve SPV client, the total bandwidth cost is dominated by fetch-
ing the entire chain of headers, which the NIPoPoW client avoids. The
marginal cost for näıve SPV depends on the number of blocks generated
per day, as well as the transaction inclusion proofs associated with each
payment. The NIPoPoW-based client provides the most savings when
the number of transactions per day is smallest, reducing the necessary
bandwidth per day (excluding the initial sync up) by 90%.

Table 2. Cost of header chains for all active PoW-based cryptocoins (collected from
coinwarz.com)

Hash Coins Size today Growth rate

Scrypt 44 4.3 GB 5.5 MB / day
SHA-256 15 1.4 GB 937.0 kB / day
X11 5 581.1 MB 556.3 kB / day
Quark 3 647.9 MB 518.4 kB / day
CryptoNight 2 199.0 MB 115.2 kB / day
EtHash 2 588.6 MB 921.6 kB / day
Groestl 2 300.3 MB 184.2 kB / day
NeoScrypt 2 310.6 MB 153.6 kB / day
Others 5 266.2 MB 311.1 kB / day

Total 80 8.5 GB 9.2 MB / day

Table 3. Simulated bandwidth of multi-blockchain clients after two months (Averaged
over 10 trials each)

tx/ Naive SPV NIPoPoW
day Total (Daily) Total (Daily) Savings

100 5.5 GB(5.5 MB) 31.7 MB(507 kB) 99% (91%)
500 5.5 GB(5.7 MB) 68.2 MB(1.1 MB) 99% (81%)
1000 5.5 GB(6.0 MB) 99.1 MB(1.6 MB) 98% (73%)
3000 5.6 GB(7.0 MB) 192 MB (3.1 MB) 97% (56%)

Multi-blockchain wallets. An application of our technique is an ef-
ficient multi-cryptocoin client. Consider a merchant who wishes to ac-
cept payments in any cryptocoin, not just the popular ones. The näıve
approach would be to install an SPV client for each known coin. This
approach would entail downloading the header chain for each coin, and
periodically syncing up by fetching any newly generated block headers.
An alternative would be to use an online service supporting multiple
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currencies, but this introduces reliance on a third party (e.g. Jaxx and
Coinomi rely on third party networks).

A NIPoPoW-based client would not download the entire header chain,
but would instead only receive NIPoPoW proofs each time a payment is
received. When a peer informs the client about a payment, they include a
block index ` and NIPoPoW proof of transaction inclusion. The peer must
then query all of their connected peers, requesting any better proof for the
same predicate. After waiting a short time period for a response, the client
runs the verify-infix routine on all received proofs, and accepts the
transaction if the output is true. Although initially such proofs must be
relative to genesis, the client may store the most recently-known (k-stable)
blockhash for each coin such that future payments can include NIPoPoW
proofs relative to that. Thus for popular cryptocurrencies, the NIPoPoW-
based client downloads nearly every block header, like an ordinary SPV
client; but for coins used infrequently, the NIPoPoW-based client can skip
over most blocks.

Cross-chain ICOs. As an example use-case of our construction, we
present the case of an ICO in which tokens are distributed in one block-
chain, but funds are raised in another. It works as follows: There are two
designated blockchains, the source and the destination blockchain. The
source is the blockchain where the fund-raising will take place, while the
destination is the blockchain where the newly issued tokens will be dis-
tributed and subsequently exchanged. The destination blockchain must be
smart-contract-enabled in order to allow for the distribution of ERC-20-
style [24] tokens. In addition, the smart contracts on the destination block-
chain must allow for programming the verification of a NIPoPoW proof
by including, for example, the appropriate hash functions. The source
blockchain must be NIPoPoW-enabled. This setup allows the creation
of NIPoPoWs about the source blockchain which will be included in the
destination blockchain. For example, a source blockchain can be Litecoin
and a destination blockchain Ethereum.

In order to run the ICO, the fund-raising entity first creates a desig-
nated account in the source blockchain in which funds will be deposited.
It then creates the ERC-20-style smart contract in the destination block-
chain. When someone wishes to participate in the ICO, they transfer
funds into the designated account on the source blockchain. Once they
have made the transfer and it becomes confirmed, the payer generates a
NIPoPoW about the transaction paying into the designated account. This
NIPoPoW is then sent as a parameter to a method call on the ICO smart
contract on the destination blockchain. The method call stores the proof
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and waits for a certain period of time for possible contestations, which
can be accepted and compared using the ≤m mechanism previously de-
scribed. If no contesting proof is presented within the contestation period,
the prover receives their respective ICO tokens on the target blockchain.
In order for only the rightful owner to be able to receive the tokens, they
are required to sign the destination address on the destination blockchain
using the private key corresponding to their source account used to make
the payment within the source blockchain.

We implemented the NIPoPoW verifier algorithm as a Solidity smart
contract8. The contract consists of two functions. The submit nipopow

function is used by the provers to provide their proof vectors. Instead
of passing the block headers of the proof, the provers pass the hashes of
the block headers and the hashes of the interlink vector. The reason is
that the full data of the block header (especially the Merkle tree root)
is only useful for the blocks of interest. Thus, we reduce the amount of
data needed for the proof by a factor of 2. The rest of the parameters
are used in the inclusion proof of the block. After confirming the validity
of the proof, the compare proofs function is called between the current
and the best proof. If the current proof is better then it is assigned to
the best proof in the contract’s storage. The gas costs are summarized in
Table 4. The $USD column represents the current price of this much gas
on Ethereum.

Table 4. Verifier contract functions

Function Data Gas cost $USD

compare proofs ∼8Kb ∼5M $4

submit nipopow ∼65Kb ∼40M $32

D Superchain Quality Distributions

In order to argue formally about the security properties of blockchains
that are equipped with the interlink data structure we introduce the new
concept of superchain quality, which generalizes the chain quality property
from the backbone model [10]. Superchain quality is a new contribution
in this paper and is essential for identifying and overcoming the attack
on PoPoW.

8 The source code of the smart contract is available under an open source
MIT license at https://github.com/dionyziz/popow/blob/master/experiment/

contractNipopow.sol

25

https://github.com/dionyziz/popow/blob/master/experiment/contractNipopow.sol
https://github.com/dionyziz/popow/blob/master/experiment/contractNipopow.sol


We first define a notion of “goodness” that bounds the deviation of
superblocks of a certain level from their expected mean. Using this we
then define superchain quality.

Intuitively, these definitions tell us that µ-superblocks occur approxi-
mately once every 2µ blocks. Below, we make this notion more formal.

Definition 7 (Locally good superchain). A superchain C′ of level
µ with underlying chain C is said to be µ-locally-good with respect to
security parameter δ, written local-goodδ(C′, C, µ), if |C′| > (1− δ)2−µ|C|.

Definition 8 (Superchain quality). The (δ,m) superquality property
Qµscq of a chain C pertaining to level µ with security parameters δ ∈ R and
m ∈ N states that for all m′ ≥ m, it holds that local-goodδ(C↑µ [−m′ :
], C↑µ [−m′ :]↓ , µ). That is, all sufficiently large suffixes are locally good.

Definition 9 (Multilevel quality). A µ-superchain C′ is said to have
multilevel quality, written multi-goodδ,k1(C, C′, µ) with respect to an un-
derlying chain C = C′↓ with security parameters k1, δ if for all µ′ < µ
it holds that for any C∗ ⊆ C, if |C∗↑µ′ | ≥ k1, then |C∗↑µ | ≥ (1 −
δ)2µ

′−µ|C∗↑µ′ |.

Putting the above together we conclude with the notion of a good
superchain.

Definition 10 (Good superchain). A µ-superchain C′ is said to be
good, written goodδ,k1(C, C′, µ), with respect to an underlying chain C =
C′↓ if it has both superquality and multilevel quality with parameters
(δ,m).

It is not hard to see that the above good statistical properties are
attained with overwhelming probability by all chains that are generated
in optimistic environments, i.e. if no adversary tries to violate them. We
formalize this in the following theorems.

Lemma 1 (Local goodness). Assume C contains only honestly-generated
blocks in an optimistic execution. For all levels µ, for all constant δ > 0,
all continuous subchains C′ = C[i : j] with |C′| ≥ m are locally good,
local-goodδ(C′, C, µ), with overwhelming probability in m.

Proof. Observing that for each honestly generated block the probability
of being a µ-superblock for any level µ follows an independent Bernoulli
distribution, we can apply a Chernoff bound to show that the number of
superblocks within a chain will be close to its expectation, which is what
is required for local goodness. ut
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Lemma 2 (Multilevel quality). For all µ, 0 < δ ≤ 0.5, chain C
containing only honestly-generated blocks in an optimistic execution has
(δ, k1) multilevel quality at level µ with overwhelming probability in k1.

