
Scam Token Detection Based on Static Analysis
Before Contract Deployment

Taichi Igarashi and Kanta Matsuura

The University of Tokyo, Tokyo, Japan
{itaichi1, kanta} @iis.u-tokyo.ac.jp

Abstract. In recent years, the number of crimes using smart contracts
has increased. In particular, fraud using tokens, such as rug-pull, has be-
come an ignorable issue in the field of decentralized finance because a lot
of users have been scammed. Therefore, constructing a detection system
for scam tokens is an urgent need. Existing methods are based on ma-
chine learning, and they use transaction and liquidity data as features.
However, they cannot completely remove the risk of being scammed be-
cause these features can be extracted after scam tokens are deployed
to blockchain. In this paper, we propose a scam token detection system
based on static analysis. In order to detect scam tokens before deploy-
ment, we utilize code-based data, such as bytecodes and opcodes, be-
cause they can be obtained before contract deployment. Since N -gram
includes information regarding the order of code sequences and scam to-
kens have the specific order of code-based data, we adopt N -gram of them
as features. Furthermore, for the purpose of achieving a high detection
performance, each feature is categorized into a scam-oriented feature or
benign-oriented one to make differences in the values of feature vectors
between scam and benign token. Our results show the effectiveness of
code-based data for detection by achieving a higher F1-score compared
to the methods of another field of fraud detection in Ethereum based
on code-based data. In addition, we also confirmed that the position of
effective code for detection is near the start position of runtime code in
our experiments.

Keywords: Ethereum · Smart contract · Token · Fraud · Scam token.

1 Introduction

Today, a lot of services and applications using blockchain have been developed,
and especially in Ethereum, various kinds of services have been realized by smart
contract, which is the computer program interpreted by the Ethereum Virtual
Machine (EVM). Some of these services utilize their original token to activate
transactions because token enables users to trade their assets.

Thanks to the standard of token in Ethereum called ERC (Ethereum Request
for Comments) [1], users who want to use the original token in their service easily
develop their token by using this standard, and their token can be traded with
other token which is developed by using the same ERC standard.



2

However, a lot of frauds using tokens have occurred in these days. As an
ample, rug pull is now prevalent in Decentralized Finance (DeFi). Rug pull is
a malicious maneuver where scammers create a new token and promote it to
investors, only to abruptly abandon the project after they steal a lot of cryp-
tocurrency from investors. In this fraud, the token issued by scammers, which is
called “scam token” in the rest of this paper, seems to be benign but is craftily
created to trick investors. For example, except the scammer who creates a scam
token, users can only buy it but cannot sell it due to the crafty implementa-
tion. In this meaning, a scam token has no value for investors. Users can easily
be scammed because scammers usually sell scam tokens by combining social
engineering techniques. Today, the number of scam tokens has grown rapidly,
as shown in the report of Solidus [2]. 125,084 scam tokens were found in 2022
whereas the number was 1,548 in 2020. This fact shows that there exists a high
possibility that a lot of users encounter this type of scam, and it has become
one of the big issues that cannot be ignored in recent years. Thus, detecting
and reducing the number of scam tokens deployed to blockchain is important.
In order to emphasize the meaning that“ token”is one kind of smart contract,
the word“ token” is described as“ token contract” in the rest of this paper.

Existing researches on fraud detection in Ethereum are categorized into three
types: detection of fraudulent accounts, Ponzi scheme detection, and scam token
contract detection. In the field of detecting fraudulent accounts, most researchers
focus on identifying users who commit fraud, especially phishing scams. These
methods are mainly based on transaction data extracted from blockchain. For
detection, they construct a transaction network and create features for machine
learning (ML) by applying an embedding method to the network. Ponzi scheme
is one of the investment frauds. Scammers aim to go bankrupt at the appropriate
time to obtain a lot of cryptocurrency from investors. To achieve their goal, they
have to continue to collect a lot of investment, and at the same time, they also
pay one part of the new users’investment to existing investors on the pretense
of paying a dividend. Combining social engineering with the smart contracts
in which Ponzi scheme logic is incorporated, this type of fraud has occurred
in Ethereum recently. Existing researches for detecting Ponzi schemes focus on
the transaction data regarding trade of cryptocurrency, or the presence of Ponzi
scheme logic in the smart contract. On the contrary to the above two kinds of
scams, only a few researches about scam token contract detection have been
proposed. Since existing researches in this field are usually based on transaction
and liquidity data, which are extracted after token contracts are deployed to
blockchain, there exists a high possibility that users are actually scammed even
when their detection systems are applied to blockchain. Therefore, detecting
scam token contracts before deployment is desirable.

In order to overcome the above issues, we propose a scam token contract
detection system based on static analysis. Unlike transaction and liquidity data,
code-based data, such as bytecodes and opcodes, can be obtained before the
deployment of token contracts to blockchain. Thus, our method can detect it
before users are actually scammed. The contributions of this paper are as follows:



3

1. To the best of our knowledge, our method is the first detection method of
scam token contracts based on code-based data.

2. Our experimental results show the effectiveness of code-based data, realizing
to detect scam token contracts before deployment to blockchain.

3. From our experiments, we confirmed that the position of the effective code
for detection is near the beginning of the runtime code of token contracts.

