
Message-passing in the Extended UTxO Ledger Model

Polina Vinogradova1 and Orestis Melkonian1

Input Output, Global (IOG), firstname.lastname@iohk.io

Abstract. A notable problem faced by developers of smart contracts running on an extended UTxO
(EUTxO) ledger is double satisfaction: interacting contracts that make payouts may validate with insufficient
payments made to some recipients.
In this work, we formalize the notion of a stateful contract constraint being vulnerable to double satisfaction.
Next, we formalize interaction among scripts and stateful contracts via message-passing, consisting of a
specification and an implementation of a stateful distributed message-passing contract, together with a
proof of the integrity of its implementation. Messages specify sender and receiver outputs, as well as the
data and assets being communicated, which are recorded on the ledger in the form of special NFT tokens
distributed across UTxO entries that also contain the sent assets.
We give two applications of our design by considering a message: (1) as a record of a successful script
computation, akin to memoization, and (2) as a mechanism for asynchronous structured contracts
communication that enables a principled separation of contract communication from its computation.
Building on this application of message-passing, we present a result stating that making payouts from
stateful contracts using message-passing is not vulnerable to double satisfaction.

Keywords: Blockchain · Ledger · UTxO · EUTxO · Smart contract · Formal verification · Small-step
operational semantics · Message-passing · Double satisfaction · Simulation relation

1 Introduction

Message-passing is the standard for communicating data and assets between contracts in account-based
ledgers [4,26,15]. In some cases, the transaction itself may be referred to as a message [15]. An alternative to
the account-based ledger model is the EUTxO (extended UTxO) ledger model, implemented by platforms
such as Cardano [8,17] and Ergo [11]. It is a smart contract- (or script-) enabled UTxO-based ledger model,
where user-defined script code is used to specify conditions a transaction must satisfy to be permitted to
spend a UTxO entry or mint a token. Communication between scripts in EUTxO-based ledgers follows
a different architecture than for account-based models. A script may require that another script executes
successfully within the same transaction. Script interaction and communication is implemented using these
kinds of script dependencies, as well as other constraints on the script-executing transaction.

Relying on unstructured, ad-hoc communication among EUTxO scripts presents some challenges, in
particular, in terms of amenability to formal verification. For example, a sequence of dependencies may be
formed wherein one script depends on another script, which, in turn, depends on yet another script, etc.
Such dependency sequences may be of arbitrary length, and difficult to reason about. Another challenge
is tracking the flow of assets and data, including marking certain quantities of assets or data as "from" a
particular contract (e.g. a payout to a specific address), or "to" a particular contract (e.g. a pay-in from an
address). Asset flow tracking is a special case of the more general double satisfaction problem (DSP).

The DSP may occur when multiple scripts within the same transaction share a constraint satisfied by the
transaction. Problematic occurrences of DS are due to the lack of a mechanism to associate the fulfillment
of a constraint with the script imposing said constraint. For example, a payout to an specific address may
be required by two distinct contracts, which place the same constraint on a transaction. The intent of each
of the contracts was that the payout address should have received a separate payment, for a total of two.
However, the payout is made only once, satisfying both contracts. Because many contracts make payouts,
this is a widely discussed problem in EUTxO programming. In Section 3, we present a formalization of the
DSP, which has not previously been formalized.

Previous work presents principled approaches to building stateful contracts in the EUTxO ledger model,
such as the constraint-emitting machine design pattern [7], as well as the more general structured contract
framework (SCF) [27]. These have been mechanized in the Agda proof assistant [21] and provide the

2 Polina Vinogradova and Orestis Melkonian

conceptual basis for the actual specification of the Cardano ledger specification [8,17], which is formulated
with small-step semantics and is also mechanized in Agda [16].

We present an EUTxO layer-2 implementation of asynchronous message-passing as a principled approach to
communication among individual scripts and the stateful contracts they implement. Our message-passing
architecture is a stateful contract constructed as an instance of the structured contract framework.

The state of the message-passing contract is a set of messages. On the ledger, a special NFT token encodes
a single message in the contract state, and individual message tokens are distributed across distinct UTxO
entries. Each message specifies sender and recipient UTxO entries, which are authenticated at the time of
minting (burning, resp.) of the message token. The message token specifies the data being sent, and must
be placed in a UTxO also containing the assets being sent. Any script is able to interface with the message-
passing contract so long as (i) the user input to the script can be decoded as a list of messages being produced
and consumed, and (ii) the corresponding message NFTs are minted (burned) by the transaction.

Our decentralized stateful contract design constitutes a way to interpret the notion of message-passing
communication on an EUTxO ledger. The scripts implementing this design facilitate concurrent updates
to asset token balances on the ledger that exist independently of a shared database. We argue that the
message-passing approach to script and stateful contract communication addresses some of the challenges
of writing scripts to run on an EUTxO ledger. To that end, we present two use cases of message-passing
together with formal specification and verification of properties related to the integrity of their behavior. We
demonstrate how expressing payouts as messages from a stateful contract can resolve the DSP for payouts.
The main contributions of this work are :

(i) formalization of the double satisfaction problem (Section 3);
(ii) specification and implementation of a message-passing structured contract (Section 4);
(iii) an application of the message-passing contract for memoization, including proven properties of its

behavior (Section 5.1);
(iv) an application of the message-passing contract as a means of asynchronous communication of data and

assets between structured contracts, together with formal properties of its behavior, including resilience
of payout messages to the DSP (Section 5.2).

2 Background

2.1 The EUTxO ledger model

First, we give an overview of the semantics we use for our contract and ledger specifications, introduced in
prior work [7,5,27], but included here for the sake of self-containment.
Ledger types. For the purposes of self-containment, we include a description of EUTxO ledger model types.
We note and justify the (minimal) changes we introduce to the existing model in the description. Additional
details are in Appendix B. The types of booleans, natural numbers, and integers are denoted by B, N, and Z,
respectively. The type Ix := N is used for indexing, e.g. of elements in a list. The type Slot := N is used to
indicate blockchain time.

The ledger state consists of a UTxO set, which is a collection of unspent outputs, each associated with
a unique identifier. An output is a triple (a, v, d) ∈ Output, where a ∈ Script is the address of the output,
v ∈ Value is the collection of assets at this address, and d ∈ Datum is data specified by the user at the time
of constructing the transaction which creates this output (we give more details on these three types below).
The type of the UTxO set is UTxO := OutputRef 7→ Output, which is a finite key-value map with keys of
type OutputRef. We denote a single element in a finite key-value map u (such as the UTxO set) by i 7→ o ∈ u.
An output reference (tx, ix) ∈ OutputRef := Tx× Ix pointing to an output o in a UTxO set consists of the
transaction tx, which added (tx, ix) 7→ o to the UTxO set, and the index ix, which is the position of output o
in the list of outputs of tx.

The type Value is used to represent bundles of multiple kinds of assets (see Fig. 8). Each type of asset in
the bundle v ∈ Value has a unique asset ID, a ∈ AssetID := Policy× TokenName, which identifies a class of
fungible tokens. Associated to the asset ID of each type of asset in a bundle is a a quantity q ∈ Quantity := Z,
specifying the amount of the asset with the given ID in v. When v contains 0 of a given asset type, its asset
ID is not included in v. An asset bundle containing one kind of asset with asset ID (policy, tokenName) of
quantity one is denoted by { policy 7→ {tokenName 7→ 1} }.

Message-passing in the Extended UTxO Ledger Model 3

An asset with ID (p, t) has the minting (and burning) policy p ∈ Policy := Script. When an asset under
this policy is minted or burned, the policy script is executed to determine whether the transaction is allowed
to perform this action. The token name t is specified by the user at the time of constructing the minting
transaction. It is used to differentiate between assets under the same policy. Unlike previous work [5,27],
where the token name is a string, we take TokenName := Data. Value forms a group under addition (+) with
a zero element (0) and a partial order (≤) [6].

A script s ∈ Script is a piece of user-defined code that is executed as part of transaction validation,
applied to specific inputs. Script code is stateless and produces a boolean output. Scripts are executed as
part transaction validation to check that a transaction is permitted to do the action with which the script is
associated. Scripts are used to specify permissions for two kinds of actions: spending an output (these are
referred to as "validators", or sometimes the "address" of the output), and minting or burning tokens (these
are called minting policies).

We denote script application by J_K, followed by the script arguments (see Fig. 8). At the time of evaluation,
the arguments supplied to a script consist of transaction data (of the transaction executing it), as well as the
data about the specific action for which the script specifies permission (i.e. the output being spent, or the
tokens being minted under the policy). An extra piece of data d ∈ Redeemer, associated with the particular
action being validated, is specified by the user at the time transaction construction.

On-chain data of variable type, including Datum, Redeemer, and TokenName, are all type synonyms for
Data (see Fig. 8); for the sake of brevity, we will omit explicit calls to the corresponding encoding/decoding
functions as these will be obvious from the types involved, so any time a value is used as Data presupposes
that decoding is successful.