Proof. Identical. ut

Lemma 3 (Superquality). For all µ, δ > 0, a chain C adopted in an
optimistic execution has (δ,m)-superquality at level µ with overwhelming
probability in m.

Proof. Let C′ = C↑µ and let C∗ = C′[−m′ :] for some m′ ≥ m. Then let
B ∈ C∗↓ and let XB be the random variable equal to 1 if level(B) ≥ µ and
0 otherwise. {XB : B ∈ C∗} are mutually independent Bernoulli random
variables with expectation E(XB) = 2−µ|C∗↓ |. Let X =

∑
B∈C∗↓ XB.

Then X follows a Binomial distribution with parameters (m′, 2−µ) and
note that |C∗| = X. Then E(|C∗↓ |) = 2−µ|C∗|. Applying a Chernoff bound
on |C∗↓ | we obtain Pr[|C∗↓ | ≤ (1 − δ)2−µ|C∗↓ ] ≤ exp(−δ22−µ−1|C∗|).

ut

Lemma 4 (Optimistic superchain distribution). For any level µ,
and any 0 < δ < 0.5, a chain C containing only honestly-generated blocks
adopted by an honest party in an execution with random network schedul-
ing is (δ,m)-good at level µ with overwhelming probability in m.

Proof. This is a direct consequence of Lemma 3 and Lemma 2. ut

E Proof of attack on PoPoW

We now show that, if the statistical properties of blockchains are not
respected in some execution, our construction presented in the main paper
is insecure by illustrating an explicit attack against our scheme. During
the exposition of this attack, a simple patch for our construction, which
will also lead to a correct generic security proof, will become clear.

We proceed in two steps. We first show that a powerful attacker can
break chain superquality with non-negligible probability. Then we con-
struct a concrete double spending attack based on this observation as-
suming an attacker of sufficiently high hashing power (but still below
50%).
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E.1 Attacking chain superquality

We construct an adversary A that breaks the superchain quality at level
µ. A works as follows. Assume she wants to attack the honest party B
in order to have him adopt chain CB which has a bad distribution of
superblocks, i.e. such that local goodness is violated in some sufficiently
long subchain. She continuously determines the current chain CB adopted
by B. The adversary starts playing after |CB| ≥ 2. If level(CB[−1]) < µ,
then A remains idle. However, if level(CB[−1]) ≥ µ, then A attempts to
mine an adversarial block b on top of CB[−2]. If successful, she attempts to
mine another block b′ on top of b. If successful again, she broadcasts b and
b′. The adversarial mining continues until B adopts a new chain, which
can be due to two reasons: Either the adversary successfully mined b, b′

on top of CB[−2] and B adopts them; or one of the honest parties mined
a block which was adopted by B. In either case, the adversary restarts
the strategy by inspecting C[−1] and acting accordingly. An execution of
this attack is illustrated in Figure 6.

Fig. 6. Superquality attack on prior work (PoPoW) [15]. The adversary performs a
selfish-mining [9] attack (gray blocks) whenever any honest parties have recently mined
a rare µ-superblock (black). The attack reduces the honest chain’s superquality, while
the attacker’s private chain is unaffected.

Assume now that an honestly-generated µ-superblock was adopted
by B at position CB[i] at round r. We now examine the probability that
CB[i] will remain a µ-superblock in the long run. Suppose r′ > r is the
first round after r during which a block is generated. A will succeed in
this attack with non-negligible probability and cause B to abandon the
µ-superblock from their adopted chain. Therefore, there exists δ such
that the adversary will be able to cause δ-variance with non-negligible
probability in m. This suffices to show that superquality is violated.

As seen in the illustration, while the honest parties have generated
several µ-superblocks, some of them are in blockchain forks which have
been abandoned, causing a superquality harm.
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E.2 A double-spending attack

Extending the above attack, we modify the superquality attacker into an
attacker that causes a double spending attack in the PoPoW construction.
We first give a sketch of the attack.

As before, A targets the proofs generated by honest party B by vi-
olating µ-superquality in B’s adopted chain. A begins by remaining idle
until a certain chosen block b. After block b is produced, A starts mining
a secret chain which forks off from b akin to a selfish mining attacker [9].
The adversary performs a normal spending transaction on the honestly
adopted blockchain and has it confirmed in the block immediately follow-
ing block b. She also produces a double spending transaction which she
secretly confirms in her secret chain in the block immediately following b.

A keeps extending her own secret chain as usual. However, whenever
a µ-superblock is adopted by B, she temporarily pauses mining in her
secret chain and devotes her mining power to harm the µ-superquality of
B’s adopted chain. Intuitively, for large enough µ, the time spent trying
to harm superquality will be limited, because the probability of a µ-
superblock occurring will be small. Therefore, the adversary’s superchain
quality will be larger than the honest parties’ superchain quality (which
will be harmed by the adversary) and therefore, even though the adver-
sary’s 0-chain will be shorter than the honest parties’ 0-chain, the adver-
sary’s µ-superchain will be longer than the honest parties’ µ-superchain
and thus will be favored by the verifier. We just remark here that for ap-
propriate choice of system parameters, the attack can be made to succeed
with overwhelming probability.

We now calculate the exact probability of success of the attack. The
attack is parameterized by parameters r, µ which are picked by the ad-
versary. µ is the superblock level at which the adversary will produce a
proof longer than the honest proof. The modified attack works as follows:
Without loss of generality, fix block b to be Genesis. The adversary always
mines on the secret chain which forks off from genesis, unless a superblock
generation event occurs. If a superblock generation event occurs, then the
adversary pauses mining on the secret chain and attempts a block suppres-
sion attack on the honest chain. The adversary devotes exactly r rounds
to this suppression attack; then resumes mining on the secret chain. We
show that, despite this simplification (of fixing r) which is harmful to
the adversary, the probability of a successful attack is non-negligible for
certain values of the protocol parameters 9.

9 The attack could be further optimized, but we simplify it for exposition.
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The adversary monitors the network for superblocks. Whenever an
honest party diffuses an honestly-generated µ-superblock, at the end of a
given round r1, the adversary starts devoting their mining power to block
suppression starting from the next round.

The block suppression attack works as follows. Let b be the honestly
generated µ-superblock which was diffused at the end of the previous
round. If the round was not uniquely successful, let b be any of the diffused
honestly-generated µ-superblocks. Let b be the tip of an honest chain CB.
The adversary first mines on top of CB[−2]. If she is successful in mining
a block b′, she continues extending the chain ending at b′ (to mine b′′ and
so on). The value r is fixed, so the adversary devotes exactly r rounds to
this whole process; the adversary will keep mining on top of CB[−2] (or
one of the adversarially-generated extensions of it) for exactly r rounds,
regardless of whether b′ or b′′ have been found. At the same time, the
honest parties will be mining on top of b (or a competing block in the
case of a non-uniquely successful round). Again, further successful block
diffusion by the honest parties shall not affect that the adversary is going
to spend exactly r rounds for suppression. This attack will succeed with
overwhelming probability for the right choice of protocol values.

Theorem 3 (Double-spending attack). There exist parameters p, n,
t, q, µ, δ, with t ≤ (1− δ)(n− t), and a double spending attack against the
constructions of Section 4 and Section A that succeeds with overwhelming
probability.

Proof. Recall that in the backbone notation n denotes the total number
of parties, t denotes the number of adversarial parties, q denotes the
number of the random oracle queries allowed per party per round and
p is the probability that one random oracle query will be successful and
remember that p = T/2κ where T is the mining target and κ is the security
parameter (or hash function bit count). Then f denotes the probability
that a given round is successful and we have that f = 1 − (1 − p)q(n−t).
Recall further that a requirement of the backbone protocol is that the
honest majority assumption is satisfied, that is that t ≤ (1 − δ)(n − t)
were δ ≥ 2f+3ε, where ε ∈ (0, 1) is an arbitrary small constant describing
the quality of the concentration of the random variables.

Denote αA the secret chain generated by the adversary and αB the
honest chain belonging to any honest party. We will show that for certain
protocol values we have that Pr[|αA↑µ | ≥ |αB↑µ |] is overwhelming.

Assume that, to the adversary’s harm and to simplify the analysis,
the adversary plays at beginning of every round and does not perform
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adversarial scheduling. At the beginning of the round when it is the ad-
versary’s turn to play, she has access to the blocks diffused during the
previous round by the honest parties.

