
Cost of Manipulation in AMM-Based Oracles

Sebastian Müller1,2, Nordine Moumeni1, and Adel Messaoudi1

1 Aix Marseille Univ, CNRS, I2M, Marseille, France
2 IOTA Foundation, Germany

Abstract. We study the robustness of AMM-based on-chain price oracles
to strategic manipulation. An attacker trades against constant product
automated market makers (CPMMs) to distort an on-chain oracle, ar-
bitrageurs restore cross-pool and cross-venue consistency, and an oracle
designer chooses how to aggregate pool quotes.
Taking an efficient-market-hypothesis (EMH) view of the off-chain “true”
price, we define the cost of manipulation as the minimal mark-to-market
loss that an attacker must incur to move the oracle by a given multiplica-
tive factor. For independent CPMMs, we derive closed-form single-pool
manipulation formulas and solve the attacker–designer game for weighted
means and weighted medians, showing that liquidity weights maximize
the minimum cost of manipulation within these classes for weighted me-
dians (for any distortion level) and, for weighted means, locally as the
distortion tends to zero. For larger distortions, weighted means become
more fragile: optimal weights can depend on the target distortion and no
single choice is uniformly optimal across distortion levels. In a frictionless
CPMM model with cross-pool arbitrage, the manipulation cost depends
only on the total quote depth and coincides across symmetric aggregators.
We extend this framework to multi-asset star architectures, confirming
that liquidity weights remain optimal in the same sense. Finally, we
bridge theory and practice by incorporating dwell times and rate limits,
providing a quantitative yardstick to size oracles against the explicit
economic costs of attack.

Keywords: Automated market makers · Price oracles · Decentralized finance ·
Market manipulation · Liquidity-weighted aggregation · Robust statistics

1 Introduction

Automated market makers (AMMs) have become core infrastructure in decen-
tralized finance (DeFi), serving as venues for liquidity provision and as a source
of on-chain price information. Lending protocols, derivatives platforms, and
stablecoins routinely rely on on-chain oracles to trigger liquidations, margin
calls, and redemptions, often for large notional exposures. In current practice,
most production oracles still aggregate off-chain data from centralized exchanges,
APIs, or market makers, but a smaller and conceptually important class of “pure
on-chain” oracles derives prices solely from AMM activity. These designs improve

2 Sebastian Müller, Nordine Moumeni, and Adel Messaoudi

decentralization and verifiability by avoiding external data feeds, yet their security
and robustness against manipulation remain only partially understood.

We develop a model of the cost of manipulation for such AMM-based oracles.
An attacker strategically trades against constant-product market makers (CP-
MMs) in order to push the oracle away from a latent efficient price, an oracle
designer chooses how to aggregate pool quotes, and arbitrageurs trade across
pools and external venues to restore price consistency. Adopting an efficient-
market-hypothesis (EMH) view of the off-chain price, we measure manipulation
cost as the mark-to-market economic loss that an attacker must realize in order to
move the oracle by a prescribed multiplicative factor r ≥ 1, upward or downward.
Our goal is to provide simple, closed-form benchmarks for the robustness of pure
on-chain CPMM-based oracles that can serve as a foundation for more elaborate
oracle designs.

At a high level, our results show that in CPMMs the cost of manipulating
an oracle admits simple expressions that depend only on liquidity depth and
aggregation weights, and that within natural mean- and median-type aggregators,
liquidity-proportional weights are max–min optimal (exactly for weighted medians
and to second order in a small-distortion expansion for weighted means). The rest
of the paper makes this statement precise in single-pool, multi-pool, and multi-
asset settings and quantifies the resulting robustness benchmarks for AMM-based
oracles.

Mean vs. median across distortion levels. For small distortions r = 1+ε, liquidity-
weighted means are more expensive to manipulate than liquidity-weighted medians
at leading order, reflecting that means “use” all pools while medians require only
a majority-weight cover. For larger distortions, however, weighted means can
become substantially more fragile because per-pool CPMM manipulation cost
grows sublinearly once a pool is pushed beyond the inflection threshold of the
single-pool factor. In this regime, designer-optimal mean weights can depend
on the target distortion and there is generally no distortion-uniform max–min
choice.

Contributions and Organization. Formally, the paper makes five contributions:

– We recall closed-form single-pool formulas for trade size and economic loss as
functions of the relative distortion factor r under a CPMM, and extend them
to include proportional swap fees via a simple rescaling of inputs (Section 2.1,
Appendix B, and Section 5).

– We characterize the optimal attacker strategies for multi-pool oracles based on
weighted means and weighted medians and solve the corresponding designer’s
problem. Liquidity weights are max–min optimal for weighted medians for
any distortion level, and are locally max–min optimal for weighted means as
r → 1; we also provide an explicit counterexample showing that weighted
means admit no distortion-uniform max–min choice beyond small distortions
(Section 3, Section 3.2, Theorems 1 and 2, and Appendices C–D).