The rest of this paper is constructed as follows. Related work of fraud in
Ethereum is introduced in Section II. Proposed scheme is described in Section
III. Evaluation results are shown in Section IV. Limitations and future work
are described in Section V. Finally, the conclusion of this paper is presented in
Section VI.

2 Related Work

In this section, we review studies related to the solutions against fraud in Ethereum.
Though our main goal is to detect scam token contracts, there exist only a few
researches directly on such detection to the best of our knowledge. Thus, we
expand the range of surveys to find an effective way for detection and seek the
requirements that the detection system should achieve by identifying overall
shortcomings in this field.

2.1 Fraudulent account detection

Ibrahim et al [5] utilize effective features selected from transaction data, such as
token names and the amount of ether that fraudulent accounts send and receive.
In their experiment, they realized 98.77% accuracy as the best by using ran-
dom forest, decision tree, and K-Nearest Neighbor (KNN). Though this method
achieves high accuracy, the dataset used in their experiment is imbalanced such
that the number of scam tokens is much less than that of benign tokens. Wen
et al. [6] make a transaction network from the transaction and address data of
phishing accounts and their neighbor nodes. They apply the transaction network-
based features to some ML algorithms, such as Support Vector Machine (SVM),
KNN, and AdaBoost. In particular, 92.76% accuracy was recorded when using
AdaBoost. Although the above methods adopt relatively simple ML algorithms,
Duan et al. [7] proposed a new embedding algorithm and Graph Convolutional
Network (GCN) model suited for transaction network. Experimental results show
that their new embedding algorithm and GCN model recorded better detection
performance compared to existing embedding methods and GCN models, and
achieved 94.6% accuracy.

2.2 Ponzi scheme detection

Wang et al. [9] proposed a detection method of the smart contract in which Ponzi
scheme logic is incorporated, which is denoted as Ponzi smart contract below.



4

They utilize N -gram of opcode sequences as features for ML. One of the merits of
adopting opcode sequences is that they include information of the order of call-
ing function, which is generally effective in analyzing computer programs such as
smart contracts. Due to the specific logic of Ponzi scheme, the order of function
is considered to be important information. Thus, to focus on opcode sequences
is totally reasonable. However, methods using code-based data are highly influ-
enced by the code-reuse problem, which makes it difficult to distinguish between
benign and malicious smart contracts when they have similar codes. Fan et al.
[10] make a graph representing the deals between users and contracts from trans-
action data and generate topological features of the graph. Their method used
multiple ML models to detect Ponzi smart contracts, and achieved a high F1-
score with 0.946 especially when using XGBoost. However, their method cannot
completely reduce the risk of being scammed because transaction data can be
extracted only after a smart contract is deployed to blockchain. Aljofey et al.
[11] utilized both transaction and opcodes data of contracts to make features for
ML, and achieved 0.888 F1-score. Although they use both transaction-based and
code-based features, which are considered to be effective for identifying Ponzi
smart contracts, their detection performance is at the same level with other
methods.

2.3 Scam token contract detection

Mazorra et al. [12] proposed a method of detecting scam token contract. They
used transaction and liquidity data of token as features for XGBoost model, and
recorded 99.36 % accuracy. However, Nguyen et al. [13] pointed out that they
do not select effective features, and also multiple features include transaction
data extracted after scam actually happens. In order to overcome this problem,
Nguyen et al. [13] utilized only the transaction data which are extracted before
scam occurs. They also achieved 0.990 F1-score in their experiment.

Mazorra et al. [12] proposed a method of detecting scam token contracts.
They used transaction and liquidity data of token contracts as features for XG-
Boost model, and recorded 99.36 % accuracy. However, Nguyen et al. [13] pointed
out that they do not select effective features, and also multiple features include
transaction data extracted after the scam actually happens. In order to over-
come this problem, Nguyen et al. [13] utilized only the transaction data which
are extracted before the scam occurs. They also achieved a 0.990 F1-score in
their experiment.

While these methods recorded high performance for detecting scam token
contracts, it is difficult to prevent radically the occurrence of frauds caused by
deployed scam token contracts. Since rug-pull, which is a fraud using a scam
token contract, is executed in a short period as shown in the previous research
[14], detection systems have to also detect in a short time to prevent the fraud. In
this situation, methods based on transaction and liquidity data have to monitor
all token contracts and wait until there is a sufficient amount of transaction and
liquidity data related to each token contract to decide precisely whether it is
benign or fraudulent. However, considering practical use, it is not realistic to



5

monitor all token contracts due to the large number of them which have been
deployed to blockchain already.

2.4 Requirements

Thus, a method which can detect before deployment is required for prevention
of frauds.

Due to the above reasons and a growing number of scam token contracts,
detecting all of them deployed to blockchain has become a fairly challenging
task. Thus, a method that can detect before deployment is required for the
prevention of fraud. When we aim at creating such a method, the thing which
has to be considered is decreasing False Positive Rate (FPR), which is the metrics
representing the extent of how many benign token contracts are misclassified as
scam token contracts. This is because the action of benign users will be restricted
if this kind of misclassification occurs. Considering these things, it is necessary
to achieve the two requirements below:

1. Due to an increasing number of scam token contracts, a method which can
detect them before deployment is desirable.

2. For the purpose of not restricting the deployments of benign token contracts,
the detection system should achieve a low FPR as possible.