Updates to the ledger state are specified in the form of a Tx (transaction) data structure. A transaction
tx ∈ Tx contains (i) a set of inputs, each containing an output reference, an output, and the associated
redeemer, (ii) a list of outputs, which get entered into the UTxO set with the appropriately generated output
references, (iii) a pair of slot numbers representing the validity interval of the transaction, (iv) a Value being
minted by the transaction, (v) a redeemer for each of the minting policies being executed, and (vi) the set of
(public) keys that signed the transaction, alongside their signatures.
Small-step specifications. We formulate the transitions of ledgers and contracts in the form of small-step
operational semantics [22], as exemplified by the official specification of the Cardano ledger [8,17].

In our specifications and contract implementation pseudocode, we follow standard set-theory notation,
and clarify any non-standard notation usage in the Appendix (see Fig. 7).

A transition relation TRANS ⊆ (Env × State × Input × State) is a collection of 4-tuples. A member
(env, s, i, s′) of this relation is also denoted by :

env ` s i−−−−→
TRANS

s′

The variable env ∈ Env is the environment of the state transition, s ∈ State is the starting state, i ∈ Input
is the input, and s′ ∈ State is the end state. The system TRANS is a labelled transition system. For a given
transition (env, s, i, s′) ∈ TRANS, the pair (env, i) of an environment and an input make up the label of
this transition from s to s′. Conventionally [8], env is block-level data, such as blockchain time, whereas i is
specified by the user, e.g. a transaction.
Ledger transition semantics. The ledger semantics on top of which we build the results of this paper are
found in existing work [7,5,27], but we include them here for self-containment and in order to introduce
appropriate notation. The ledger transition system is given by the subset LEDGER ⊆ Slot × UTxO ×
Tx × UTxO. Membership in this subset is specified by a single transition rule ApplyTx, which ensures
that (slot, utxo, tx, utxo′) ∈ LEDGER whenever checkTx (slot, utxo, tx) = True, and utxo′ is given by
({ i 7→ o ∈ utxo | i /∈ tx.outputRefs }) ∪ tx.outputs. This is expressed in rule APPLYTX below, where any
unbound variables are implicitly considered as universally quantified.

APPLYTX

utxo′ := ({ i 7→ o ∈ utxo | i /∈ tx.outputRefs }) ∪ tx.outputs

checkTx (slot, utxo, tx)

slot `
(

utxo
) tx−−−−→

LEDGER

(
utxo′

)

4 Polina Vinogradova and Orestis Melkonian

The function checkTx : Slot × UTxO × Tx → B checks the predicates specified in Fig. 9, which are
consistent with the EUTxO model on which this work builds [5]. This includes executing all required
validator and minting policy scripts with the appropriate inputs. The projection tx.outputRefs returns a UTxO
set containing an entry k 7→ o for each input i of tx, where the key of the entry is the output reference k
of i, and its value is the output o of i. The value utxo′ is calculated by removing the UTxO entries in utxo
corresponding to those in tx.outputRefs, and adding the entries constructed by tx.

2.2 Structured contracts

The structured contract framework [27] is a formalism for specifying and demonstrating the integrity of
the implementation of a stateful contract on LEDGER. We give the definition here for self-containment
and in order to introduce the appropriate notation. A structured contract includes a small-steps semantics
specification, as well as a ledger representation of its state and input. The ledger representation is a pair
of functions: one which computes the contract state from a given UTxO state (or fails), and another which
computes the input to the contract for a given transaction.

For a given valid LEDGER step, the representation functions must compute a valid step in the structured
contract specification given that the starting UTxO state corresponds to a contract state. This integrity
constraint is expressed as a proof obligation for the instantiation of a structured contract. This design
guarantees that no invalid contract state updates are ever possible on the ledger.

Suppose STRUC ⊆ ({?} × State × Input × State) is a small-step transition system. Let π : UTxO →
State∪ {?} and πTx : Tx→ Input be functions such that :

π u 6= ? e `
(

u
) t−−−−→

LEDGER

(
u′
)

(π u′ 6= ?) ∧ ? ` (π u)
πTx t−−−→

STRUC
(π u′)

The triple (STRUC, π, πTx) is called a structured contract, and we denote it by (STRUC, π, πTx) � LEDGER.
Note that π is function with output type State ∪ {?}, where {?} is a singleton. When π u = ?, there is no
contract state corresponding to the ledger state u. The block-level data is never exposed to user-defined
scripts in this model, so that the context of a structured contract is necessarily ? ∈ {?}.

3 The problem of double satisfaction

In the EUTxO model, multiple scripts can be executed as part of validation of the transaction which causes
them to be run, i.e. the carrying transaction. Each script is run when the action it is associated with is
performed by the carrying transaction, such as spending a particular UTxO or minting tokens under a specific
policy. Scripts contain constraints on the data of the carrying transaction, and multiple scripts may place
the same constraint on the data of a given transaction. The issue with certain undesirable instances of this
situation is called the double satisfaction problem (DSP). The DSP has been discussed in Plutus documentation,1

and in the context of contract audits,23 but has not yet been formally analyzed. It applies to scripts and
structured contracts that require transactions to make payouts, so it is frequently encountered in EUTxO
script programming.

Consider the following examples of constraints a structured contract with Input := Tx may place on its
input transaction tx :

(i) Authorization tokens : the transaction must contain in its inputs a special token, the presence of which
constitutes proof that a particular contract state update is authorized

(ii) Payouts : the transaction must make a payout to address a : Script by including an output containing
value v, with address a

1 https://plutus.readthedocs.io/en/latest/reference/writing-scripts/common-weaknesses/double-satisfaction.html
2 https://medium.com/@vacuumlabs_auditing/cardano-vulnerabilities-1-double-satisfaction-219f1bc9665e
3 https://github.com/tweag/tweag-audit-reports/blob/main/Marlowe-2023-03.pdf

https://plutus.readthedocs.io/en/latest/reference/writing-scripts/common-weaknesses/double-satisfaction.html
https://medium.com/@vacuumlabs_auditing/cardano-vulnerabilities-1-double-satisfaction-219f1bc9665e
https://github.com/tweag/tweag-audit-reports/blob/main/Marlowe-2023-03.pdf

Message-passing in the Extended UTxO Ledger Model 5

The ability of a transaction author to present an authorization token, as in (i), is treated as proof that some
action the transaction performs is authorized. It is possible that a single transaction makes contract state
updates to multiple contracts whose implementations require that a specific authorization token is presented.
There is no problem with a transaction updating the state of multiple distinct contracts, and presenting a
single authorization token to all contracts it executes which require it. This is not an example of problematic
double satisfaction, since the intended meaning of this constraint is upheld by its implementation.

When two structured contract implementations both place the constraint (ii) on a transaction, it may be
satisfied by a single transaction output (a, v, _). Note here that we use the notation _ to represent a term
whose value is not relevant to the computation in which it appears. One may speculate that the authors of
each of the scripts with constraint (ii) intended for the output (a, v, _) to be somehow associated with the
step of the particular contract they care about. This means that two distinct outputs would be required, each
associated with a specific contract. In this case, double satisfaction is problematic, and a receives less total
assets than intended.

The examples we presented show that the distinction between examples of DS that are problematic and
those that are not is strictly in the intent of the script author. For this reason, we can only judge whether a
constraint is vulnerable to double satisfaction, i.e. it is not associated exclusively with a particular structured
contract. Let us assume that all systems discussed in this section are deterministic, and define the following
function, which returns all pairs of states in all valid transitions of a given structured contract STRUC :

s STRUC = { (s, s′) | ∃ i, (?, s, i, s′) ∈ STRUC }

We now define what a constraint is, as well as double satisfaction (DS).

Definition (transition constraint). A constraint of a transition system STRUC is a subset

C ⊆ {?} × State× Input× State

such that STRUC ⊆ C.

Definition (double satisfaction). A structured contract (π, πTx, STRUC) is vulnerable to double satisfaction with
respect to a constraint C whenever there exists another contract (π, πTx, STRUC′), with STRUC ⊆ STRUC′

and s STRUC = s STRUC′, such that STRUC′ ∩ C (STRUC′.

Example (TOGGLE with extra constraint). Consider a (π, πTx, TOGGLE) contract, with State := B (i.e.
Boolean), and Input := (toggle∪ {?})× Interval[Slot].

DONOTHING

`
(

x
) (?,_)−−−−−→

TOGGLE

(
x
) TOGGLE

5 ≤ j < k ≤ 9

`
(

x
) (toggle,[j,k])−−−−−−−→

TOGGLE

(
¬ x

)
We define a contract STRUC′ by removing 5 ≤ j < k ≤ 9 from rule TOGGLE, assume it has the same

projections π, πTx as TOGGLE, and define the constraint

C(?, _, (t, [j, k]), _) := (t = toggle)⇒ (5 ≤ j < k ≤ 9)

The contracts STRUC′ and STRUC transition between the same states: s STRUC = s STRUC′ =
x 7→ x, x 7→ ¬ x. Note that STRUC = STRUC′ ∩ C (STRUC′, hence STRUC is vulnerable to DS with
respect to C. If such a vulnerability is deemed problematic by the contract author, then it is likely that it is
important to them that no other contracts execute on-chain in the interval [5, 9], which may be difficult to avoid
in practice.
Discussion. Vulnerability to the DSP is related to the challenge of associating an action of a transaction (and
therefore constraints on it) with a specific structured contract (or script implementing it) that constrains this
action. Intuitively, any update to a contract state is associated with that contract. No scripts other than those
implementing a given structured contract can place constraints on the update of that contract’s state. So, only
the parts of a transaction used to specify the updated state can be constrained in a way that is not vulnerable
to double satisfaction.