First, observe that at the beginning of each round, the adversary finds
herself in one of two different situations: Either she has been forced into
an r-round-long period of suppression, or she is not in that period. If she
is within that period, she blindly performs the suppression attack without
regard for the state of the world. If she is not within that period, then
she must initially observe the blocks diffused at the end of the previous
round by the honest parties. Call these rounds during which the diffused
data must be examined by the adversary decision rounds. Let there be
ω decision rounds in total. In each such decision round, it is possible
that the adversary discovers a diffused µ-superblock and therefore decides
that a suppression attack must be performed starting with the current
round. Call these rounds during which this discovery is made by the
adversary migration rounds. Let there be y migration rounds in total.
The adversary devotes the migration round to performing the suppression
attack as well as r − 1 non-migration rounds after the migration round.
Call these rounds, including the migration round, suppression rounds.
In the rest of the decision rounds, the adversary will not find any µ-
superblocks diffused. Call these secret chain rounds; these are rounds
where the adversary devotes her queries to mining on the secret chain.
Let there be x secret chain rounds. If the adversary devotes ω decision
rounds to the attack in total, then clearly we have that ω = x+ y. If the
total number of rounds during which the attack is running is s then we
also have that s = x + ry, because for each migration round there are
r − 1 non-decision rounds that follow.

We will analyze the honest and adversarial superchain lengths with
respect to ω, which roughly corresponds to time (because note that ω ≥
s/r, and so ω is proportional to the number of rounds). Let us calculate
the probability pSB (“superblock probability”) that a decision round ends
up being a migration round. Ignoring the negligible event that there will
be random oracle collisions, we have that pSB = (n− t)qp2−µ.

Given this, note that the decision taken at the beginning of each de-
cision round follows independent Bernoulli distributions with probability
pSB. Denote zi the indicator random variable indicating whether the deci-
sion round was a migration round. Therefore we can readily calculate the
expectations for the random variables x and y, as x = ω−y, y =

∑ω
i=1 zi.

We have E[x] = (1−pSB)ω and E[y] = pSBω. Applying a Chernoff bound
to the random variables x and y, we observe that they will attain values
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close to their mean for large ω and in particular Pr[y ≥ (1 + δ)E[y]] ≤
exp(− δ2

3 E[y]) and similarly Pr[x ≤ (1 − δ)E[x]] ≤ exp(− δ2

2 E[x]), which
are negligible in ω.

Given that there will be x secret chain rounds, we observe that the
random variable indicating the length of the secret adversarial super-
chain follows the binomial distribution with xtq repetitions and proba-
bility p2−µ. We can now calculate the expected secret chain length as
E[|αA↑µ |] = xtqp2−µ. Observe that in this probability we have given the
adversary the intelligence to continue using her random oracle queries
during a round even after a block has been found during a round and
not to wait for the next round. Applying a Chernoff bound, we obtain
that Pr[|αA↑µ | ≤ (1 − δ)E[|αA↑µ |]] ≤ exp(− δ2

2 E[|αA↑µ |]), which is
negligible in ω (because we know that with overwhelming probability
x > (1− δ)(1− pSB)ω).

It remains to calculate the behavior of the honest superchain. Suppose
that a migration round occurs during which at least one superblock B is
diffused. We will now calculate the probability psup that the adversary is
able to suppress that block after r rounds by performing the suppression
attack and cause all honest parties to adopt a chain not containing B.

One way for this to occur is if the adversary has generated exactly
2 shallow blocks (blocks which are not µ-superblocks) after exactly r
rounds and the honest parties having generated exactly 0 blocks after
exactly r rounds. This provides a lower bound for the probability, which is
sufficient for our purposes. Call ADV-WIN the event where the adversary
has generated exactly 2 shallow blocks after exactly r rounds since the
diffusion of B and call HON-LOSE the event where the honest parties
have generated exactly 0 blocks after exactly r rounds since the diffusion
of B.

The number of blocks generated by the adversary after the diffusion
of B follows the binomial distribution with r repetitions and probabil-
ity pLB, where pLB denotes the probability that the adversary is able to
produce a shallow block (“low block probability”) during a single round.
We have that pLB = tqp(1− 2−µ). To evaluate Pr[ADV-WIN], we evalu-
ate the binomial distribution for 2 successes to obtain Pr[ADV-WIN] =
r(r−1)

2 p2LB(1−pLB)r−2. The number of blocks generated by the honest par-
ties after the diffusion of B follows the binomial distribution with r rep-
etitions and probability f . To evaluate Pr[HON-LOSE], we evaluate the
binomial distribution for 0 successes to obtain Pr[HON-LOSE] = (1−f)r.
Note that this is an upper bound in the probability, in particular because
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there can be multiple blocks during a non-uniquely successful round dur-
ing which a µ-superblock was generated.

Then observe that the two events ADV-WIN and HON-LOSE are in-
dependent and therefore psup = Pr[ADV-WIN] Pr[HON-LOSE] = r(r−1)

2 p2LB(1−
pLB)r−2(1− f)r.

Now that we have evaluated psup, we will calculate the honest chain
length in two chunks: The superblocks generated and adopted by the hon-
est parties during secret chain rounds, C1, and the superblocks generated
and adopted by the honest parties during suppression rounds, C2 (and
note that these sets of blocks are not blockchains on their own).

|C1| is a random variable following the binomial distribution with s(n−
t)q repetitions and probability p2−µ(1 − psup). In the evaluation of this
distribution, we give the honest parties the liberty to belong to a mining
pool and share mining information within a round, an assumption which
only makes matters for the adversary worse. We can now calculate the
expected length of C1 to find E[|C1|] = s(n−t)qp2−µ(1−psup). Applying a

Chernoff bound, we find that Pr[|C1| ≥ (1 + δ)E[|C1|]] ≤ exp(− δ2

3 E[|C1|]),
which is negligible in s.

Finally, some additional µ-superblocks could have been generated by
the honest parties while the adversary is spending r rounds attempting to
suppress a previous µ-superblock. These µ-superblocks will be adopted
in the case the adversary fails to suppress the previous µ-superblock.
As the adversary does not devote any decision rounds to these new µ-
superblocks, they will never be suppressed if the previous µ-superblock
is not suppressed. We collect these in the set C2. To calculate |C2|, ob-
serve that the number of unsuppressed µ-superblocks which caused an
adversarial suppression period is |C1|. For each of these blocks, the hon-
est parties spend r rounds attempting to form further µ-superblocks on
top. The total number of such attemps is r|C1|. Therefore, the number
of further honestly generated µ-superblocks attained during the |C1| dif-
ferent r-round periods follows a binomial distribution with |C1|rq(n − t)
repetitions and probability p2−µ. Here we allow the honest parties to
use repeated queries within a round even after a shallow success and to
work in a pool to obtain an upper bound for the expectation. Therefore
E[|C2|] = |C1|rq(n−t)p2−µ and applying a Chernoff bound we obtain that
Pr[|C2| ≥ (1 + δ)E[|C2|]] ≤ exp(− δ

3E[|C2|]), which is negligible in s and
has a quadratic error term. We deduce that |C2| will have a very small
length compared to the rest of the honest chain, as it is a vanishing term
in µ.
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Concluding the calculation of the adversarial superchain, we get E[|αB↑µ
|] = E[|C1|] + E[|C2|].

Finally, it remains to show that there exist values p, n, t, q, r, µ, δ such
that a E[|αA↑µ |] ≥ (1 + δ)E[|αB↑µ |]. Using the values p = 10−5, q =
1, n = 1000, t = 489, µ = 25, r = 200, we observe that the honest majority
assumption is preserved. Replacing these values into the expectations
formulae above, we obtain E[|αA↑µ |] ≈ 1.457∗10−10∗ω and E[|αB↑µ |] ≈
1.424∗10−10∗ω, which result to a constant gap δ. Because the adversarial
chain grows linearly in ω, the adversary only has to wait sufficient rounds
for obtaining m blocks to create a valid proof. Therefore, for these values,
the adversary will be able to generate a convincing PoPoW at some level
µ which is longer than the honest parties’ proof, even when the adversary
does not have a longer underlying blockchain. ut

E.3 Interactive Proofs of Proof-of-Work

Our attack also applies against the protocol described in [15].
In [15], the main algorithm of the verifier aims at distinguishing be-

tween two candidate proofs (πA, χA) and (πB, χB). The honest prover,
having adopted CB during mining, initially produces the proof (πB, χB)
as follows. First, the last k blocks are sent as χB = CB[−k :]. Then for the
first part of the chain, CB[: −k], the prover sets πB to be the µ-superchain
spanning CB for the largest µ such that |πB| = m, where m is the proto-
col’s security parameter. The verifier ensures that |πA| ≥ m, |πB| ≥ m so
that the proofs are not shorter than m and then checks whether πA = πB;
if so, the decision is drawn immediately based on χA, χB without in-
teraction. Otherwise, the verifier queries the provers for their claimed
anchored superchains CA↑µ, CB↑µ at some level µ. The verifier starts
querying at the highest possible level µ and descends until level µ is
sufficiently low such that b = LCA(πA↑µ, πB↑µ) is m blocks from the
tip of the chain for one of the proofs. That is, the querying stops at
such µ when max(|πA↑µ {b :}|, |πB↑µ {b :}|) ≥ m. The winner is des-
ignated as the prover with the most blocks after b at that level; i.e., A,
if |πA↑µ {b :}| ≥ |πB↑µ {b :}|, and B otherwise. The communication
overhead is reduced by only requesting blocks after the purported LCA.
The security parameter m is chosen to ensure that the probability of the
attacker producing a long superchain is negligible.