3 Proposed scheme

In order to satisfy the above requirements, we propose a scam token contract
detection method based on static analysis. For the purpose of accomplishing the
first requirement, namely preventing the deployment of scam token contracts,
we focus on code-based data, such as bytecodes and opcodes. In general, smart
contract code is interpreted by EVM before the deployment to blockchain. Thus,
code-based data can be extracted before deployment, and is useful for achieving
our goal. Thinking of code-based data, there exist three possible ways to generate
features: using source codes, opcodes, and bytecodes. However, the source codes
of most smart contracts are not available in Etherscan [8], which is the source of
our datasets. On the contrary, we can obtain bytecodes from Etherscan, and also
opcodes can be extracted by disassembling bytecodes. Though the effectiveness of
opcodes for Ponzi scheme detection is demonstrated in [9], whether bytecodes are
effective or not remains unclear. Therefore, we construct two detection methods,
one is based on bytecodes, and the other is based on opcodes. Then, we compare
the detection performance between them in order to find a more effective way.

To accomplish the second requirement, we design effective features from code-
based data. As demonstrated in [9], N -gram is one of the effective features in
the field of detecting malicious computer programs. N -grams are sets of words
included in a given window whose size is N , and generally, this window is moved
one word forward to compute them. Since N -gram includes information regard-
ing the order of code, it is useful for static analysis of programs. Thus, we design



6

N -gram-based features. Moreover, in order to make differences between scam
and benign token contracts, we divide N -gram features into two types: scam-
oriented N -gram, and benign-oriented N -gram. Each N -gram feature is clas-
sified into one of these classes by comparing the percentage of contracts with
the N -gram feature between scam and benign token contracts. By adopting this
strategy, a difference appears in the values of feature vectors between them.

In the following subsections, we describe the bytecode of smart contract used
in proposed method, feature engineering, and system model of proposed method

3.1 Bytecode of smart contract

The bytecode of smart contracts is mainly divided into two types: creation code
and runtime code. Creation code is the specific code which deploys runtime
code to blockchain. Unlike creation code, runtime code is actually stored in
blockchain and defines the smart contract. What is the relation between them
is that creation code has init code, which is responsible for mainly initializing
the constructor, before runtime code. In other words, runtime code is a part of
the creation code. Opcode is one part of assembly language obtained by disas-
sembling bytecodes. In our method, we got opcodes by applying a disassembling
tool [15] to bytecodes.

We extract only runtime code to detect scam token contracts. This is be-
cause the logic of token contracts is included in runtime code. Moreover, we can
only extract runtime code in Etherscan because creation codes of most smart
contracts are not provided. Therefore, we utilize only runtime code.

Fig. 1. Bytecode and opcode of smart contract

3.2 Feature engineering

Proposed method adopts code-based data as features for scam token contract de-
tection. We designed two types of features, bytecode-based features and opcode-
based features, in order to find a more effective one.



7

The basic scheme to generate a feature vector of each sample is common
between these two features: to make N -gram features. For the purpose of gen-
erating N -gram features of each sample, N -gram dictionary, which is a set of
N -grams and represented as the set ND below, is created in the following steps.
First of all, for each sample, code-based data (bytecodes or opcodes) are ex-
tracted. Then, N -grams of code-based data are created, and the union of them
composes a set NDi, when i is the index of the sample. Finally, when code-based
data of all samples are extracted, ND is created as the union of NDi. When
using opcodes, ND is described as an opcode-based N -gram dictionary denoted
by OND. In contrast, a bytecode-based N -gram dictionary is denoted by BND.

A feature vector of each sample is created on the basis of ND. In order to
clarify the difference between scam and benign token contracts, each N -gram in
ND is categorized into two types: scam-oriented N -gram and benign-oriented
N -gram. Each scam-oriented N -gram in ND is selected when the percentage
of scam token contracts with the N -gram is higher than that of benign token
contracts, and vice versa. A feature vector of each sample is created on the basis
of ND by assigning 1, -1, or 0 in accordance with the conditions below:

1. If an N -gram of ND is scam-oriented and is included in the sample, value 1
is assigned.

2. If an N -gram of ND is benign-oriented and is included in the sample, value
-1 is assigned.

3. If an N -gram of ND is not included in the sample, value 0 is assigned.

In the case of using opcodes as features, however, hexadecimal digits are also
obtained besides opcodes, which are the operands taken by the specific opcodes
like “push” when converting bytecodes into opcodes. Some of these hexadecimal
digits have meaningful information for detection because they may represent the
specific address of EVM stack and storage,or signatures of functions. Therefore,
besides the N -gram of opcodes, we also utilize these hexadecimal digits as fea-
tures. For the purpose of using hexadecimal digits as features, a hexadecimal
dictionary, represented as the set HD below, is also generated with the same se-
ries of the above procedure. The values of a feature vector of each sample based
on HD are decided to be also 1, -1, or 0 by classifying each hexadecimal in
HD into benign-oriented or scam-oriented. These series of procedures to make
feature vectors are described in Appendix as pseudocode.

N -gram features are usually created on the basis of the frequency of each N -
gram. However, in this strategy, the size of token contracts highly influences the
detection performance because the bigger size of each token contract is, the more
specific N -grams emerge in the token contract. Therefore, we assigned values on
the basis of the existence of each N -gram to reduce such influence.