6 Polina Vinogradova and Orestis Melkonian

Definition 3 states that for a given pair of states (s, s′) with at least one transition between them, a double
satisfaction-vulnerable constraint C reduces the set of inputs i such that (?, s, i, s′) ∈ STRUC. Since all valid
state update pairs are already specified by the set s STRUC, any additional constraints on allowable inputs for
a transition between (s, s′) are not relevant in the computation of the state update. Therefore, such additional
constraints are not specific to STRUC and can be present in other scripts, making them vulnerable to DS.
DSP mitigation. The conventional way of addressing the DSP (even before giving it a formal definition) is
to include a constraint in the implementing script(s) that forces them to fail if any other scripts are being run
by the transaction. This effectively mitigates negative consequences of potential vulnerabilities of the given
contract’s constraints to the DSP. This is likely not a practical solution in many cases, however, as it is too
restrictive. We note that, like the above example, this constraint is not on the contract state update, but rather,
on the transaction. This means that it is itself vulnerable to DS. However, vulnerability of this constraint to
DS will likely not be deemed to be a problem by script authors, as the purpose of introducing it is to mitigate
the negative consequences of other constraints’ vulnerabilities.

It is possible to define classes of contracts that are never vulnerable to DS. Deterministic contracts that
have an end state for any pair of an input state and an input constitute such a class.

Lemma (DS-free contracts). A deterministic structured contract (π, πTx, STRUC) is not vulnerable to
double satisfaction with respect to any constraint whenever for any (s, i), there exists an s′ such that
(?, s, i, s′) ∈ STRUC.

Proof. Let STRUC be a contract, and C — a constraint of STRUC, so that STRUC ⊆ C. Suppose STRUC ⊆
STRUC′, such that that STRUC ⊆ STRUC′ ∩ C ⊆ STRUC′, and s STRUC = s STRUC′. Suppose also that for
any (s, i) there exists an s′ such that (?, s, i, s′) ∈ STRUC.

Now, let (?, s, i, s′) ∈ STRUC′. By assumption, (s, s′) ∈ s STRUC.
We also know there is a unique (since STRUC is deterministic) s′′ for the given s, i such that

(?, s, i, s′′) ∈ STRUC. Since STRUC ⊆ STRUC′, and such an s′′ must be unique, and s′ = s′′, we can conclude
that (?, s, i, s′) ∈ STRUC. Therefore, STRUC = STRUC′ = STRUC′ ∩ C, and STRUC is not vulnerable to DS
with respect to C.

In Section 6, we discuss a possible solution to the DSP for payouts.

4 Message-passing in EUTxO

Conceptually, a message is data sent from a sender to a recipient [2]. In our design, a message is a data
structure of type Msg encoded on the ledger in a specific way. It also includes a sender, receiver, and some
data or assets. The content of m ∈ Msg is encoded as the TokenName of an NFT with the minting policy
msgsTT. It is encoded as such in order to maintain certain guarantees about the message’s integrity, which
are ensured by the NFT minting policy. A message m ∈ Msg consists of the following fields (see Fig. 1):

(i) an output reference inUTxO : OutputRef. An output with this reference must be spent when the message
token is minted;

(ii) an index msgIx : Ix. It is used to uniquely identify a message whenever multiple messages are produced
in association with spending a single UTxO entry;

(iii) an output msgTo : Output. It is an output that must be spent to validate the consumption of the message
by that recipient (such an output may not be unique);

(iv) an output msgFrom : Output. It is an output that must be spent to validate production of the message by
that sender. Specifically, the entry m.inUTxO 7→ m.msgFrom must be spent;

(v) a value msgValue : Value. It specifies the assets being sent. When a message is minted and placed in an
output, this output must also contain these assets;

(vi) data msgData : Data. It is the data being sent via this message.

Each message requires a unique identifier to enable some of the applications we present later. Here, we use
an approach based on the thread token mechanism to ensure NFT uniqueness [5]. This mechanism requires

Message-passing in the Extended UTxO Ledger Model 7

Msg :=(inUTxO : OutputRef,

msgIx : Ix,

msgTo : Output,

msgFrom : Output,

msgValue : Value,

msgData : Data)

Type of messages

State := P Msg

The MSGS state is a set of messages

Input := Tx

The MSGS input is the full transaction

Fig. 1: Message types

that the thread token’s minting policy checks that a particular output reference is spent from the UTxO by
the minting transaction, and exactly one token is minted under this policy. To uniquely identify a message
NFT we use the output reference inUTxO, together with the message index msgIx. Duplication of unique
identifiers is forbidden by the implementing scripts.

Sending a list of messages is done by submitting a transaction that (i) mints the NFTs encoding each
of the messages, and (ii) for each message, spends the sender output with a redeemer containing the list
of messages "from" that output. For an output to receive a list of messages, a transaction must spend the
outputs containing the messages, and burn the message tokens. It must also spend the receiver output, and
supply it with a redeemer containing the messages it is receiving.

The MSGS transition system specifies the rules for sending and receiving messages, see Fig. 5. A state
s ∈ State of the MSGS contract is a set of messages, and represents messages that have been sent, but not yet
received. The input type of MSGS is Input := Tx.

The function
msgTkn msg := { msgsTT 7→ { msg 7→ 1 } }

encodes a message as a message token, recording the message data as its token name, and msgsTT as its
minting policy. According to this policy, each message token minted by a transaction must be placed into a
UTxO entry locked by a special validator, msgsVal, which only checks that any message token in that UTxO
entry is burned. The message token minting policy msgsTT performs the same checks and assignments (1, 3,
5, 6, 7) that are in the MSGS specification in Fig. 5, with the notable exception of checking the non-duplication
of existing messages, as required by (2). This cannot be checked explicitly by msgsTT because it cannot
inspect the global set of existing messages under this policy, and must instead be proved as a consequence
of the generation of the message’s unique identifier. The type of the decoded redeemer for both msgsTT
and msgsVal is {?}, as they are not used in the implementation. The predicate _#_ takes two lists, returning
True if they are disjoint, and [f a ‖ a ← as] denotes list comprehension. The contracts msgsTT and msgsVal
implementing the MSGS specification are given in Fig. 3 and 4. The projection function πMsg returns, for a
given utxo, all messages encoded in the message tokens that exist in the UTxO set. It returns ? when one
or more messages have been duplicated or outputs incorrectly generated in the utxo. This is guaranteed by
msgOutsOK, see Fig. 2 for the details.

πMsg utxo :=

{
{ m | _ 7→ o ∈ utxo, msgTkn m ⊆ o.value} if msgOutsOK utxo
? otherwise

See Appendix C for a proof sketch of the simulation relation between LEDGER and MSGS. Recall that this
relation ensures the integrity of the implementation, i.e. that the implementation of MSGS via the msgsTT
and msgsVal scripts only allows ledger updates that are mapped to valid MSGS transitions (by the π and πTx
projections). It uses the replay protection assumption.
Replay protection assumption. We must make an additional assumption about valid transactions in order
to prove properties of the behavior of our MSGS program. This assumption is required for all forthcoming
results making use of the fact that (MSGS, π, πTx) is a structured contract.

8 Polina Vinogradova and Orestis Melkonian

msgOutsOK : UTxO→ B

msgOutsOK utxo :=

∀ (i 7→ o) ∈ utxo, { msgsTT 7→ {m 7→ q}} ⊆ o.value⇒
(q = 1)

∧ (m 6= ?) ∧ (m.inUTxO 7→ _ /∈ utxo)
∧ JmsgsTTK (?, (i.id, msgsTT))

∧ ∀(i′ 7→ o′) ∈ utxo, i 6= i′, { msgsTT 7→ {m 7→ _}} /∈ o′.value

∧ ∀ (tx, ix) 7→ o ∈ utxo, ∀ i ∈ tx.inputs,

Ji.output.validatorK (i.output.datum, i.redeemer, (tx, i))
∧ (ix 7→ o) ∈ tx.outputs

SR := {send, receive}
Tag specifying whether message is being sent or received

getMsgRef : Msg→ (OutputRef, Ix)

getMsgRef msg := (msg.inUTxO, msg.msgIx)

Returns unique message identifier

Fig. 2: Projections and auxiliary MSGS functions

msgsTT′ : Script→ Script

JmsgsTT′ mvK (_, (tx, pid)) :=

[getMsgRef m | (_, m)← newOuts] # [getMsgRef m | (_, m)← usedInputs]
∧ ∀ (o, msg) ∈ newOuts,

(msg, (msg.inUTxO, msg.msgFrom, _)) ∈ sndMsgs
∧ { t ⊆ o.value | dom t = {pid} } = msgTkn msg
∧ o.validator = mv ∧ o.value ≥ msg.msgValue