It is worth isolating the mistake in their security proof. Suppose player
B is honest and player A is adversarial and suppose b, the LCA block,
was honestly generated and suppose that the superchain comparison hap-
pens at level µ. Their security proof then correctly argues that there will
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have been more honestly- than adversarially-generated µ-superblocks af-
ter block b. Nevertheless, we observe that the mere fact that there have
been more honestly- than adversarially-generated µ-superblocks after b
does not imply that |πA↑µ {b :}| ≤ |πB↑µ {b :}|. The reason is that some
of these superblocks could belong to blocktree forks that have been aban-
doned by B. Thus, the security conclusion does not follow. Regardless,
their basic argument and construction is what we will use as a basis for
constructing a system that is both provably secure and succinct under
the same assumptions, albeit requiring a more complicated construction
structure to obtain security.

F Formal security treatment

Based on the attack explored above, it is now easy to see that our con-
struction can be patched in a straightforward manner to achieve security.
In particular, since the manner in which the adversary was able to sub-
vert the prover was by the violation of goodness, we can mandate that
the prover only tries to use succinct proofs to prove claims about chains
that are good at every level. In case goodness is violated, the prover sim-
ply falls back to providing the whole chain. This allows us to argue that
the construction is secure by distinguishing two cases. In case goodness
is violated, the honest prover will fall back to providing the whole chain,
in which case security will be reduced to the security of the standard
blockchain protocol choosing the longest 0-chain. In case goodness is not
violated, we will argue that the adversary is unable to win in these com-
parisons.

The previous construction was designed to prevent Bahack-style at-
tacks [3], where the adversary constructs “lucky” high-difficulty super-
blocks without filling in the underlying proof-of-work in the lower levels.
We now patch our protocol which, while retaining this high level ap-
proach, adds a defence against the double-spending attack of Section E.
The attack is neutralized since our verifier is more permissive, allowing
the prover to construct a proof that takes superquality “goodness” into
account when comparing forks. The modified construction is shown in Al-
gorithm 8. The algorithm has been modified to check the current portion
of the subchain α for goodness prior to moving to the lower superchain
level. If goodness is indeed maintained at the current level µ, the prover
only tries to cover the span of the last m blocks of level µ at level µ− 1,
as seen in Line 7. Otherwise, if goodness is violated at the part of the
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subchain α at level µ, then the prover completely ignores level µ and
tries to use the lower level µ− 1 to cover the whole span of α.

Algorithm 8 The goodness aware Prove algorithm for the NIPoPoW
protocol

1: function Provegoodm,k,δ(C)
2: B ← C[0] . Genesis
3: for µ = |C[−k].interlink| down to 0 do
4: α← C[: −k]{B :}↑µ
5: π ← π ∪ α
6: if goodδ,m(C, α, µ) then
7: B ← α[−m]
8: end if
9: end for

10: χ← C[−k :]
11: return πχ
12: end function

Only the concrete prover needs to be modified. The verifier and ≤m
operator remain as defined previously.

To aid intuition, we give a sketch of the proof before giving the full
technical proof.

Theorem 4 (Security). Assuming honest majority, the Non-interactive
Proofs of Proof-of-Work construction for computable k-stable monotonic
suffix-sensitive predicates is secure with overwhelming probability in κ.

Proof (Sketch). Suppose an adversary produces a proof πA and an honest
party produces a proof πB such that the two proofs cause the predicate Q
to evaluate to different values, while at the same time all honest parties
have agreed that the correct value is the one obtained by πB. Because of
Bitcoin’s security, A will be unable to make these claims for an actual
underlying 0-level chain.

We now argue that the operator ≤m will signal in favour of the honest
parties. Suppose b is the LCA block between πA and πB. If the chain forks
at b, there can be no more adversarial blocks after b than honest blocks
after b, provided there are at least k honest blocks (due to the Common
Prefix property). We will now argue that, further, there can be no more
disjoint µA-level superblocks than honest µB-level superblocks after b.

To see this, let b be an honest block generated at some round r1
and let the honest proof be generated at some round r3. Then take the
sequence of consecutive rounds S = (r1, · · · , r3). Because the verifier re-
quires at least m blocks from each of the provers, the adversary must have
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m µA-superblocks in πA{b :} which are not in πB{b :}. Therefore, using
a negative binomial tail bound argument, we see that |S| must be long;
intuitively, it takes a long time to produce a lot of blocks |πA{b :}|. Given
that |S| is long and that the honest parties have more mining power, they
must have been able to produce a longer πB{b :} argument (of course,
this comparison will have the superchain lengths weighted by 2µA , 2µB

respectively). To prove this, we use a binomial tail bound argument; in-
tuitively, given a long time |S|, a lot of µB-superblocks |πB{b :}| will have
been honestly produced.

We therefore have a fixed value for the length of the adversarial ar-
gument, a negative binomial random variable for the number of rounds,
and a binomial random variable for the length of the honest argument.
By taking the expectations of the above random variables and applying a
Chernoff bound, we see that the actual values will be close to their means
with overwhelming probability, completing the proof. ut

We now give a formal treatment of the security proof. Assume t ad-
versarial and n total parties, each with q PoW random oracle queries per
round. We will call a query to the RO µ-successful if the RO returns a
value h such that h ≤ 2−µT .

We define boolean random variables Xµ
r , Y µ

r and Zµr . Fix some round
r, query index j and adversarial party index k (out of t). If at round i
an honest party obtains a PoW with id < 2−µT , set Xµ

r = 1, otherwise
Xµ
r = 0. If at round r exactly one honest party obtains a PoW with

id < 2−µT , set Y µ
r = 1, otherwise Y µ

r = 0. If at round r the j-th query of
the k-th corrupted party is µ-successful, set Zµijk = 1, otherwise Zµijk = 0.

Let Zµr =
∑t

k=1

∑q
j=1 Z

µ
ijk. For a set of rounds S, let Xµ(S) =

∑
r∈S Xr

and similarly define Y µ(S), Zµ(S).

Definition 11 (Typical execution). An execution of the protocol is
(ε, η)-typical if:

Block counts don’t deviate. For all µ ≥ 0 and any set S of con-
secutive rounds with |S| ≥ 2µηκ, we have:

– (1− ε)E[Xµ(S)] < Xµ(S) < (1 + ε)E[Xµ(S)] and (1− ε)E[Y µ(S)] <
Y µ(s).

– Zµ(S) < (1 + ε)E[Zµ(S)].

Round count doesn’t deviate. Let S be a set of consecutive rounds
such that Zµ(S) ≥ k for some security parameter k. Then |S| ≥ (1 −
ε)2µ Z

µ(S)
pqt with overwhelming probability in k.

37



Chain regularity. No insertions, no copies, and no predictions [10]
have occurred.

Theorem 5 (Typicality). Executions are (ε, η)-typical with overwhelm-
ing probability in κ.

Proof. Block counts and regularity. For the blocks count and regu-
larity, we refer the reader to [10] for the full proof.

Round count. First, observe that Zµijk ∼ Bern(2−µp) and these are

jointly independent. Therefore ZµS ∼ Bin(tq|S|, 2−µp) and |S| ∼ NB(ZS ,

2−µp). So E(|S|) = 2µ ZSpqt . Applying a tail bound to the negative binomial

distribution, we obtain that Pr[|S| < (1− ε)E(|S|)] ∈ Ω(ε2m). ut

The following lemma is at the heart of the security proof that will
follow.

Lemma 5. Suppose S is a set of consecutive rounds r1 . . . r2 and CB is
a chain adopted by an honest party at round r2 of a typical execution.
Let CSB = {b ∈ CB : b was generated during S}. Let µA, µB ∈ N. Suppose
CSB↑µB is good. Suppose C′A is a µA-superchain containing only adversari-
ally generated blocks generated during S and suppose that |C′A| ≥ k. Then
2µA |C′A| <

1
32µB |CSB↑µB |.