3.3 System model

Fig. 2 shows the system model and application place of proposed method. Pro-
posed method firstly collects samples of token contracts from Etherscan [8].



8

Then, for each token contract, a feature is made using N -grams of code-based
data (bytecodes, set of opcodes, and hexadecimal digits). Based on these features,
the learning phase is executed by SVM model, which performs well in binary
classification tasks. We used RBF kernel-based SVM, and a hyper-parameter
C is set to 1.0. Using this model, whether each input sample is a scam token
contract or not is decided. Though one of our goals is to realize high detection
performance, we do not use other classifiers because selecting a better one is not
our main goal, and also SVM is lightweight and has sufficient detection perfor-
mance. Instead, our goal is to show the effectiveness of code-based data and find
the position of effective data.

We assume that proposed method will be applied to Detection system 1 in
Fig. 2, which tries to detect scam token contracts before they are deployed to
blockchain. Aiming at realizing such a detection system, it needs to be integrated
into client software or EVM because each contract deployment transaction is
verified by validators. When each validator verifies such transaction, it executes
the transaction on the client software and checks the occurrence of error in the
calculation. Since the transaction has bytecodes of token contract, to decide
whether it is a scam token or not can be realized in this validation process
when our model is applied to client software or EVM. On the contrary, existing
methods work as Detection system 2 in Fig. 2, which detects only scam token
contracts which have been deployed to blockchain already, because they are
based on transaction and liquidity data. Due to an increasing number of scam
token contracts, to prevent the deployment is important besides to detect ones
deployed to blockchain. Thanks to the use of code-based data, proposed method
can prevent the deployment itself. Even if proposed method cannot detect some
scam token contracts due to misclassification, we can reduce the number of ones
deployed to blockchain, meaning that the possibility for users of being scammed
and the amount of work of Detection system 2 can be lower.

Fig. 2. System model and application place of proposed method



9

4 Evaluation

4.1 Dataset

Following the existing researches [12, 13], our datasets of token contract samples
were collected from Etherscan [8]. The number of scam token contracts is 1,259,
whereas benign is 981. For each scam token contract sample, the label is pro-
vided as Phish/Hack by the Etherscan Token tracker. On the other hand, we
collected benign token contracts by selecting reliable ones which are not labeled
as Phish/Hack and have a lot of valid transactions. In the field of fraud detection
based on supervised learning in Ethereum, it is common to use labels provided
by Etherscan for evaluation. Thus, in our all experiments, we trust the labels
from Etherscan. The ratio of train and test data is 7:3.

4.2 Evaluation Metrics

In order to evaluate proposed method, general metrics in classification tasks, such
as accuracy, precision, recall, and F1-score are utilized in our experiments. In par-
ticular, F1-score is an important metric indicating the overall performance even
when the dataset is imbalanced. Let TP , FN , TN , and FP denote the number
of scam token samples classified correctly as “scam”, the number of scam token
samples misclassified as “benign”, the number of benign token samples classified
correctly as “benign”, and the number of benign token samples misclassified as
“scam”. These metrics are calculated as

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1− score = 2 · Precision ·Recall

Precision+Recall
. (4)

Furthermore, we also use FPR, which is the ratio of how many benign tokens
are misclassified as “scam”, for the second requirement. In contrast to the above
metrics, the detection performance is well if FPR is low. This metric is defined
as

FPR =
FP

FP + TN
. (5)

4.3 Experiment

There exist three main goals of our experiments: demonstrating the effective-
ness of code-based data, knowing the position of effective information in token
contract code, and investigating the influence of fixing the length of bytecode.
As a prerequisite, one of the shortcomings of using code-based data is that the
detection performance is relatively low when there exists similar code between



10

scam and benign token contracts. This problem is called code-reuse problem,
and proposed method can be influenced by this problem because token con-
tracts are generally created by imitating existing ones according to the report
[16]. Thus, we aim at achieving the same level of detection performance with
methods using code-based data in other scam detection fields on Ethereum. If
proposed method records such a level, we can contribute to the field of scam
token contract detection significantly in terms of reducing radically the risk of
fraud and the amount of work to find deployed scam token contracts. At the
same time, we also intended to know the position of effective information which
makes a difference between scam and benign token contracts for developing fu-
ture research. Besides these two goals, we also aim at knowing the effect when
the length of the bytecode is fixed. This is because there exists a high possibility
that a big difference can appear in the existence of N -gram, which is the basic
of feature for proposed method, when all lengths of bytecodes are used. If the
detection performance when using the fixed length of bytes is the same level or
higher than that of when using all bytes, the former is better in terms of being
not influenced by contract size and reducing computational complexity.

Considering the above three goals, we decided to conduct three kinds of ex-
periments. In the first place, we evaluated detection performance when all lengths
of bytecodes are used in order to demonstrate the effectiveness of code-based
data. In the second place, for the purpose of knowing the position of effective
information, detection performances when changing the position of bytecodes
with a fixed length were measured. Finally, we investigated the influence of the
length and position of bytecodes on detection performance by changing them
based on the result of the second experiment.