∧ ∀ (i, msg) ∈ usedInputs, (msg, (_, msg.msgTo, _)) ∈ rcvMsgs
∧ Σ(_,msg) ∈ newOuts msgTkn msg + Σ(_,msg) ∈ usedInputs (−1) ∗ (msgTkn msg) = {pid 7→ tkns ∈ tx.mint }
where

msgTkn msg := { pid 7→ {msg 7→ 1} }
sndMsgs := [(msg, i) | i← tx.inputs, (sr, msg) ← i.redeemer, sr = send]

rcvMsgs := [(msg, i) | i← tx.inputs, (sr, msg) ← i.redeemer, sr = receive]

newOuts := { (o, msg) | o ∈ tx.outputs, msgTkn msg ⊆ o.value }
usedInputs := { (i, msg) | i ∈ tx.inputs tx, msgTkn msg ⊆ i.output.value }

Fig. 3: Minting policy constructor for message tokens

Message-passing in the Extended UTxO Ledger Model 9

msgsTT := msgsTT′ msgsVal

JmsgsValK (_, _, (tx, i)) :=

∀ msg ∈ { m | msgsTT′ (i.output.validator) 7→ { m 7→ 1}} ⊆ i.output.value },
{ msgsTT′ (i.output.validator) 7→ {msg 7→ −1}} ⊆ tx.mint

Fig. 4: Minting policy and validator for UTxO containing message tokens

PROCESS

(1) construct a list of messages encoded in redeemers
sndMsgs := [(msg, i) | i← tx.inputs, (sr, msg) ← (i.redeemer), sr = send]

rcvMsgs := [(msg, i) | i← tx.inputs, (sr, msg) ← (i.redeemer), sr = receive]

(2) check that no new messages are duplicates
[getMsgRef m | (_, m)← newOuts] # [getMsgRef m | (_, m)← usedInputs] # [getMsgRef m | m← msgs]

(3) compute the set of message token-containing outputs being created
newOuts := { (o, msg) | o ∈ tx.outputs, msgTkn msg ⊆ o.value }

(4) check that all the messages are correctly constructed : correct sender output,
sender has correct redeemer, output reference is spent, one message per output,

output containing message token has correct validator and sufficient value
∀ (o, msg) ∈ newOuts, (msg, (msg.inUTxO, msg.msgFrom, _)) ∈ sndMsgs

∧ { t ⊆ o.value | dom t = {msgsTT} } = msgTkn msg
∧ o.validator = msgsVal ∧ o.value ≥ msg.msgValue

(5) compute the set of message token-containing outputs being spent
usedInputs := { (i, msg) | i ∈ tx.inputs, msgTkn msg ⊆ i.output.value }

(6) check that all messages are correctly consumed :
the receiver output is correct, input has correct redeemer, and message exists
∀ (i, msg) ∈ usedInputs, (msg, (_, msg.msgTo, _)) ∈ rcvMsgs ∧ msg ∈ msgs

(7) check minting and burning of message tokens :
Σ(_,msg) ∈ newOuts msgTkn msg + Σ(_,msg) ∈ usedInputs (−1) ∗ (msgTkn msg)

= { msgsTT 7→ tkns ∈ tx.mint }

? `
(

msgs
) tx−−−→

MSGS

(
(msgs \ [m | (_, m)← usedInputs])∪ [m | (_, m)← newOuts]

)
Fig. 5: Specification of the MSGS transition

For any (slot, utxo, tx, utxo′) ∈ LEDGER such that π utxo 6= ?,

((tx, _) /∈ tx.outputRefs) ∧ (∀ m ∈ π utxo, m.inUTxO.id 6= tx)

The above states that a transaction cannot re-add one of its inputs as a new output, and that an existing
message token cannot be associated with the newly added transaction tx.

Both assumptions are consequences of replay protection: the general UTxO property that disallows the
same transaction being valid multiple times within a given trace. Under reasonable conditions on initial
ledger states this can be proven as a safety property [1], but this lies outside the scope of this work as we only
consider individual steps here.

5 Message-passing use cases

In this section we discuss applications of the message-passing structured contract.

10 Polina Vinogradova and Orestis Melkonian

5.1 Memoization

There may be strict resource use constraints that apply to executing code on a blockchain. It may not be
possible for a transaction to run the code of a large contract in its entirety. It may be desirable to divide
such code into less memory- and CPU-intensive functions whose outputs are pre-computed for use by an
aggregate function. A script may not trust values pre-computed off-chain, so a proof that a value was correctly
computed on-chain is required. In this section we describe a technique for constructing such proofs using the
MSGS contract. It is similar to a specific kind of caching called memoization [13], which is also how we refer to
our approach.

Consider a function myFunction : MyInType→ MyOutType which performs some computation. We define
a script checkMyFunction (Fig. 6a), which wraps the computation done by myFunction. This script mints a
message token with data (fIn, fOut), such that myFunction fIn = fOut, and a script useMyFunction (Fig. 6b)
that can consume a message with the redeemer [(receive, m)] when m is addressed to an output locked by
useMyFunction, and is sent by an output locked by checkMyFunction. This message serves as a proof that
myFunction fIn = fOut, so, useMyFunction can perform a computation checkStuff relying on the fact that
myFunction fIn = fOut. Note that msgTo is not constrained by this contract, so that the generated message can
be addressed to any recipient. We give the result that formalizes the use of message-passing to prove that

JcheckMyFunctionK (_, r, (tx, i)) :=

m.inUTxO = i.outputRef

∧ m.msgFrom = i.output

∧ m.msgValue = 0

∧ msgTkn m ⊆ tx.mint

∧ myFunction fIn = fOut
where

[(send, m)] = r
(fIn, fOut) = m.msgData

(a) Script minting message token.

JuseMyFunctionK (d, r, (tx, i)) :=

(m.msgFrom = (checkMyFunction, _, _)

∧ m.msgTo = i.output

∧ (−1) ∗ (msgTkn m) ⊆ tx.mint

∧ checkStuff d r (tx, i) (fIn, fOut))

∨ checkOtherStuff d r (tx, i)
where

[(receive, m)] = r
(fIn, fOut) = m.msgData

(b) Script using the memoized output.

Fig. 6: Scripts for memoizing the output of myFunction.

myFunction fIn = fOut.

Lemma (Verified input-output pairs). For any (s, u, tx, u′) ∈ LEDGER, with π u 6= ? and
(i, (useMyFunction, v, d), r) ∈ tx.inputs, such that

[(receive, m)] = r
(fIn, fOut) = m.msgData

m.msgFrom = (checkMyFunction, _, _)

necessarily myFunction fIn = fOut, and m.msgTo = (useMyFunction, v, d). See Appendix C for a proof sketch.

5.2 Contracts using message-passing

Stateful contract interaction, or communication, in the EUTxO model is implemented via dependencies [5].
A dependency of a script c is a constraint requiring that another script c′ must be executed within the same
transaction, possibly with specific arguments. For example, the validation of the minting policy msgsTT
implementing MSGS depends on the validation of the relevant sender and receiver output-locking scripts with

Message-passing in the Extended UTxO Ledger Model 11

certain redeemers. MSGS introduces structure to the ad-hoc use of dependencies in implementing interaction
and communication between contracts or scripts. It allows the interacting scripts to execute asynchronously,
and to depend on the message-passing scripts msgsTT and msgsVal, rather than on each other directly. We
say that stateful contracts use message-passing when they require the production or consumption of messages
to or from scripts implementing the contract. We formalize this notion in this section.

Message-passing specification is closely integrated with ledger semantics, and inspects the scripts,
redeemers, and datums of the input transaction. Because of this, a message-passing contract must also
inspect these in order to correctly construct a message. So, a state projection function for a contract that uses
message-passing includes the UTxO entry relevant to the contract state, in full. The contract input is the
complete transaction.

Suppose that F : Output 7→ B is a constraint on outputs, and c : UTxO → B is a constraint on a valid
UTxO state. The contract denoted by (πF,c, πTx, STRUC) is a structured contract with

State := {i 7→ o ∈ u | u ∈ UTxO, F o }

πF,c u :=

{
{i 7→ o ∈ u | F o} if c u
? otherwise

πTx := id

We can combine STRUC and MSGS to construct the structured contract STRUCMSGS,

πState−M u :=

{
(πF,c u, πMsg u) if πF,c u 6= ? 6= πMsg u
? otherwise

πTx−M := idTx

STRUCMSGS := { (?, (s, m), tx, (s′, m′)) | (?, s, tx, s′) ∈ STRUC, (?, m, tx, m′) ∈ MSGS }

We call this contract message-augmentation of STRUC. We define the following functions that filter messages
sent or received by STRUC :

getFromSTRUCmsgs msgs := { m | m ∈ msgs, F (m.msgFrom) }
getToSTRUCmsgs msgs := { m | m ∈ msgs, F (m.msgTo) }

We now state a result that says that, for a given F, c, all messages to and from the contract
(πF,c, πTx, STRUC) for a given step are generated and consumed only under some appropriate conditions.
In particular, messages from the contract can only be produced when a script locking an output of this contract
"authorizes" the minting of this message by successfully validating with a redeemer containing the message(s)
being produced. Consuming messages addressed to the contract requires the validation of a script locking
the recipient output, given a redeemer containing these messages. This result follows directly from the MSGS
specification and implementation.