Proof. From |C′A| ≥ k we know that Zµ(S) ≥ k. From the definition of
typicality, we have |S| ≥ (1 − ε′)2µA 1

pqt |C
′
A|. Applying the chain growth

theorem [10] we obtain that |CSB| ≥ (1 − ε)f |S|. But from the good-
ness of CSB↑µB , we know that |CSB↑µB | ≥ (1 − δ)2−µB |CSB|. Therefore
|CSB↑µB | ≥ 2−µB (1 − δ)(1 − ε)f(1 − ε′)2µA 1

pqt |C
′
A| and so 2µA |C′A| <

pqt
(1−δ)(1−ε′)(1−ε)f 2µB |CSB↑µB |. ut

Definition 12 (Adequate level of honest proof). Let π be an hon-
estly generated proof constructed upon some adopted chain C and let b ∈ π.

Then µ′ is defined as µ′ = max{µ : |π{b :}↑µ | ≥ max(m + 1, (1 −
δ)2−µ|π{b :}↑µ↓ |)}. We call µ′ the adequate level of proof π with respect
to block b with security parameters δ and m.

Note that the adequate level of a proof is a function of both the proof
π and the chosen block b.

Lemma 6. Let π be some honest proof generated with security param-
eters δ,m. Let C be the underlying chain, b ∈ C be any block and µ′ be
the adequate level of the proof with respect to b and the same security
parameters.

Then C{b :}↑µ′= π{b :}↑µ′.
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Proof. π{b :}↑µ′⊆ C{b :}↑µ′ is trivial. For the converse, we show that for
all µ∗ > µ′, we have that in the iteration of the Prove for loop with
µ = µ∗, the block stored in variable B precedes b in C.

Suppose µ = µ∗ is the first for iteration during which the property is
violated. This cannot be the first iteration, as there B = C[0] and Genesis
precedes all blocks. By the induction hypothesis we see that during the
iteration µ = µ∗+1, B preceded b. From the definition of µ′ we know that
µ′ is the highest level for which |π{b :}↑µ′ [1 :]| ≥ max(m, (1−δ)2−µ′ |π{b :
}↑µ′ [1 :]↓ |).

Hence, this property cannot hold for µ∗ > µ′ and therefore |πB{b :
}↑µ∗ [1 :]| < m or ¬local-goodδ(π{b :}↑µ∗ [1 :], C, µ∗).

In case local-good is violated, variable B remains unmodified and the
induction step holds. If local-good is not violated, then |π{b :}↑µ∗ [1 :]| <
m and so π↑µ∗ [−m] precedes b. ut

Remark 1 (Goodness adequacy). If the goodness of the chain can be as-
sumed, then the adequate level of an honest proof is nothing else than
the highest level having a sufficient (m) number of blocks after the fork
point b. In that case, the proof for the above lemma is easy and follows
from the prover construction. It always covers the last m blocks of level
µ with the respective blocks in level µ− 1.

Lemma 7. Suppose the verifier evaluates πA ≥ πB in a protocol inter-
action where B is honest and assume during the comparison that the
compared level of the honest party is µB. Let b = LCA(πA, πB) and let µ′B
be the adequate level of πB with respect to b. Then µ′B ≥ µB.

Proof. Because µB is the compared level of the honest party we have
2µB |C{b :}↑µB | > 2µB |C{b :}|. The proof is by contradiction. Suppose
µ′B < µB. By definition, µ′B is the maximum level such that |πB{b :}↑µ
[1 :]| ≥ max(m, (1−δ)2−µ|πB{b :}↑µ [1 :]↓ |), therefore µB does not satisfy
this condition. But we know that |πB{b :}↑µB [1 :]| ≥ m because µB was
selected by the Verifier. Therefore 2µB |CB{b :}↑µB | < (1− δ)|C{b :}|. But
µ′B satisfies goodness, so 2µ

′
B |CB{b :}↑µ′B | > (1 − δ)|C{b :}|. From the

last two equations, we obtain (1 − δ)|C{b :}| > 2µ
′
B |C{b :}↑µ′B |, which

contradicts the previous equation. ut

Theorem 4 (Security). Assuming honest majority, the Non-interactive
Proofs of Proof-of-Work construction for computable k-stable monotonic
suffix-sensitive predicates is secure with overwhelming probability in κ.

Proof. By contradiction. Let m = k1+k2+k3 and let k1, k2, k3 be polyno-
mial functions of κ. Let Q be a k-stable monotonic suffix-sensitive chain
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predicate. Assume NIPoPoWs on Q is insecure. Then, during an execu-
tion at some round r3, Q(C) is defined and the verifier V disagrees with
some honest participant. Assume the execution is typical. V communi-
cates with adversary A and honest prover B. The verifier receives proofs
πA, πB. Because B is honest, πB is a proof constructed based on under-
lying blockchain CB (with πB ⊆ CB) which B has adopted during round
r3 at which πB was generated. Furthermore, πA was generated at round
r′3 ≤ r3.

The verifier outputs ¬Q(CB), and so VerifyQm,k = ¬Q(CB). Thus it is

necessary that πA ≥m πB, otherwise, because Q is suffix sensitive, VerifyQ

would have returned Q(CB). We now show that πA ≥m πB is a negligible
event.

Let b = LCA(πA, πB) and let b∗ be the most recent honestly generated
block in CB preceding b (and note that b∗ necessarily exists because Gen-
esis is honestly generated). Let the levels of comparison decided by the
verifier be µA and µB respectively. Let µ′B be the adequate level of proof
πB with respect to block b. Call αA = πA↑µA {b :}, α′B = πB↑µ

′
B {b :}.

We now show three successive claims: First, αA and α′B↓ are mostly
disjoint. Second, αA contains mostly adversarially-generated blocks. And
third, the adversary is able to produce this αA with negligible probability.

Claim 1a: If µ′B ≤ µA then αA[1 :] and αB[1 :]↓ are completely
disjoint.

Applying Lemma 6 to CB{b :}↑µ′B we see that CB{b :}↑µ′B= πB↑µ
′
B

{b :} and so πB↑µ
′
B {b :}[1 :] ∩ πA↑µA {b :}[1 :] = ∅.

Claim 1b: If µA < µ′B then |αA[1 :] ∩ αB↓ [1 :]| ≤ 2µ
′
B−µAk1.

First, observe that, because the adversary is winning, therefore |αA| >
2µ
′
B−µAm. Suppose for contradiction that |αA[1 :]∩αB↓ [1 :]| > 2µ

′
B−µAk1.

This means there are indices 1 ≤ i < j such that |CB↑µA [i : j]| >
2µ
′
B−µAk1 but |CB↑µA [i : j]↓↑µ′B | = 0. But this contradicts the goodness

of CB↑µ
′
B . Therefore there are more than 2µ

′
B−µA(k2 + k3) blocks in αA

that are not in αB, and clearly also more than k2 + k3 blocks.

From Claim 1a and Claim 1b, we conclude that there are at least
k2 + k3 blocks after block b in αA which do not exist in αB. We now set
b2 = LCA(CB, αA).

Claim 2: At least k3 superblocks of αA are adversarially generated.

We show this by showing that αA[k2+1 :] contains no honestly mined
blocks. By contradiction, assume that the block αA[i] for some i ≥ k1 +
k2 + 1 was honestly generated. This means that an honest party had
adopted the chain αA[i−1] at some round r2 ≤ r3. Because of the way the
honest parties adopt chains, the superchain αA[: i− 1] has an underlying
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Fig. 7. Two competing proofs at different levels.

properly constructed 0-level anchored chain CA such that CA ⊆ αA[: i−1].
Let j be the index of block b2 within CA. As αA ⊆ CA, observe that
|CA[j + 1 :]| > i − 1 ≥ k2 + k1. Therefore CA[: −(k2 + k1)] 64 CB. But
CA was adopted by an honest party at round r2 which is prior to round
r3 during which CB was adopted by an honest party. This contradicts
the Common Prefix [10] property with parameter k2. It follows that with
overwhelming probability in k2, the k3 = m − k2 − k1 last blocks of the
adversarial proof have been adversarially mined.

Claim 3: A is able to produce a αA that wins against αB with
negligible probability.

Let b′ be the latest honestly generated block in αA, or b∗ if no such
block exists in αA. Let r1 be the round when b′ was generated. Let j
be the index of b′. Consider the set S of consecutive rounds r1 . . . r3.
Every block in αA[−k3 :] has been adversarially generated during S and
|αA[−k3 :]| = k3. CB is a chain adopted by an honest party at round r3
and filtering the blocks by the rounds during which they were generated
to obtain CSB, we see that CSB = CB{b∗ :}. But chain CSB↑µ

′
B is good with

respect to CSB. Applying Lemma 5, we obtain that with overwhelming
probability 2µA |αA{b′ :}| < 1

32µ
′
B |CSB↑µ

′
B |.