Experiment using all bytes In order to evaluate the effectiveness of code-
based data for scam token contract detection, in this experiment, we utilized all
lengths of bytecodes and evaluated the detection performances for each feature:
bytecode-based, and opcode-based. For the purpose of reducing the number of
dimensions and shortening the learning time, features are created by adopting
2-gram (N = 2) of code-based data. Table 1 shows the detection performance
when using all lengths of bytecodes. As shown in Table 1, proposed method
achieved more than 90% accuracy in both the situation using bytecode and
opcode. Compared to [12], which uses transaction and liquidity data, the per-
formance of proposed method is worse because they achieved 99.36% accuracy.
However, compared to [9], which is the detection method of Ponzi smart con-
tract focusing on opcode, proposed method outperforms their method in terms
of recording a higher F1-score. We achieved 0.918 with opcode features whereas
their method recorded 0.90 in their experiment. Furthermore, proposed method
also surpasses [11], which is also the detection method of Ponzi smart contract
based on various features composed of opcode, source code, and transaction data.
This is because the F1-score of their method is at most 0.887 in their experiment,
while proposed method achieved 0.918 with opcode features.



11

Table 1. Detection performance when using all bytecodes

Features Accuracy Precision Recall F1-score FPR[%]
Bytecode 0.906 0.942 0.883 0.911 6.56
Opcode 0.911 0.933 0.903 0.918 7.97

Considering the above results and one of our goals, which is achieving the
same level of performance with methods which are based on code-based data in
other fraud detection fields on Ethereum, the detection performance of proposed
method is adequate. Therefore, we can conclude that code-based data, such as
bytecode and opcode, are effective for scam token contract detection.

Investigation of the position of effective bytes In order to know the po-
sition of effective information, we conducted an experiment demonstrating the
differences in performance when the position of the bytecode is changed. Before
this experiment, at the beginning, we checked the length of the bytecode for all
samples.

Table 2 shows the bytecode length of all samples. As shown in Table 2, we
found that about 88% of all samples have over 2048 bytes, and the length which
the largest number of samples have is 4097-8192 bytes. Moreover, scam token
contracts tend to have a shorter length of bytes compared to benign token con-
tracts in our dataset. Considering these facts, there exists a possibility that the
distinctive codes of scam token contracts are located near the initial position
of runtime code. Therefore, to identify the position of effective information, we
measured detection performances when changing the start position of extracted
bytecodes on the assumption that effective information exists at most within the
first 4096 bytes. Provided that the token contracts which do not have the byte-
codes at the specified position are excluded. The length of extracted bytecodes
is fixed to 128 bytes, and N is also set to 2. In addition, only bytecode-based
feature is used because we do not aim at optimizing the detection performance
but just knowing the position of effective bytecodes in this experiment.

Table 2. Bytecode length of all samples

Length [B] Scam token Benign token Total
1-256 12 1 13

257-512 51 0 51
513-1024 131 13 144
1025-2048 20 44 64
2049-4096 285 224 509
4097-8192 550 412 962
8193-16384 178 235 413
16385-32768 32 52 84

Table 3 shows the detection performance when changing the position of byte-
codes. From Table 3, the bytecodes at 129-256-th byte include the most effective



12

information because the detection performance is the highest as they achieved
0.915 F1-score. This result is quite similar to that of when using all bytecodes
shown in Table 1, furthermore, outperforms especially in precision, F1-score, and
FPR. From this result, we can firstly say that selecting effective information is
more important than using all bytes because a high detection performance was
achieved without extracting long lengths of bytes. Moreover, the bytecodes up to
1024-th byte seem to have effective information compared to ones after 1024-th
byte because all the case when using bytecodes in each of the eight categories
up to 1024-th byte (1-128-th, 129-256-th, ..., 897-1024-th) achieved more than
0.880 F1-score, which is recorded when using bytecodes in only eight out of the
other twenty-four categories after 1024-th byte. Therefore, we consider that the
effective information for scam token contract detection exists near the start po-
sition of runtime code. Besides that, we also found some candidates for effective
bytecodes. For example, the bytecodes at 3457-3584-th byte can be useful for
accomplishing our purpose because not only F1-score is over 0.900 but also the
fourth lowest FPR is recorded when using them. The bytecodes at the three
categories, 1793-1920-th, 2177-2304-th, and 2561-2688-th byte, are also effective
as they contribute to the top eight F1-score. The top eight categories in terms
of F1-score are listed in Table 4.

Table 3. Detection performance when changing the position of bytecodes

Position Accuracy Precision Recall F1-score FPR[%]
1-128 0.894 0.970 0.842 0.901 3.48