Lemma (STRUC messages generated correctly). For any (?, (s, m), tx, (s′m′)) ∈ STRUCMSGS,

∀ msg ∈ getFromSTRUCmsgs (m′ \m), (msg.inUTxO 7→ (msg.msgFrom) ∈ s)

∧ msg.inUTxO 7→ (msg.msgFrom) /∈ s′)
∧ ∀ inp ∈ tx.inputs, (inp.outputRef = msg.inUTxO⇒ (send, msg) ∈ inp.redeemer)

∀ msg ∈ getToSTRUCmsgs (m \m′), (_ 7→ msg.msgTo ∈ s)
∧ ∃ inp ∈ tx.inputs, inp.output = msg.msgTo∧ (receive, msg) ∈ inp.redeemer)

Definition (Uses message-passing). We say that STRUC uses message-passing whenever the set defined by

getMSGS (?, (s, m), tx, (s′m′)) := getFromSTRUCmsgs (m′ \m) ∪ getToSTRUCmsgs (m \m′)

is non-empty for some (?, (s, m), tx, (s′m′)) ∈ STRUCMSGS.

12 Polina Vinogradova and Orestis Melkonian

We define the set of payouts in the step (?, (s, m), tx, (s′m′)) ∈ STRUCMSGS by

getPayouts (?, (s, m), tx, (s′m′)) := {msg ∈ getFromSTRUCmsgs (m′ \m) | msg.msgValue > 0∧¬ (F (msg.msgTo) }

Whenever this set is non-empty for some step in STRUCMSGS, we say that it makes payouts with messages.
Discussion. A contract is said to use message-passing whenever there is a step in STRUCMSGS that requires
the production or consumption of a non-empty set of messages to or from STRUC. Some computation
performed by contracts implementing STRUC may be contingent on receiving a specific message. For
example, accepting a payment message sent by another contract.

Contracts that use message-passing share common features that are both necessary and sufficient for
a script c implementing the contract to be able to interface with the message-passing contract : (i) the
script’s redeemer must decode to a list of sent/received messages, and (ii) the script must ensure that the
corresponding messages are included in the transaction’s mint field.

For a given step (?, s, t, s′) ∈ STRUC, we refer to the messages sent and received by outputs that make up
s, i.e. those filtered by F, as a script’s communication. Calculating s′ for the given (s, t) is the STRUC contract’s
computation. STRUC may still include arbitrary dependencies on scripts implementing contracts other than
MSGS. Specifying when a contract has no non-message dependencies is important for determining when it is
guaranteed to be able to progress. This is, however, the subject of future work.

6 Messages as payouts

A payout is a message that is from STRUC, but not addressed to STRUC, and specifies a sent value greater
than zero. The function that returns all the payouts for a given contract, getPayouts, is a function of the start
and end MSGS states only, given that it is applied to a valid step of STRUCMSGS.
Message-augmented PAYOUT. Messages can serve as intermediate stores of assets whose transfer has
been authorized by the sender, but before they are accepted by the receiver. We give an example of a
message-augmented contract that makes payouts until it runs out of funds.

In the upcoming example we make use of the thread token design pattern [5]. Suppose NFT is a thread
token which, upon minting, must be placed into the output given by (payout, NFT+ a, ?), for some a > 0. This
NFT serves as a unique identifier of the UTxO entry currently containing the datum and value representing
part (or all) of the contract state. We define the filter F which returns only the outputs containing the NFT
specific to the PAYOUT contract implementation (plus some assets in quantities less than a), and a constraint
c requiring that there is exactly one NFT in the UTxO :

F o := NFT ⊆ o.value

c u := ∃! i 7→ o ∈ u, NFT ⊆ o.value ∧ a + NFT ≥ o.value

∧ (∀ i 7→ o ∈ u, NFT ⊆ o.value ⇒ o.validator = payout)

As with all message-passing scripts, the redeemer type for the payout script is [(SR×Msg)], and the
datum type is {?}, which is never inspected. We give the two transition rules of the message-augmented
specification PAYOUTMSGS. The first, MSGSOnly, applies when the PAYOUT state is not updated, and only
the message-passing contract is updated. The second, PayoutV, applies when a payout of value v > 0 is made
to the address script recipient 6= payout. Only one payout at a time is possible, and it must have message
index 1.

We note that rather than defining PAYOUT first, then PAYOUTMSGS, we define the latter directly. The
reason for this is that this approach allows us to express the requirements on the payout messages as
constraints on the MSGS state update, rather than in terms of on the outputs contained in the carrying tx.
This is important in addressing the DSP using message-passing.

The specification is given by

MSGSONLY

_ ` (m)
tx−−→

msgs
(m′) (i, o, _) /∈ tx.inputs

`
(
{i 7→ o}

m

)
tx−−−−−−−−−→

PAYOUT-MSGS

(
{i 7→ o}

m′

)

Message-passing in the Extended UTxO Ledger Model 13

PAYOUTV

ms := (i, 1, (recipient, v, ?), (payout, NFT + a, ?), v, ?)

recipient 6= payout ms ∈ m′ \m 0 ≤ v ≤ a

_ ` (m)
tx−−→

msgs
(m′)

`
(
{i 7→ (payout, NFT + a, ?)}

m

)
tx−−−−−−−−−→

PAYOUT-MSGS

(
{(tx, ix) 7→ (payout,NFT+ (a − v),?)}

m′

)
It is possible to construct a similar example to track the assets being deposited into a stateful contract

using messages, representing pay-ins to that contract.
MSGS payouts and double satisfaction. We gave a naive approach to payouts in (ii) in Section 3. This
approach is vulnerable to DS, since the constraint requiring a payout to be made is strictly on the input
transaction, rather than the state. Naive payout outputs can be produced and consumed by any valid
transaction at any time, independently of the state update of any contract. Without a mechanism to associate a
payout with its sender, is not possible to include naive payouts in a contract’s state.

Intuitively, making payouts via messages provides such a mechanism by ensuring that the sender of the
payout is recorded in the message token, and that the message token has a unique identifier. Formally, since
making payouts via messages can be expressed as a predicate on a pair of message states, rather than on the
input transaction, constraints on message payouts are not vulnerable to DS for a message-enhanced contract.
Let us consider payouts as specified in the definition of payouts via messages, given in Definition 5.2. We can
state the following result:

Lemma (MSGS-payouts and DS) Suppose (πF,c, πTx, STRUC) is a structured contract, and STRUCMSGS is its
message-enhanced version. Let C ⊃ STRUCMSGS be a constraint expressible in terms of some predicate C′ on
the set of payout messages,

C (?, (s, m), tx, (s′m′)) := C′ (getPayoutsSTRUC (?, (s, m), tx, (s′, m′)))

Then, the contract STRUCMSGS is not vulnerable to DS with respect to C.

Proof. Suppose that (πF,c, πTx, STRUC′) is another (more permissive) structured contract, with
STRUCMSGS ⊆ STRUC′MSGS, and s STRUCMSGS = s STRUC′MSGS. For any (?, (s, m), tx, (s′, m′)) ∈
STRUC′MSGS, by definition,

getPayoutsSTRUC′ (?, (s, m), tx, (s′, m′)) =

{ ms ∈ m′ \m | F (ms.msgFrom) ∧ ms.msgValue > 0∧ ¬ (F (ms.msgTo)) }

which depends only on F (which is the same for STRUC and STRUC′), and m′ \m. Now, by the assumed
preconditions on STRUC′, for any (?, (s, m), tx, (s′, m′)) ∈ STRUC′MSGS, we can find (?, (s, m), tx′, (s′, m′)) ∈
STRUCMSGS ⊆ STRUC′MSGS. Then,

C (?, (s, m), tx, (s′m′)) = C′ (getPayoutsSTRUC′ (?, (s, m), tx, (s′, m′)))

= C′ (getPayoutsSTRUC (?, (s, m), tx′, (s′, m′)))

= C (?, (s, m), tx′, (s′m′))

Therefore, any transition in STRUC′MSGS must also satisfy C. We get that STRUC′MSGS ∩ C = STRUC′MSGS,
meaning that STRUCMSGS is not vulnerable to DS with respect to such a C.

14 Polina Vinogradova and Orestis Melkonian

7 Discussion

7.1 Related work

Message-passing is the backbone of distributed computing [2,9]. The π-calculus process calculus has been
developed to formalize message-passing between processes in distributed computing scenarios [18]. We
conjecture that it may be possible to apply this formalism to message-passing between structured contracts.

The UTxO ledger model introduced by Bitcoin [19], as well as EUTxO ledger implementations [11], are
themselves message-passing schemes, wherein a transaction is a message to a script. Our scheme reinterprets
messages in a way that allows them to have a single verified sender output, and a receiver that is also an
output. The contract MSGS can be viewed as a kind of linear sub-ledger within LEDGER, which can be used
as a tool in specification and verification of properties of communicating contracts.

In account-based ledgers [4,15,26], (synchronous) message-passing is the default mode of communication
between contracts. The Scilla programming language [25], with its emphasis on separating communication
from computation for stateful contracts on the Zilliqa ledger [26], inspired this work. Even though Scilla
was developed for the account-based ledger model, the communicating automata structure it uses to model
contracts may be useful in describing message-passing structured contracts as well.