But |αB| ≥ |CSB↑µ
′
B | and |αA{b′ :}| ≥ |αA| − k2, therefore 2µA |αA| −

k2 < 1
32µ

′
B |αB|. But |αA| − k2 ≥ k3, therefore 1

32µ
′
B |αB| > k3 and so

2µ
′
B |αB| > 3k3 Taking k2 = k3, we obtain 2µA |αA| < 1

33k3 + k3 = 2k3 <
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2µ
′
B |αB|. But this contradicts the fact that πA ≥ πA, and so the claim is

proven.
Therefore we have proven that 2µ

′
B |πB↑µ

′
B | > 2µA |πµAA |. From the

definition of µB, we know that 2µB |πB↑µB | ≥ 2µ
′
B |πB↑µ

′
B |, and therefore

we conclude that 2µB |πB↑µB | > 2µA |πA↑µA |. ut

Remark 2 (Variance attacks). The critical issue addressed by this security
proof is to avoid Bahack-style attack [3] where the adversary constructs
“lucky” high-difficulty superblocks without filling in the underlying proof-
of-work in the lower levels. Observe that, while setting m = 1 “preserves”
the proof-of-work in the sense that expectations remain the same, the
probability of an adversarial attack becomes approximately proportional
to the adversary power if the adversary follows a suitable strategy (for
a description of such a strategy, see the parameterization section). With
higher values of m, the probability of an adversarial attack drops expo-
nentially in m, even though they maintain constant computational power,
and hence satisfy a strong notion of security.

Remark. Intuitively, the attack of Section E is neutralized, because our
prover takes “goodness” of blockchains into account and the verifier does
not compare proofs strictly at the same level.
Remark. We have explored security in the synchronous model. We re-
mark that the same construction can work in a partially synchronous
model by setting k′ = 2k, where k′ is the security parameter of the par-
tially synchronous model and k is the security parameter in the syn-
chronous model. We leave the full treatment of this for future work.

F.1 Infix security

We observe that now that we have proven the modified suffix construction
secure, the security of infix proofs follows without any modifications in
the infix construction. We formally state this in the following corollary.

Corollary 1. Under honest majority, the infix NIPoPoW protocol (P, V )
is secure for all computable infix-sensitive k-stable monotonic predicates
Q, except with negligible probability in κ.

Proof. Assume a typical execution. It suffices to show that the verifier
will output the same value Q(C) as some honest prover. Assume honest
prover B has adopted a chain C with Q(C) = v and has provided proof πB.
By Theorem 4 and because the evaluation of π̃ is identical in the suffix-
sensitive and in the infix-sensitive case, we deduce that b = π̃[−1] will
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be an honestly adopted block. Furthermore, due to the Common Prefix
property [10], b will belong to all honest parties’ chains and in the same
position, as it is buried under |χ̃| = k blocks.

Because Q is infix-sensitive, it will be defined using a witness predicate
D. Because Q is stable, we will have ∃C′ ⊆ C[: −k] : D(C′). But C′ ⊆ πB.
Let S = ancestors(b) be the ancestors evaluated by the verifier. As C′ ⊆ S,
therefore Q(C′) = Q(S) = v. ut

G Gradual Deployment Paths

Our construction requires an upgrade to the consensus layer. We envi-
sion that new cryptocurrencies will adopt our construction in order to
support efficient light clients. However, existing cryptocurrencies could
also benefit by adopting our construction as an upgrade. In this section
we outline several possible upgrade paths. We also contribute a novel
upgrade approach, a “velvet fork,” which allows for gradual deployment
without harming unupgraded miners.

G.1 Hard Forks and Soft Forks

The obvious way to upgrade a cryptocoin to support our protocol is a
hard fork: the block header is modified to include the interlink structure,
and the validation rules modified to require that new blocks (after a “flag
day”) contain a correctly-formed interlink hash.

The safety of a hard fork is debated [6], as they are not “forward
compatible”. NIPoPoWs can also be implemented by a soft fork. A soft
fork construction requires including the interlink not in the block header,
but in the coinbase transaction. It is enough to only store a hash of the
interlink structure. The only requirement for the NIPoPoWs to work is
that the PoW commits to all the pointers within the interlink so that
the adversary cannot cause a chain reorganization. If we take that route,
then each NIPoPoW will be required to present not only the block header,
but also a proof-of-inclusion path within the Merkle tree of transactions
proving that the coinbase transaction is indeed part of the block. Once
that is established, the coinbase data can be presented, and the veri-
fier will thereby know that the hash of the interlink data structure is
correct. Given that in the Bitcoin implementation there is a block size
limit, observe that including such proofs-of-inclusion will only increase
the NIPoPoW sizes by a constant factor per block, allowing for the com-
munication complexity to remain polylogarithmic.
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G.2 Velvet Forks

We now describe a novel upgrade path that avoids the need for a fork at
all. The key idea is that clients can make use of our scheme, even if only
some blocks in the blockchain include the interlink structure. Given that
intuitively the changes we will propose require no rule modifications to
the consensus layer, we call this technique a velvet fork 10.

We require upgraded miners to include the interlink data structure in
the form of a new Merkle tree root hash in their coinbase data, similar
to a soft fork. An unupgraded miner will ignore this data as comments.
We further require the upgraded miners to accept all previously accepted
blocks, regardless of whether they have included the interlink data struc-
ture or not. Even if the interlink data structure is included and contains
invalid data, we require the upgraded miners to accept their containing
blocks. Malformed interlink data could be simply of the wrong format,
or the pointers could be pointing to superblocks of incorrect levels. Fur-
thermore, the pointers could be pointing to superblocks of the correct
level, but not to the most recent block. By requiring upgraded miners
to accept all such blocks, we do not modify the set of accepted blocks.
Therefore, the upgrade is simply a “recommendation” for miners and not
an actual change in the consensus rules. Hence, while a hard fork makes
new upgraded blocks invalid to unupgraded clients and a soft fork makes
new unupgraded blocks invalid to upgraded clients, the velvet fork has
the effect that blocks produced by either upgraded or unupgraded clients
are valid for either. In reality, the blockchain is never forked. Only the
codebase is upgraded, and the data on the blockchain is interpreted dif-
ferently.

The reason this can work is because provers and verifiers of our proto-
col can check the validity of the claims of miners who make false interlink
chain claims. An upgraded prover can check whether a block contains
correct interlink data and use it. If a block does not contain correct in-
terlink data, the prover can opt not to use those pointers in their proofs.
The Verifier verifies all claims of the prover, so adversarial miners cannot
cause harm by including invalid data. The one thing the Verifier cannot
verify in terms of interlink claims is whether the claimed superblock of
a given level is the most recent previous superblock of that level. How-
ever, an adversarial prover cannot make use of that to construct winning
proofs, as they are only able to present shorter chains in that case. The

10 After the first manuscript of the present paper was published on the ePrint archive,
velvet forks were subsequently explored in detail in the excellent follow-up work by
Zamyatin et. al. [26]
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honest prover can simply ignore such pointers as if they were not included
at all.

The velvet prover works as usual, but additionally maintains a re-
alLink data structure, which stores the correct interlink for each block.
Whenever a new winning chain is received from the network, the prover
checks it for blocks that it hasn’t seen before. For those blocks, it main-
tains its own realLink data structure which it updates accordingly to
make sure it is correct regardless of what the interlink data structure of
the received block claims.