129-256 0.906 0.952 0.881 0.915 5.92
257-384 0.871 0.912 0.860 0.885 11.31
385-512 0.904 0.934 0.884 0.908 7.28
513-640 0.870 0.957 0.814 0.880 5.19
641-768 0.879 0.929 0.842 0.883 7.74
769-896 0.889 0.916 0.863 0.889 8.39
897-1024 0.883 0.920 0.854 0.886 8.36
1025-1152 0.872 0.912 0.853 0.881 10.41
1153-1280 0.842 0.901 0.782 0.837 9.28
1281-1408 0.845 0.904 0.773 0.833 8.25
1409-1536 0.860 0.918 0.797 0.853 7.43
1537-1664 0.869 0.941 0.789 0.858 5.02
1665-1792 0.865 0.943 0.789 0.859 5.26
1793-1920 0.887 0.948 0.839 0.890 5.51
1921-2048 0.880 0.942 0.825 0.880 5.78
2049-2176 0.881 0.955 0.815 0.879 4.35
2177-2304 0.890 0.937 0.843 0.887 6.01
2305-2432 0.879 0.953 0.826 0.885 5.26
2433-2560 0.865 0.927 0.820 0.870 7.87
2561-2688 0.884 0.920 0.871 0.895 9.84
2689-2816 0.880 0.934 0.842 0.886 7.29
2817-2944 0.876 0.960 0.807 0.877 4.07
2945-3072 0.863 0.934 0.785 0.853 5.69
3073-3200 0.847 0.873 0.812 0.841 11.79
3201-3328 0.870 0.976 0.778 0.866 2.24
3329-3456 0.863 0.919 0.797 0.853 7.11
3457-3584 0.903 0.963 0.844 0.900 3.51
3585-3712 0.869 0.931 0.814 0.868 6.91
3713-3840 0.845 0.956 0.737 0.833 3.70
3841-3968 0.880 0.927 0.830 0.876 6.82
3969-4096 0.873 0.971 0.765 0.856 2.23



13

Table 4. The top eight categories in terms of F1-score

1st 2nd 3rd 4th 5th 6th 7th 8th
129-256 385-512 1-128 3457-3584 2561-2688 1793-1920 769-896 2177-2304

Influence of length and position on detection performance In order to
know whether the detection performance is enough when the length and position
of bytecodes are fixed, we conducted experiments based on the result of the
second experiment on the two conditions below:

1. We compare the detection performances when changing the length of byte-
codes extracted from the first 1024 bytes of runtime code, which includes
relatively effective information demonstrated by the second experiment.

2. The detection performances when using the bytecodes in the top eight cat-
egories regarding F1-score in Table 3 are also checked in order to achieve a
better performance of proposed method. Since some of these bytecodes are
not included in the samples whose size is small, we also have to confirm if
this condition is influenced by token contract size by checking the size of the
misclassified samples.

If the performances of proposed method in these conditions are the same level or
higher than that of when using all bytes, the formers are better because they are
less influenced by token contract size and need lower computational complexity.

In the first place, we conducted an experiment on the first condition. In
this experiment, we compared the result when N is set to 2 or 4 (2-gram or
4gram). Table 5 shows the detection performances when the length of bytecodes
is changed within the first 1024 bytes. From Table 5, proposed method achieved
0.917 accuracy and 0.925 F1-score at the best when using 2-gram bytecodes fea-
tures from 1024 bytes. Since this result is higher than that of the first experiment
shown in Table 1, to fix the length of extracted bytecodes works positively with
regard to being less influenced by token contract size and reducing computational
complexity. Moreover, proposed method outperforms [9] and [11], which are the
detection methods of Ponzi smart contract focusing on opcode, because each
of their methods achieved 0.90 and 0.887 F1-score while the proposed method
achieved 0.925. From Table 5, we also consider that the difference of N does not
affect detection performances, especially when the length of bytecodes is enough
to realize good performance. Though 4-gram was more effective when the length
was short, the difference in detection performance between when using 2-gram
and 4-gram did not become big as the increase of length. When the amount of
information is not sufficient to detect, 4-gram can help increase them because
it includes more information regarding the order of code-based data compared
to 2-gram. However, this effect can be decreased as the amount of information
becomes sufficient. Considering the above things and the influence of the num-
ber of dimensions on learning time, we consider that using 2-gram of code-based
data is more efficient than using 4-gram.



14

Table 5. Detection performance when changing the length of bytecodes

2-gram 4-gram
Length [B] Feature Accuracy Precision Recall F1-score FPR [%] Accuracy Precision Recall F1-score FPR[%]

16 bytecode 0.660 0.629 0.944 0.755 69.00 0.795 0.687 0.941 0.794 65.4
opcode 0.644 0.619 0.963 0.754 77.01 0.676 0.655 0.885 0.753 58.92

32 bytecode 0.817 0.897 0.761 0.823 11.15 0.841 0.875 0.824 0.849 13.96
opcode 0.751 0.889 0.655 0.754 11.39 0.810 0.860 0.769 0.812 14.38

64 bytecode 0.824 0.888 0.791 0.837 13.10 0.891 0.923 0.875 0.898 8.88
opcode 0.821 0.882 0.801 0.840 15.00 0.830 0.913 0.781 0.842 10.25

128 bytecode 0.896 0.948 0.864 0.904 6.19 0.897 0.933 0.887 0.909 8.87
opcode 0.872 0.916 0.855 0.884 10.45 0.882 0.938 0.847 0.890 7.14

256 bytecode 0.890 0.936 0.861 0.897 7.38 0.897 0.961 0.863 0.909 5.16
opcode 0.884 0.948 0.836 0.889 5.67 0.872 0.886 0.882 0.884 14.00

512 bytecode 0.905 0.936 0.884 0.909 7.10 0.902 0.957 0.868 0.910 5.24
opcode 0.885 0.907 0.874 0.890 10.13 0.905 0.935 0.890 0.912 7.71

1024 bytecode 0.917 0.940 0.910 0.925 7.48 0.915 0.931 0.913 0.922 8.20
opcode 0.906 0.945 0.897 0.920 7.89 0.905 0.940 0.891 0.914 7.64