Existing work on rigs [10], which are cryptographic data structures that provide integrity-at-a-distance,
presents an approach to maintaining data integrity across potentially multiple state-managing machines.
Aspects of this approach are similar in spirit to the thread-token technique we use to uniquely identify
messages and ensure non-duplication of message tokens on the ledger; both are based on temporal and
causal dependencies of operations on one another.

A version of asynchronous, but centralized, message-passing is implemented in the ERC-20 Ethereum
contract for fungible tokens [12]. To transfer an amount of tokens from a sender to a receiver, the total
amount being transferred must first be sent and recorded in an intermediate data structure, then received
and withdrawn from the data structure. The total amount does not have to be withdrawn in its entirety,
which is different from our design, where a message can only be consumed in full. The ERC-20 design is also
primarily for asset transfers, whereas ours can be used to communicate authenticated data as well. We also
note that in an account-based ledger, transactions interacting with the same stateful contract like ERC-20 can
usually be reordered. However, implementing message-passing via a centralized data-storage contract on an
EUTxO ledger would significantly reduce the possibility of reordering message-passing transactions, and
therefore concurrency.

Formalization of blockchain and ledger functionality forms a foundation for rigorous reasoning about
smart contracts security, discussed in the detailed overview [24]. Mathematical models of EUTxO and UTxO
ledgers and smart contracts on those ledgers, including ours, often specify a simplified version of actual
implementations [7,5,14,20,3,23].

7.2 Future work

The scheme we presented in Fig. 5 is such that the outputs that must be spent in order to consume a given
message are fully specified (via the msgTo field of the message), including their scripts, values, and datums.
In future work, this constraint could be relaxed for a more permissive and versatile system design.

A time of expiry can be added to the message structure and used to specify a time after which a message
can be consumed under different constraints. This could allow structured contracts to retract any assets sent
via a message but not received by a set time. Changing the type of the message-passing redeemer from a list
of messages to a list of messages (for communication) together with some extra data (for computation) can
also make MSGS more expressive. It may be useful in more easily enabling a given script to engage in both
computation and communication as a result of applying a transaction.

In this work, we did not specify trace-based properties of LEDGER or any structured contract STRUC.
This topic, in general, is the subject of future work. Of particular interest are structured contracts that can be
guaranteed to take a step without the need for executing "external" scripts, i.e. ones other than those used
to implement that contract. It may be unrealistic for a contract to always take a step without any external
contracts validating, e.g. running a script which locks funds used for paying into the contract. However,
it seems feasible to limit a structured contract’s dependencies to message-passing only. Formalizing and
proving properties about this class of structured contracts in the future is of interest.

Message-passing in the Extended UTxO Ledger Model 15

In the future, we intend to mechanize this contract and its applications in Agda, building upon the formal
EUTxO ledger model [7] and structured contracts framework [27], hoping to eventually integrate our work
into the more realistic mechanization of the Cardano ledger [16].

7.3 Conclusion

Principled approaches to implementing and reasoning about the behavior of stateful smart contracts in
the EUTxO ledger model have already been formalized in existing work. However, such models do not
include any special provisions for analyzing communication among contracts. In this work, we focus on
formalizing communication of data and assets among scripts as well as the stateful contracts they implement.
Our contribution begins with the formalization of a common problem in contract interaction — the double
satisfaction problem. The instance of this problem that is encountered most often by script authors is the
challenge of performing correct accounting in sending assets to a recipient, i.e. making a payout.

We define what a message data structure is in the context of an EUTxO ledger — a unique identifier
associated with the data and assets being sent, as well as its sender and receiver outputs. We then define
how to use the ledger asset-minting mechanism to encode messages as tokens which appear in the UTxO set.
To track sending and receiving messages, we define a distributed structured contract MSGS. As such, it is a
stateful contract specified in the same small-steps semantic framework as the ledger itself, and comes with
a proof of the integrity of its implementation. We describe communication between scripts and structured
contracts in terms of sending and receiving messages, which facilitates formal reasoning about contract
communication. Our message-passing scheme enables asynchronous communication that does not require
multiple participants to coordinate transaction construction off-chain to execute dependent scripts.

To give examples of formal reasoning about the message-passing contract and its applications, we present
two use cases. The first is a variation on memoization, wherein message tokens serve as proof artifacts of
successful script computations. The second formalizes the idea of structured contract communication via
message-passing. Any structured contract may participate in message-passing so long as it ensures that the
message tokens it mints correspond to messages specified in its redeemer. We formalize when a message
constitutes a "payout" from a contract, and then demonstrate how expressing payouts as messages can
address vulnerability to the DSP in the case of payouts. A notable limitations of message-passing in general,
and, in particular, of using it to address the DSP, is the requirement that the message token minting policy
must be run to both send and receive a message. In a realistic setting, this may require the payment of
additional script execution fees by the transaction authors.

We presented a contract designed for a minimal EUTxO system. Some changes may be necessary to adjust
our contract design to an EUTxO ledger system with additional features or slight variations, e.g. one that
uses hashes instead of full preimages of scripts and transactions to reduce on-chain memory use. We believe
that message-passing and its applications may be implemented on most EUTxO ledger designs that feature
scripts and datums in outputs, redeemers in transactions for spending outputs, transaction summaries passed
as arguments to the script evaluator, and the multi-asset functionality relying on user-defined policies for
controlling asset minting.

Acknowledgments. We would like to thank Manuel Chakravarty for providing inspiration for this work, by
being one of the first proponents of the message-passing idiom for concurrency in the EUTxO model. We
would also like to thank Philip Wadler for useful discussions.

16 Polina Vinogradova and Orestis Melkonian

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21(4), 181–185 (1985). https:
//doi.org/https://doi.org/10.1016/0020-0190(85)90056-0, https://www.sciencedirect.com/science/article/pii/
0020019085900560

2. Andrews, G.: Foundations of Multithreaded, Parallel, and Distributed Programming. Addison-Wesley (1999)
3. Bartoletti, M., Bracciali, A., Lepore, C., Scalas, A., Zunino, R.: A formal model of Algorand smart contracts (2021)
4. Buterin, V.: Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform. https://ethereum.

org/en/whitepaper/ (2014)
5. Chakravarty, M.M.T., Chapman, J., MacKenzie, K., Melkonian, O., Müller, J., Jones, M.P., Vinogradova, P., Wadler, P.:

Native custom tokens in the extended UTXO model. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of
Formal Methods, Verification and Validation: Applications - 9th International Symposium on Leveraging Applications
of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part III. Lecture Notes in
Computer Science, vol. 12478, pp. 89–111. Springer (2020). https://doi.org/10.1007/978-3-030-61467-6_7, https:
//doi.org/10.1007/978-3-030-61467-6_7

6. Chakravarty, M.M.T., Chapman, J., MacKenzie, K., Melkonian, O., Müller, J., Jones, M.P., Vinogradova, P., Wadler, P.,
Zahnentferner, J.: UTXOma: UTXO with multi-asset support. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications
of Formal Methods, Verification and Validation: Applications - 9th International Symposium on Leveraging
Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part III. Lecture
Notes in Computer Science, vol. 12478, pp. 112–130. Springer (2020). https://doi.org/10.1007/978-3-030-61467-6_8,
https://doi.org/10.1007/978-3-030-61467-6_8

7. Chakravarty, M.M.T., Chapman, J., MacKenzie, K., Melkonian, O., Peyton Jones, M., Wadler, P.: The extended
UTXO model. In: Bernhard, M., Bracciali, A., Camp, L.J., Matsuo, S., Maurushat, A., Rønne, P.B., Sala, M. (eds.)
Financial Cryptography and Data Security - FC 2020 International Workshops, AsiaUSEC, CoDeFi, VOTING, and
WTSC, Kota Kinabalu, Malaysia, February 14, 2020, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 12063, pp. 525–539. Springer (2020). https://doi.org/10.1007/978-3-030-54455-3_37, https://doi.org/10.1007/
978-3-030-54455-3_37

8. Corduan, J., Güdemann, M., Vinogradova, P.: A formal specification of the Cardano ledger. https://github.com/
input-output-hk/cardano-ledger/releases/latest/download/shelley-ledger.pdf (2019)

9. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems: Concepts and Design (International Computer
Science). Addison-Wesley Longman, Amsterdam (2005)

10. Coward, K., Toliver, D.R.: Simple rigs hold fast (2022)
11. Ergo Team: Ergo: A Resilient Platform For ContractualMoney. https://whitepaper.io/document/753/

ergo-1-whitepaper (2019)
12. Ethereum Team: ERC-20 TOKEN STANDARD. https://ethereum.org/en/developers/docs/standards/tokens/

erc-20 (2023)
13. Field, A., Harrison, P.: Functional Programming. International computer science series, Addison-Wesley (1988),

https://books.google.ca/books?id=nYtQAAAAMAAJ
14. Gabbay, M.J.: Algebras of UTxO blockchains. Mathematical Structures in Computer Science 31(9), 1034–1089 (2021).

https://doi.org/10.1017/S0960129521000438
15. Goodman, L.: Tezos—a self-amending crypto-ledger (white paper). https://tezos.com/whitepaper.pdf (2014)
16. Knispel, A., Melkonian, O., Chapman, J., Hill, A., Jääger, J., DeMeo, W., Norell, U.: Formal specification of the Cardano

blockchain ledger, mechanized in Agda. https://omelkonian.github.io/data/publications/cardano-ledger.pdf (2024),
under submission

17. Knispel, A., Vinogradova, P.: A Formal Specification of the Cardano Ledger integrating Plutus Core. https://github.
com/input-output-hk/cardano-ledger/releases/latest/download/alonzo-ledger.pdf (2021)

18. Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge University Press, Cambridge, UK
(1999)

19. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/en/bitcoin-paper (October 2008)
20. Nester, C.: A foundation for ledger structures. In: Anceaume, E., Bisière, C., Bouvard, M., Bramas, Q., Casamatta, C.