Algorithm 9 Supplying the necessary data to calculate a connected C↑µ
during a velvet fork.
1: function find C↑µ(b, realLink, blockById)
2: B ← C[−1]
3: aux← {B}
4: π ← [ ]
5: if level(B) ≥ µ then
6: π ← πB
7: end if
8: while B 6= b do
9: (B, aux’) ← followUp(B,µ, realLink, blockById)

10: aux← aux ∪ aux’
11: π ← πB
12: end while
13: return π, aux
14: end function
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Algorithm 10 followUp produces the blocks to connect two superblocks
in velvet forks.
1: function followUp(B, µ, realLink, blockById)
2: aux← {B}
3: while B 6= Gen do
4: if B.interlink[µ] = realLink[id(B)][µ] then
5: id← B.interlink[µ]
6: else . Invalid interlink
7: id← B.previd
8: end if
9: B ← blockById[id]

10: aux← aux ∪ {B}
11: if level(B) = µ then
12: return B, aux
13: end if
14: end while
15: return B, aux
16: end function

The velvet C↑ operator shown in Algorithm 9 is implemented iden-
tically as before, except that instead of following the interlink pointer
blindly it now calls the helper function followUp, shown in Algorithm 10.
It accepts block B and level µ and creates a connection from B back to
the most recent preceding µ-superblock, by following the interlink pointer
if it is correct. Otherwise, it follows the previd link which is available in
all blocks, and tries to follow the interlink pointer again from there. Fi-
nally, the velvet prover shown in Algorithm 11 simply applies the velvet
C↑ operator and includes the auxiliary connecting nodes within the final
proof. No changes in the verifier are needed; note that in the case of infix
proofs the index of the block is used by the verifier; if this information is
not provided by the underlying blockchain headers, the index should be
included in the interlink structure.
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Algorithm 11 The Prove algorithm for the NIPoPoW protocol, modified
for a velvet fork.
1: function Prove’m,k(C, realLink, blockById)
2: maxµ← |realLink[id(C[−k − 1])]|
3: b← C[0] . Genesis block
4: Π̃ ← ∅
5: for µ = maxµ down to 0 do
6: π, aux← find C[: −k]↑µ (b, realLink, blockById)
7: if |π| ≥ m then
8: b← π[−m]
9: end if

10: Π̃ ← Π̃ ∪ aux
11: end for
12: χ← C[−k :]
13: return Π̃χ
14: end function

Velvet NIPoPoWs preserve security. Additionally, if a constant minor-
ity of miners has upgraded their nodes, then succinctness is also preserved
as there is only a constant factor penaltyas proven in the following theo-
rem.

Theorem 6. Velvet non-interactive proofs-of-proof-of-work on honest chains
by honest provers remain succinct as long as a constant percentage g of
miners has upgraded, with overwhelming probability.

Proof. From Theorem 9 we know that the proofs π contain only a O(poly-
log(m)) amount of blocks. For each of these blocks, the velvet client needs
to include a followUp tail of blocks. Assume a percentage 0 < g ≤ 1
of miners have upgraded with NIPoPoW support. Then the question of
whether each block in the honest chain is upgraded follows a Bernoulli
distribution. If the velvet proof were to be larger than ∆ times the soft
fork proof in the number of blocks included, then this would require at
least one of the followUp tails to include at least ∆ sequential unupgraded
blocks. But since the upgrade status of each block is independent, the
probability of this occurring is g∆, which is negligible in ∆. ut

We would not have been able to pull off this upgrade without modifi-
cations to the consensus layer in the sense that the interlink data structure
could not have been maintained somewhere independently of the block-
chain: It is critical that the proof-of-work commits to the interlink data
structure. Interestingly, the interlink data structure does not need to be
part of coinbase and can be produced and included in regular transac-
tions by users (such as OP RETURN transactions). Thus, the miners
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can be completely oblivious to it, while users and provers make use of the
feature, making it a user-activated velvet fork. Interested users regularly
create transactions containing the most recent interlink pointers so that
they are included in the next block. If the transaction makes it to the next
block, it can be used by the prover who keeps track of these. Otherwise, if
it becomes part of a subsequent block, in which case some of the pointers
it contains are invalid, it can be ignored or only partially used.

The necessary changes needed in the various construction algorithms
in order to support a velvet fork are shown in Algorithm 9, Algorithm 10,
and Algorithm 11.

Supporting clients with different beliefs. The interlink format does
not depend on parameters m, k. Therefore, it is not necessary to agree
on a particular value of these parameters. Instead, the choice of m and
k can be a user-configurable parameter to clients. Clients would send a
particular m and k as part of their requirement to the prover.

H Chains of Variable Difficulty

In this paper, we have explored constructing PoPoWs always assuming
that the mining target T is constant. In this section, we give the intuition
behind a variable difficulty PoPoW construction based on our constant
difficulty construction.

The construction is modified as follows. Assume the chain adjusts its
difficulty in the usual manner as formalized, e.g., in [11]. In this case, an
epoch e is a 0-subchain of fixed length, say `, during which the difficulty
remains the same and which is examined in order to perform the difficulty
recalculation. The target has a maximum value in which the difficulty is
the easiest. Suppose this value is T0 = 1

2κ such that all attempted blocks
are valid. We consider the case where the current difficulty is possible to
adjust by factors of 2; that is, the target of each epoch e is quantized as
Te = T0

2µ∗
for some non-negative integer µ∗, the current mining level. In

this context, changing the difficulty is equivalent to saying that the min-
ing game will be played at some level µ∗ ≥ 0 and every node considers
only chains of that level, ignoring chains of inferior level. As such, su-
perblock NIPoPoWs can be constructed as usual, except the used target
for NIPoPoW generation and verification will be the maximum target T0
instead of the current mining target Te. The only difference is that the
honest prover will only provide chains of level µ ≥ µ∗, as inferior blocks
will neither be mined nor successfully validated by honest participants.
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The size of variable difficulty NIPoPoWs is the same as in the constant
difficulty case.

The security arguments follow through as before when the comparison
of two proofs πA, πB happens at some level µA, µB ≥ µ∗. We must there-
fore only concern ourselves for the case, during the comparison, when the
adversary presents blocks of level inferior to µ∗ after the LCA block b.
In the case of an interactive PoPoW, the honest prover can be informed
of the attempt of the adversary to present blocks of level inferior to µ∗.
However, the adversary has committed to the LCA block b. The honest
party can subsequently provide a certificate of hardness by presenting the
full epoch immediately preceding block b, which will consist of a constant
number of blocks, `. This will allow the honest party to challenge the
adversary’s ability to descend to level µB < µ∗ and allow the verifier to
decide that the honest party B should be victorious. This PoPoW proto-
col can be made non-interactive by including a certificate of hardness for
every block among the last m blocks of each level presented. This harms
the succinctness by a constant factor of ` (in Bitcoin, ` = 2016).

The above sketch gives an intuition of how proofs can be modified to
work in a variable difficulty setting. Formal analysis of its security and
succinctness in various conditions in the model of [11], including relaxing
the requirement of quantization µ∗ ∈ N, will be explored in future work.

I Succinctness

I.1 Optimistic succinctness

We analyse the patched scheme we saw in Algorithm 8. We will illustrate
why our construction is succinct in the honest setting. We then discuss
techniques to make the construction succinct in broader adversarial set-
tings.

We first observe that full succinctness in the standard honest major-
ity model is impossible to prove for our construction. To see why, recall
that an adversary with sufficiently large mining power can significantly
harm superquality as described in Section E.1. By reducing superquality
for a sufficiently low level µ, the adversary can cause the honest prover
to digress in their proofs from high-level superchains down to low-level
superchains, causing a linear proof to be produced.

For instance, if superquality is harmed at µ = 3, the prover will need
to digress down to level µ = 2 and include the whole 2-superchain, which,
in expectation, will be of size |C|/2.
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Having established security in the general case of the standard honest
majority model, we now concentrate our succinctness claims to the partic-
ular “optimistic” case where the adversary does not use their (minority)
computational power or network power.

Definition 13 (Optimistic execution). We will call an execution op-
timistic if the adversary has q = 0 random oracle queries and the messages
diffused by honest parties are delivered in random (and not adversarial)
order.

In this setting, the superquality of the chain must be the same as a
fully honestly-generated chain generated with no network adversary. Last,
for now, we will not allow the adversary to produce any proofs; that is,
all proofs consumed by the verifier are honestly-generated.

Theorem 7 (Number of levels). In any execution, let S denote the set
of all blocks produced honestly or adversarially. The number of superblock
levels which have at least m blocks are at most log(|S|), with overwhelming
probability in m.

Proof. Each block id in S is generated by the random oracle, so Pr[id ≤
T2−µ] = 2−µ. These are independent Bernoulli trials. For each B ∈ S, let
Xµ
B ∈ {0, 1} be the random variable indicating whether the block belongs

to level µ and let Dµ =
∑

B∈S X
µ
B indicate their sum, which is a Binomial

distribution with parameters (|S|, 2−µ) and expectation E[Dµ] = |S|2−µ.

All of the Xµ are independent. We apply a Binomial Chernoff bound
to the sum. We have Pr[Dµ ≥ (1 + δ)E[Dµ]] ≤ exp(− δ2

3 E[Dµ]). Letting
µ = log(|S|) we have that E[Dµ] = 1. Therefore Pr[Dµ ≥ 1 + δ] ≤
exp(− δ2

3 ). Requiring 1 + δ = m, we get Pr[Dµ ≥ m] ≤ exp(− (m−1)2
3 ),

which is negligible in m. ut

The above theorem establishes that the number of superchains is
small. What remains to be shown is that few blocks will be included
at each superchain level.

Theorem 8 (Large upchain expansion). Consider an optimistic ex-
ecution and let C be an honestly adopted chain and let C′ = C↑µ−1 [i :
i+ 4m] for any i. Then |C′↑µ | ≥ m with overwhelming probability in m.