In order to seek better performance, we used the bytecodes in the top eight
categories regarding F1-score shown in Table 4 instead of the first 1024 bytes,
which includes the bytecodes in the four out of the top eight categories. From
the experiment on the first condition, N is only set to 2 (2-gram) in this condi-
tion. We changed the number of bytecodes used as features within the top eight
categories, and compared the results. Table 6 shows the detection performance
when using the bytecodes in the top eight categories. This result shows that the
highest detection performance is recorded when using bytecode-based features
constructed from all the bytecodes in the top eight categories. We achieved 0.924
accuracy and 0.933 F1-score, which are the best performances of all our exper-
iments. From Table 5 and Table 6, we can say that bytecode is slightly more
effective than opcode in proposed methods. In regard to FPR, [11] achieved
2.14 % while proposed method recorded 6.67 %. This result seems to show that
proposed method is inferior to their method for the purpose of achieving a low
FPR, which is the second requirement. However, their dataset is highly imbal-
anced such that the number of benign contracts is 1,596 whereas only 308 scam
contracts are used. Therefore, it is easier to learn the benign contracts in their
experiments compared to our experiments. Moreover, we consider that the num-
ber of benign token contracts is not so many compared to that of scam token
contracts in the real world. This is shown in [13] and [12], which are the methods
of scam token contract detection, as [13] collected 23,871 scam token contracts
and 1,830 benign contracts, and [12] collected 24,870 scam token contracts and
only 674 benign contracts. Assuming that 1,880 benign token contracts, which
is the largest number of them used in the researches of scam token contract
detection, are generated within one year, we have to deal with only 0.334 false
positives per day caused by the FPR of proposed method. Considering these
facts, we can conclude that the FPR of proposed method is within an allowable
range.

In order to know whether the result is influenced by the token contract size
or not, we also checked the size of misclassified samples. We found that only



15

8.16 % of misclassified samples on the first condition do not have a part of byte-
codes in the first 1024 bytes while 34.62 % of misclassified samples on the second
condition do not include a part of bytecodes in the top eight categories. From
these results, we can firstly say that the detection performances are not highly
influenced by the size of token contracts on both conditions because most of
the misclassified samples have all the specified bytecodes. However, the method
on the first condition, using the first 1024 bytes, is more immune to token con-
tract size than that of on the second condition considering the percentage of
misclassified samples which do not have a part of specified bytecodes. Therefore,
the method using 2-gram of bytecodes extracted from the first 1024 bytes is
the better choice when we aim at being independent of token contract size as
possible.

Table 6. Detection performance when using the bytecodes in the top eight categories

bytecode opcode
Categories Accuracy Precision Recall F1-score FPR [%] Accuracy Precision Recall F1-score FPR[%]

Top 2 0.894 0.926 0.879 0.902 8.67 0.899 0.934 0.886 0.909 8.36
Top 3 0.900 0.962 0.860 0.908 4.55 0.876 0.922 0.858 0.889 9.82
Top 4 0.915 0.934 0.905 0.919 7.35 0.879 0.926 0.854 0.889 8.84
Top 5 0.890 0.948 0.855 0.899 6.32 0.893 0.925 0.88 0.902 9.12
Top 6 0.896 0.926 0.880 0.902 8.52 0.900 0.943 0.889 0.915 8.30
Top 7 0.905 0.946 0.882 0.913 6.53 0.896 0.926 0.887 0.906 9.21
Top 8 0.924 0.949 0.917 0.933 6.67 0.911 0.933 0.903 0.918 7.98

5 Limitation and Future work

Proposed method has some drawbacks. Firstly, the detection performance of
proposed method is not sufficient as compared with that of the methods based
on transaction and liquidity data. This is because our method is also influenced
by code-reuse problem since code-based data are used as features. For not be-
ing influenced by this problem, we have to consider the more effective feature
engineering technique to make a big difference between scam and benign token
contracts. Secondly, the features of proposed method do not have interpretability
for detection. Though we reveal the position of effective bytecodes for detect-
ing scam token contracts, their specific functions or behaviors cannot be found
in the proposed method. In order to know these things as a future work, the
use of Control Flow Graph (CFG), which represents the control flow during the
execution of token contracts and is constructed from opcode sequences, can be
effective.

6 Conclusion

In this paper, we have proposed a scam token contract detection method based
on static analysis. This is realized by using N -grams of code-based data, such as
bytecodes and opcodes. Thanks to using code-based data, we realized the scam



16

token contract detection before deployment. N -gram of code-based data and our
feature engineering scheme also contribute to the relatively high F1-score and
low FPR compared to the methods of other fields of fraud detection in Ethereum
based on code-based data. Furthermore, we found that the effective bytecodes
exist near the start position of runtime code in our experiment. In particular,
proposed method recorded a high performance when using 1024 bytes from the
start of runtime code.

Acknowledgement. We thank the anonymous referees for their valuable com-
ments and helpful suggestions. This work was partially supported by JSPS
KAKENHI Grant Number 22H03589, and JST CREST Grant Number JP-
MJCR22M1, Japan.

References

1. Ethereum Improvement Proposals. ERC-20: Token Standard. [Online] Available:
https://eips.ethereum.org/EIPS/eip-20 . Accessed: 2023-09-19.

2. Solidus Lab. The Rug Pull Report. [Online] Avalilable:
https://www.soliduslabs.com/reports/rug-pull-report . Accessed: 2023-09-19.