(eds.) 2nd International Conference on Blockchain Economics, Security and Protocols, Tokenomics 2020, October
26-27, 2020, Toulouse, France. OASIcs, vol. 82, pp. 7:1–7:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020).
https://doi.org/10.4230/OASICS.TOKENOMICS.2020.7, https://doi.org/10.4230/OASIcs.Tokenomics.2020.7

21. Norell, U.: Dependently typed programming in Agda. In: International School on Advanced Functional Programming.
pp. 230–266. Springer (2008)

22. Plotkin, G.: A structural approach to operational semantics. J. Log. Algebr. Program. 60-61, 17–139 (07 2004). https:
//doi.org/10.1016/j.jlap.2004.05.001

23. Rupić, K., Rožić, L., Derek, A.: Mechanized Formal Model of Bitcoin’s Blockchain Validation Procedures. In:
Bernardo, B., Marmsoler, D. (eds.) 2nd Workshop on Formal Methods for Blockchains (FMBC 2020). Open Access

https://doi.org/https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/https://doi.org/10.1016/0020-0190(85)90056-0
https://www.sciencedirect.com/science/article/pii/0020019085900560
https://www.sciencedirect.com/science/article/pii/0020019085900560
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://doi.org/10.1007/978-3-030-61467-6_7
https://doi.org/10.1007/978-3-030-61467-6_7
https://doi.org/10.1007/978-3-030-61467-6_7
https://doi.org/10.1007/978-3-030-61467-6_7
https://doi.org/10.1007/978-3-030-61467-6_8
https://doi.org/10.1007/978-3-030-61467-6_8
https://doi.org/10.1007/978-3-030-61467-6_8
https://doi.org/10.1007/978-3-030-54455-3_37
https://doi.org/10.1007/978-3-030-54455-3_37
https://doi.org/10.1007/978-3-030-54455-3_37
https://doi.org/10.1007/978-3-030-54455-3_37
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://whitepaper.io/document/753/ergo-1-whitepaper
https://whitepaper.io/document/753/ergo-1-whitepaper
https://ethereum.org/en/developers/docs/standards/tokens/erc-20
https://ethereum.org/en/developers/docs/standards/tokens/erc-20
https://books.google.ca/books?id=nYtQAAAAMAAJ
https://doi.org/10.1017/S0960129521000438
https://doi.org/10.1017/S0960129521000438
https://tezos.com/whitepaper.pdf
https://omelkonian.github.io/data/publications/cardano-ledger.pdf
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/alonzo-ledger.pdf
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/alonzo-ledger.pdf
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.4230/OASICS.TOKENOMICS.2020.7
https://doi.org/10.4230/OASICS.TOKENOMICS.2020.7
https://doi.org/10.4230/OASIcs.Tokenomics.2020.7
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1016/j.jlap.2004.05.001

Message-passing in the Extended UTxO Ledger Model 17

Series in Informatics (OASIcs), vol. 84, pp. 7:1–7:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany (2020). https://doi.org/10.4230/OASIcs.FMBC.2020.7, https://drops.dagstuhl.de/entities/document/10.
4230/OASIcs.FMBC.2020.7

24. Sánchez, C., Schneider, G., Leucker, M.: Reliable smart contracts: State-of-the-art, applications, challenges and future
directions. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and Validation.
Industrial Practice. pp. 275–279. Springer International Publishing, Cham (2018)

25. Sergey, I., Nagaraj, V., Johannsen, J., Kumar, A., Trunov, A., Hao, K.C.G.: Safer smart contract programming with
Scilla. Proceedings of the ACM on Programming Languages 3(OOPSLA), 185 (2019)

26. Team, T.Z.: The ZILLIQA Technical Whitepaper. https://docs.zilliqa.com/whitepaper.pdf (2017)
27. Vinogradova, P., Melkonian, O., Wadler, P., Chakravarty, M., Krijnen, J., Jones, M.P., Chapman, J., Ferariu, T.:

Structured contracts in the EUTxO ledger model. https://omelkonian.github.io/data/publications/eutxo-struc.pdf
(2024), under submission

https://doi.org/10.4230/OASIcs.FMBC.2020.7
https://doi.org/10.4230/OASIcs.FMBC.2020.7
https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.FMBC.2020.7
https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.FMBC.2020.7
https://docs.zilliqa.com/whitepaper.pdf
https://omelkonian.github.io/data/publications/eutxo-struc.pdf

18 Polina Vinogradova and Orestis Melkonian

A Notation

Fig. 7 clarifies non-standard notation we use throughout this document.

? : {?} the one-element set, and its one inhabitant
a : A ∪ {?} maybe type over A
B ∈ P A the set of all subsets of A, so B ⊆ A

r.x : (A, . . . , B)→ B accessing a (named) field of a record
snd : (A× B)→ B second projection

Key 7→ Value ⊆ { k 7→ v | k ∈ Key, v ∈ Value } finite map with unique keys
[a1; ...; ak] : [A] list over type A

a :: as : [A] list with head a and tail as

as ++ as′ : [A] list concatenation
[f a | a← as] : [B] list comprehension over list as, given f : A→ B

as # as′ : [A]→ [A]→ B check that two lists are disjoint

Fig. 7: Notation

B Details of the EUTxO ledger model

Although all the details of Extended UTxO model have been adequately described in previous work [7,5], we
include the basic definitions here in order to keep this document self-contained.

Fig. 8 enumerates the basic types of the EUTxOMA model: an extension of EUTxO to accommodate native
custom assets. Based on those, the validity of a transaction in a EUTxOMA-based ledger is prescribed by the
rules of Fig. 9.

C Proofs related to messaging

Proof sketch of simulation relation for MSGS. Suppose (?, u, tx, u′) ∈ LEDGER, and that π u 6= ?.

Suppose no message tokens are being minted/burned, so { msgsTT 7→ tkns ∈ mint tx } = {}. By
msgOutsOK u, all message tokens are locked by msgsVal. This script ensures that any spent token must
be burned. Since no tokens are burned, no tokens are spent (i.e. in inputs of tx). By ledger rule 5 (let
us call this rule POV), no tokens are in the outputs of tx either. By the replay protection assumption, tx
does not add an output reference to u that is the same as the msg.inUTxO of an existing message msg.
There are no new messages added to u, so all messages in u′ are still generated according to msgsTT, and
still not duplicated. Therefore, the first conjunct of msgOutsOK u′ holds. By ledger rule 7, all inputs of tx
validate, and all outputs of tx are added to u correctly (by LEDGER), so the second conjunct of msgOutsOK u′

holds. So, π u′ 6= ?. Now, since the total amount of message also tokens is unchanged, π u′ = π u. This
also follows from (7) in the MSGS specification (Fig. 5) whenever neither the outputs nor the inputs of tx
contain any message tokens. The other constraints of MSGS are satisfied trivially by an empty set of tokens
minted/burned by tx, and by non-duplication of existing tokens (required by msgOutsOK u′). Therefore,
(?, π u, tx, π u′) = (?, π u, tx, π u) ∈ MSGS.

Suppose now that {} 6= {msgsTT 7→ tkns} ⊆ mint tx. By rule 9,

JmsgsTTK (?, (tx, msgsTT))

Message-passing in the Extended UTxO Ledger Model 19

We show that all the constraints of the MSGS specification are satisfied by (?, π u, tx, π u′). Let sndMsgs,
rcvMsgs, newOuts, usedInputs be defined as in the script msgsTT in Fig. 3, which, for the given transaction tx,
is the same as in the MSGS transition rule in Fig. 5. Therefore, the let bindings (1), (3), (5) are the same for
both the MSGS transition and in msgsTT. By inspection, the constraints (4) and (7) of the MSGS transition
rule 5 are satisfied by definition of msgsTT, as they are replicated exactly in msgsTT.

The constraint (6) is similar to the following constraint in msgsTT,

∀ (i, msg) ∈ usedInputs, (msg, (_, msg.msgTo, _)) ∈ rcvMsgs

but it does not include the check (present in (6)) that for the given (i, msg), msg ∈ π u. Input i of tx contains
msgTkn msg, and by rule 4, all inputs of a transaction refer to unspent outputs, outputRef i 7→ output i ∈ u.
Therefore, msg ∈ π u.