Proof. Because each block of level µ − 1 was generated as a query to
the random oracle, it constitutes an independent Bernoulli trial and the
number of blocks in level µ, namely π↑µ, is a Binomial distribution with
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parameters (4m, 1/2). Observing that E[C′↑µ] = 2m and applying a
Chernoff bound, we get Pr[|C′↑µ | ≤ m] = Pr[|C′↑µ | ≤ (1 − 1

2)2m] ≤
exp(− (1/2)2

2 2m) which is negligible in m.

ut

This probability bounds the probability of fewer than m blocks oc-
curring in the µ level restriction of (µ− 1)-level superchains of more than
4m blocks.

Lemma 8 (Small downchain support). Consider an optimistic ex-
ecution and let C be an honestly adopted chain and C′ = C↑µ [i : i + m].
Then |C′↓↑µ−1 | ≤ 4m with overwhelming probability in m.

Proof. Assume the (µ− 1)-level superchain had at least 4m blocks. Then
by Theorem 8 it follows that more than m blocks exist in level µ with
overwhelming probability in m, which is a contradiction. ut

This last lemma establishes the fact that the support of blocks needed
under the m-sized chain suffix to move from one level to the one below is
small. Based on this, we can establish our theorem on succinctness:

Theorem 9 (Optimistic succinctness). In an optimistic execution,
Non-Interactive Proofs of Proof-of-Work produced by honest provers are
succinct with the number of blocks bounded by 4m log(|C|), with over-
whelming probability in m.

Proof. Assume C is an honest party’s chain. From Theorem 7, the number
of levels in the NIPoPoW is at most log(|C|) with overwhelming probabil-
ity in m (note that |C| ∼ Θ(|S|)). First, observe that the count of blocks
in the highest level will be less than 4m from Theorem 8; otherwise a
higher superblock level would exist. From Lemma 4, we know that at all
levels µ the chain will be good. Therefore, for each µ superchain C the
supporting (µ− 1)-superchain will only need to span the m-long suffix of
the µ-superchain above. For the m-long suffix of each superchain of level
µ, the supporting superchain of level µ − 1 will have at most 4m blocks
from Lemma 8. Therefore the size of the proof is 4m log(|C|). ut

In the above theorem, note the linear dependency between the round
r during which a proof is generated and the length |C| of the chain of each
honest prover.
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I.2 Succinctness of adversarial proofs

In the stronger adversarial setting, however, it is possible for the adversary
to produce large dummy (incorrect) proofs that expand the verification
time; security will not be hurt but it would take more time to complete
verification. One may dismiss this as a trivial denial of service attack and
have a resource bounded verifier simply stop if it is confronted with such a
processing task. However, simply dismissing superpolylogarithmic proofs
is an incorrect strategy, as honest provers can produce such longer proofs
in case an adversarial miner harms the goodness of the blockchain.

It would therefore be useful for honest provers to have the ability to
signal to the verifier that such time expansion is indeed necessary because
of an attack on superchain quality, rather than because a malicious prover
is simply sending long proofs that will eventually be rejected. With such
signaling mechanism, a resource bounded verifier can distinguish between
a denial of service attack that may be directed solely to it from a denial
of service attack that is launched by an attacker that has the ability to
interfere globally with superchain quality.

To facilitate the above signaling, we offer a simple generalization of
our construction that achieves this. Our extended construction allows the
verifier to stop processing input early, in a streaming fashion, thereby only
requiring logarithmic communication complexity per proof received. To
achieve this, observe that honest proofs need to be large only if there is
a violation of goodness. However, goodness is not harmed when the chain
is not under attack by the adversarial computational power or network.
Therefore, we require the prover to produce a certificate of badness in
case there is a violation of goodness in the blockchain. This certificate
will always be logarithmic in size and must be sent prior to the rest of
the proof by the prover to the verifier. Because the certificate will be
logarithmic in size even in the case of an adversarial attack on the chain,
the honest verifier can stop processing the certificate after a logarithmic
time bound. If the certificate is claimed to be longer, the honest verifier
can reject early by deciding that the prover is adversarial. Looking at the
certificate, the honest verifier determines whether there is a possibility
for a lack of goodness in the underlying chain. If there’s no adversarial
computational power in use, the certificate is impossible to produce.

The certificates of badness are produced easily as follows. First, the
honest verifier finds the maximum level max-µ at which there are at least
m max-µ-superblocks and includes it in the certificate. Then, because
there is a violation of goodness there must exist two levels µ < µ′ such
that 2µ|C↑µ | > (1 + δ)2µ

′ |C↑µ′ | in some part C of the honestly adopted
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chain. But µ′−µ ≤ max-µ. Therefore, there must exist two adjacent levels
µ1 < µ2 which break goodness but with error parameter (1 + δ)1/max-µ.
In particular, it will hold that 2µ1 |C↑µ1 | > (1 + δ)1/max-µ2µ2 |C↑µ2 |. This
condition is direct for the prover to find and trivial for the verifier to
check and completes the construction. Note that it is possible that a
certificate of badness is produceable where two adjacent levels have more
than (1 + δ)1/max-µ error even if there is no harm to global goodness;
however, these certificates cannot be produced when no adversarial power
is in use. The algorithm to do this is shown in Algorithm 12.

Algorithm 12 The badness prover which generates a succinct certificate
of badness
1: function badnessm,δ(C)
2: M ← {µ : |C↑µ | ≥ m} \ {0}
3: ρ← 1/max(M)
4: for µ ∈M do
5: for B ∈ C↑µ do
6: C′ ← C↑µ {B :}[: m]
7: if |C′| = m then
8: . Sliding m-sized window
9: C∗ ← C′↓↑µ−1

10: if 2|C′| < (1− δ)ρ|C∗| then
11: return C∗ . Chain is bad
12: end if
13: end if
14: end for
15: end for
16: return ⊥ . Chain is good
17: end function

Therefore, we augment the NIPoPoW construction as follows. The
honest prover sends a tuple of two items. The first item is empty if the
second item is polylogarithmic in the size of the chain; otherwise it is a
certificate of badness. The second item is the NIPoPoW proof as in the
previous construction. The verifier processes only the first polylogarith-
mic number of bytes from the incoming proof. If within that portion a
certificate of badness is found, it is checked for validity. If it is found to
be valid, the whole proof is checked, regardless of size. If it is found to be
invalid or no certificate has been provided, then the proof is rejected as
invalid. We call the augmented construction certified NIPoPoWs.

Lemma 9 (Certified NIPoPoWs succinctness). If all miners are
honest and the network scheduling is random, certified non-interactive
proofs-of-proof-of-work produced by the adversary are processed in poly-
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logarithmic time in the size of the chain by honest verifiers, except with
negligible probability in m.

Proof. Because all miners are honest and the network scheduling is ran-
dom, therefore certificates of badness exist with negligible probability in
m. Conditioning on the event that certificates of badness do not exist,
the honest verifier will reject the proof in polylogarithmic time. ut

We also establish that the modified construction does not harm secu-
rity below. Security is established in the general case where the adversary
has minority mining power.

Theorem 10 (Certified NIPoPoWs security). Assuming honest ma-
jority, certified non-interactive proofs-of-proof-of-work are secure, except
with negligible probability in κ.

Proof. We distinguish two cases: Either goodness has been violated; or it
has not been violated. Suppose that goodness has been violated. In that
case, an honest prover will include a certificate of badness in their proof
and their proof will be processed by an honest verifier.

In the case where goodness is not violated, all honest proofs will be
logarithmic in size as established by Lemma 9. Therefore, all honest proofs
will be processed by an honest verifier.

Under the condition that all honest proofs will be processed, the rest
of the security argument follows immediately from Theorem 4. ut

I.3 Infix succinctness

Having established the succinctness of the modified suffix construction,
the succinctness of the infix construction follows in the next corollary.

Corollary 2. The infix NIPoPoW protocol (P, V ) is succinct for all com-
putable infix-sensitive k-stable predicates Q in which the witness predicate
D depends on a polylogarithmic number of blocks d(|C|).

Proof. As long as the number of blocks on which the predicate depends
is polylogarithmic (< d) with respect to the chain length, our proofs
remain succinct. Specifically, the proof size for the suffix has exactly the
same size. Then the part of the proof that is of interest is the output
of the followDown algorithm. However, notice that this algorithm will on
average produce as many blocks as the difference of levels between B′

and E, which is at most logarithmic in the chain size. Hence the proof
sizes will be in expectation (m + |C′|) log(|C|), which remains succinct if
|C′| ∈ O(polylog(|C|)). ut
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