3. Loi Luu, Duc H.Chu, Hrishi Olicke, Prateek Saxena, and Aquinas Hobor. Making
Smart Contracts Smarter. in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 254-269, 2016.

4. Qi Yuan, Baoying Huang, Jie Zhang, Jiajing Wu, Haonan Zhang, and Xi Zhang.
Detecting Phishing Scams on Ethereum based on Transaction Records. in 2020
IEEE International Symposium on Circuits and Systems, IEEE, pages 1-5, 2022.

5. Rahmeh F. Ibrahim, Aseel M. Elian, and Mohammed Ababneh. Illicit Account
Detection in the Ethereum Blockchain Using Machine Learning. in Proceedings of
2021 International Conference on Information Technology, pages 488-493, 2021.

6. Haixian Wen, Junyuan Fang, Jiajing Wu, and Zibin Zheng. Transaction-based hid-
den strategies against general phishing detection framework on ethereum. in Pro-
ceedings of IEEE International Symposium on Circuits and Systems, May 2021.

7. Xincheng Duan, Biwei Yan, Anming Dong, Li Zhang, and Jiguo Yu. Phishing Frauds
Detection Based on Graph Neural Network on Ethereum. in International Confer-
ence on Wireless Algorithms, Systems, and Applications, Cham: Springer Nature
Switzerland, pages 351-363, 2022.

8. Etherscan. The Ethereum Blockchain Explorer. [Online] Available:
https://etherscan.io . Accessed: 2023-09-19.

9. Mengxiao Wang, and Jing Huang. Detecting Ethereum Ponzi Schemes Through Op-
code Context Analysis and Oversampling-Based AdaBoost Algorithm. in Computer
Systems Science & Engineering, 47(1):1023-1042, 2023.

10. Shuhui Fan, Shaojing Fu, Yuchuan Luo, Haoran Xu, Xuyun Zhang, and Ming Xu.
Smart Contract Scams Detection with Topological Data Analysis on Account Inter-
action. in Proceedings of the 31st ACM International Conference on Information &
Knowledge Management, pages 468-477 2022.

11. Ali Aljofey, Abdur Rasool, Qingshan Jiang, and Qiang Qu 1. A Feature-Based Ro-
bust Method for Abnormal Contracts Detection in Ethereum Blockchain. in Elec-
tronics, 11.18, 2937, 2022.



17

12. Bruno Mazorra, Victor Adan, and Vanesa Daza. Do Not Rug on Me: Leverag-
ing Machine Learning Techniques for Automated Scam Detection. in Mathematics,
volume 10, pages 1-24, 2022,

13. Minh H. Nguyen, Son H. Dau, and Xiaodong Li. Rug-pull malicious token detection
on blockchain using supervised learning with feature engineering. in Proceedings of
the 2023 Australasian Computer Science Week, pages 72-81, 2023.

14. Pengcheng Xia, Haoyu Wang, Bingyu Gao, Weihang Su, Zhou Yu, Xipau Luo,
Chao Zhang, Xusheng Xiao, Guoai Xu, Demystifying Scam Tokens on Uniswap
Decentralized Exchange. in arXiv 2021, arXiv:2109.00229.

15. pyevmasm. API Reference. [Online] Available:
https://pyevmasm.readthedocs.io/en/latest/api.html . Accessed: 2023-09-19.

16. Ningyu He, Lei Wu, Haoyu Wang, Yao Guo, and Xuxian Jiang. Characterizing
Code Clones in the Ethereum Smart Contract Ecosystem. in Financial Cryptography
and Data Security: 24th International Conference, FC 2020, 2020 Revised Selected
Papers 24, pages 654-675. Springer International Publishing, 2020.

Appendix Algorithm of feature engineering

Algorithm 1 Making dictionary
Input: All Samples
1: for Samplei in all Samples do
2: Extract code-based data of Samplei
3: if code-based data are bytecodes then
4: Make N -grams of bytecodes
5: Create set BNDi, the union of all N -grams of bytecodes in Samplei
6: else if code-based data are opcodes then
7: Divide opcodes data into opcodes and hexadecimal digits
8: Make N -grams of opcode
9: Create set ONDi, the union of all N -grams in opcodes in Samplei

10: Create set HDi, the union of all hexadecimal digits in Samplei
11: end if
12: end for
13: Make BND, the union of all BNDi if code-based data are bytecodes.
14: Make OND and HD, the unions of all ONDi and HDi if code-based data are

opcodes.



18

Algorithm 2 Feature engineering
Input: Each Sample
1: Extract code-based data of Sample
2: if Code-based data are bytecodes then
3: Make N -grams of bytecodes
4: for all N -gram in Sample do
5: if N -gram is in BND then
6: if N -gram is scam-oriented N -gram then
7: Feature vector[index of the N -gram] = 1
8: else if N -gram is benign-oriented N -gram then
9: Feature vector[index of the N -gram] = -1

10: end if
11: else
12: Feature vector[index of the N -gram] = 0
13: end if
14: end for
15: else if Code-based data are opcodes then
16: Divide opcode-data into opcodes and hexadecimal digits
17: Execute the same procedure in line 3-14 replacing BND with OND to create

opcode-based features
18: Execute the same procedure in line 4-14 replacing N -gram and BND with hex-

adecimal digits and HD to create hexadecimal-based features
19: end if