The constraint (2) is similar to the following constraint in msgsTT,

[getMsgRef m | (_, m) ← newOuts] # [getMsgRef m | (_, m) ← usedInputs]

but msgsTT (unlike MSGS) does not require that; additionally,

[getMsgRef m | (_, m) ← newOuts] # [getMsgRef m | m ← π u]

This states that the fields msg.inUTxO and msg.msgIx of a message in newOuts cannot both be the same as
those fields of any message already in π u. By msgOutsOK u, msg.inUTxO of a msg ∈ π u cannot also be an
output reference in u, so no messages in newOuts can be generated by spending the same output reference
as was spent to generate an existing message in u. Also by msgOutsOK u, no messages already existing in u
could be duplicated. We have just shown that the MSGS constraints are satisfied, and can now use (2), (4), (6),
and (7) in the rest of the proof.

Next, we show that π u′ 6= ?, i.e. msgOutsOK u′. We note that because msgOutsOK u, and by (?, u, tx, u′) ∈
LEDGER, the second conjunct of msgOutsOK u′ must hold. By the second conjunct of the assumption in
Section 4, tx does not add entries to the UTxO whose output reference values are also the inUTxO values of
messages it mints. By the first conjunct of the assumption, tx does not add output references to the u that are
the same as inUTxO values of existing message tokens in u either. So, all messages msgTkn msg in u′ are such
that (msg.inUTxO 7→ _ /∈ u′).

The constraint (2) ensures non-duplication of messages in π u′. All message token-containing UTxOs
that are in u′ but not in outputs of tx still satisfy the first conjunct of msgOutsOK u′, since they remain in the
same outputs in u as in u′ (by POV and the msgsVal constraint that all message tokens in inputs of tx must be
burned). All message tokens in the inputs of tx are burned, and all message tokens in the outputs of tx are
minted according to policy msgsTT, and therefore also satisfy the first conjunct of msgOutsOK u′. It follows
that msgOutsOK u′ holds, and π u′ 6= ?.

Now, we must show that

π u′ = (π u \ [m | (_, m) ← usedInputs]) ∪ [m | (_, m)← newOuts]

Let msg ∈ π u′. We can conclude that msg /∈ [m | (_, m)← usedInputs] because by (7) in MSGS, and all
message tokens in usedInputs must be burned. Since message tokens are unique in the UTxO set by (2) in
Fig. 5, msg is therefore not in π u′. By POV and LEDGER, either msgTkn msg is in u or it is in outputs added
by tx. If msgTkn msg is in u, we are done. If msgTkn msg is in the outputs added by tx, By (4), (7) and the
POV, the set [m | (_, m)← newOuts] contains all the message tokens that are in outputs of tx. We conclude,

msg ∈ (π u \ [m | (_, m)← usedInputs]) ∪ [m | (_, m)← newOuts]

To show the inclusion in the other direction, suppose

msg ∈ (π u \ [m | (_, m)← usedInputs]) ∪ [m | (_, m)← newOuts]

If msg ∈ [m | (_, m)← newOuts], by definition of newOuts, the message token msgTkn msg exists in the
outputs of tx, and therefore in π u′ (by LEDGER). If msgTkn msg is not in the inputs of tx, by definition of
usedInputs, it must also not be in [m | (_, m)← usedInputs]. If msgTkn msg is in π u, by POV, the fact that
msgTkn msg is not in the inputs of tx, and by definition of LEDGER, this token must remain on the ledger
after tx is applied, i.e. in π u′. So, msg is either in newOuts, or already in π u but not in usedInputs, and we are
done.

20 Polina Vinogradova and Orestis Melkonian

Proof sketch of verified input-output pairs lemma. Let (s, u, tx, u′) ∈ LEDGER, π u 6= ? and let

inp := (i, (useMyFunction, v, d), r) ∈ tx.inputs

such that

[(receive, m)] = r
(fIn, fOut) = m.msgData

m.msgFrom = (checkMyFunction, _, _)

From the validity of the step (s, u, tx, u′) and the definition of inp, we can conclude that

JuseMyFunctionK (d, r, (tx, inp))

so, by definition of the useMyFunction script,

(−1) ∗ (msgTkn m) ⊆ tx.mint

Now, all quantities of message tokens in outputs on the ledger are exactly 1, and no message tokens are
duplicated. This is implied by π u 6= ?, which calls msgOutsOK to check this. By the POV rule 5, we can
conclude that one UTxO entry p 7→ w ∈ u containing one token msgTkn m was spent by tx from u. We know
it is exactly one because, inspecting msgOutsOK, message tokens are unique on a ledger for which π u 6= ?.

Again, by inspecting msgOutsOK, we can conclude that the token msgTkn m in the value of the entry
p 7→ w on the ledger u must be such that it was minted by some previous transaction p.id ∈ Tx, and the
following script validated :

JmsgsTTK (?, (p.id, msgsTT))

By inspecting msgsTT, we see that (w, m) ∈ newOuts by definition of newOuts, and the uniqueness of the
message token m (which is guaranteed by (2) in MSGS).

Therefore, by constraint (4) on newOuts for transaction p.id, some (m, (q, g, r′)) is contained in sndMsgs,
and is such that

[(send, m)] = r′

with
g = m.msgFrom = (checkMyFunction, _, _)

By the last clause of msgOutsOK in Fig. 2, we have

JcheckMyFunctionK (_, r′, (p.id, (q, g, r′))

Since (fIn, fOut) = msgData m, inspecting checkMyFunction, we get that

myFunction fIn = fOut

Now, tx must burn the message m, since (i, (useMyFunction, v, d), r) ∈ tx.inputs, and useMyFunction
requires that a message token encoding m is burned. So, the message minting policy must validate,

JmsgsTTK (?, (tx, msgsTT))

By definition of msgsTT, (w, m) ∈ usedInputs for tx must be such that (m, (_, m.msgTo, _)) ∈ rcvMsgs.
Therefore, the transaction spends the output (_, m.msgTo, _) with redeemer [(receive, m)]. Inspecting
useMyFunction, we see that for redeemer [(receive, m)] and input (i, (useMyFunction, v, d), r), it requires
the minting of message m with m.msgTo = (useMyFunction, v, d).

Message-passing in the Extended UTxO Ledger Model 21

BASIC TYPES
B, N, Z the type of Booleans, natural numbers, and integers

H the type of bytestrings:
⋃∞

n=0{0, 1}8n

Interval[A] the type of intervals over a totally-ordered set A
FinSup[K, M] the type of finitely supported functions from a type K to a monoid M

LEDGER PRIMITIVES
Quantity = Z an amount of an assets

TokenName = [Data] token name
AssetID = Policy×TokenName unique asset identifier

Slot slot number representing chain time
Data a type of structured data
Script the (opaque) type of scripts

J_K : Script→ Datum× Redeemer× ValidatorContext→ B applies a script to its arguments
J_K : Script→ Redeemer× PolicyContext→ B applies a script to its arguments

checkSig : Tx→ pubkey→H→ B checks that the given PK signed the transaction (excl. signatures)

DEFINED TYPES
Ix = N

Policy = Script

ValidatorContext = (Tx, (Tx, TxInput))
PolicyContext = (Tx,Policy)

Redeemer = Data
Datum = Data

Signature = pubkey 7→H

Value = FinSup[Policy,FinSup[TokenName,Quantity]]

OutputRef = (id : Tx, index : Ix)

Output = (validator : Script,
value : Value,
datum : Data)

TxInput = (outputRef : OutputRef,
output : Output,
redeemer : Redeemer)

Tx = (inputs : P TxInput,
outputs : [Output],
validityInterval : Interval[Slot],
mint : Value,
mintScsRdmrs : Script 7→ Redeemer,
sigs : Signature)

UTxO = OutputRef 7→ Output

Fig. 8: Basic definitions of the EUTxOMA model

22 Polina Vinogradova and Orestis Melkonian

1. Transaction has at least one input
tx.inputs 6= {}

2. The current slot is within the validity interval

slot ∈ tx.validityInterval

3. All outputs have positive values
∀o ∈ tx.outputs, o.value > 0

4. All inputs refer to unspent outputs

∀(oRef , o) ∈ {(i.outputRef, i.output) | i ∈ tx.inputs}, oRef 7→ o ∈ utxo

5. Value is preserved
tx.mint + ∑

i∈tx.inputs, (i.outputRef 7→ o) ∈ utxo
o.value = ∑

o∈tx.outputs
o.value

6. No output is double spent

∀ i, i′ ∈ tx.inputs, i.outputRef = i′.outputRef ⇒ i = i′

7. All inputs validate
∀ (i, o, r) ∈ tx.inputs, Jo.validatorK(o.datum, r, (tx, (i, o, r))) = True

8. Minting redeemers present

∀ pid 7→ _ ∈ tx.mint, ∃(pid, _) ∈ tx.mintScsRdmrs

9. All minting policy scripts validate

∀ (s, rdmr) ∈ tx.mintScsRdmrs, JsK(rdmr, (tx, s)) = True

10. All signatures are correct
∀ (pk 7→ s) ∈ tx.sigs, checkSig(tx, pk, s) = True

Fig. 9: Validity of a transaction t in the EUTxOMA model

	Message-passing in the Extended UTxO Ledger Model