Cost of Manipulation in AMM-Based Oracles 3

– We analyze frictionless cross-pool arbitrage and swap fees, noting that under
perfect equalization any symmetric aggregator yields the same oracle price
and that manipulation cost depends only on total depth, while fees induce
no-arbitrage bands that jointly affect arbitrage efficiency and attack cost
(Sections 2.2, 3, and 5).

– We sketch a multi-asset extension for star architectures around a numéraire
and show that liquidity weights remain optimal asset-by-asset (Section 4 and
Appendix E).

– We discuss practical extensions that embed our static cost benchmarks into
dynamic and implementation-aware settings, introducing a dwell-time metric
CostA(r, τ) and outlining how platform-specific rate limits and gas costs interact
with manipulation incentives in practice (Section 7).

Relation to prior work. Our analysis lies at the intersection of CFMM microstruc-
ture, oracle manipulation in DeFi, and robust aggregation. On the CFMM side,
Uniswap v2/v3 and the CFMM literature [2,3,6] characterize invariant-based pric-
ing, slippage, and arbitrage but do not formulate a general cost of manipulation
metric or a max–min designer problem over cross-pool weights. Oracle-security
work [26,21,24,8,1,13] studies concrete mechanisms such as TWAPs and docu-
ments manipulation events and capital requirements, while treating AMM pricing
largely as a black box. Robust-aggregation results [16,5,22] motivate volume-
and liquidity-weighted means and medians statistically but abstract away from
bonding-curve mechanics and strategic attackers. Our contribution is to connect
these strands by deriving closed-form CPMM manipulation costs, solving the
associated attacker–designer games for weighted means and medians (in single-
asset and star-architecture settings), and showing that liquidity-proportional
weights are max–min optimal for weighted medians (for any distortion level) and
locally max–min optimal for weighted means near r = 1, while weighted means
admit no distortion-uniform max–min weights in general. We refer to Section 6
for a more detailed discussion of related literature.

2 Background and Model

2.1 Primer on CPMMs and Notation

This subsection collects standard definitions and single-pool formulas for constant-
product market makers and fixes the notation used throughout the paper. In this
paper we focus exclusively on Uniswap v2–style constant-product AMMs, which
we refer to as constant-product market makers (CPMMs): pools whose reserves
(x, y) satisfy the invariant xy = k [2,6].

Constant-product invariant and marginal price. Consider a trading pair (X,Y)
with reserves (x, y) in a CPMM pool. The invariant is

k = x y, k > 0,

4 Sebastian Müller, Nordine Moumeni, and Adel Messaoudi

dy
dx

= − y
x

(x0, y0)

(x1, y1)

∆xout

∆yin

x (base reserves)
y
(q
uo

te
re
se
rv
es
)

Fig. 1. The CPMM bonding curve xy = k and a Y → X trade that increases the
marginal price p = y/x.

so any trade moves (x, y) along the curve xy = k. The marginal price of X in
units of Y is the rate at which the reserves trade locally:

marginal price of X in Y = −dy
dx

=
y

x
.

Thus the reserve ratio
p :=

y

x
(Y per X)

is exactly the marginal price on the CPMM curve. This is why on-chain “spot
prices” for CPMMs are typically read as p = y/x.

Liquidity depth and the role of k. For a fixed external (efficient) price p?, the
invariant k encodes the pool’s liquidity depth. At equilibrium p = p? we have

x0 =

√
k

p?
, y0 =

√
k p?,

so both reserves scale as
√
k. Moving the on-chain price from p0 to a new level p1

requires a finite trade that shifts reserves along the same curve. We parametrize
distortions multiplicatively: for a factor r ≥ 1, an “upward” move targets p1 = r p0

and a “downward” move targets p1 = p0/r. This yields a symmetric notion of
manipulation, since the relevant cost factor satisfies f(r) =

√
r+1/

√
r−2 = f(1/r)

as shown below.

Baseline single-pool formulas (as functions of a multiplicative distortion r ≥ 1).
Consider a CPMM initially at price p0 with reserves (x0, y0) and invariant
k = x0y0.

– Upward move (factor r). To move the on-chain price to p1 = r p0 with a Y →X
trade, the attacker must supply

yin
↑ (r) = y0

(√
r − 1

)
. (1)

– Downward move (factor 1/r). To move the price to p1 = p0/r with an X→Y
trade, the attacker must supply

xin
↓ (r) = x0

(√
r − 1

)
. (2)

Cost of Manipulation in AMM-Based Oracles 5

– Economic cost (mark-to-market at p? = p0). When the reference price equals
the pre-trade pool price, the economic loss in units of Y is

C↑Y (r) = y0

(√
r +

1√
r
− 2

)
, (3)

C↓Y (r) = y0

(√
r +

1√
r
− 2

)
. (4)

The trade sizes (1)–(2) reflect the
√
k-scaling of liquidity depth, and the cost

formulas (3)–(4) encode the realized slippage loss relative to the efficient price.
Detailed derivations are recalled in Appendix B. These CPMM price-impact and
slippage expressions coincide with the formulas used in protocol documentation
and CFMM analyses; see, for example, the Uniswap v2 and v3 whitepapers [2,3]
and the CFMM framework of Angeris and Chitra [6].

Notation and reference price. Throughout, we use:

– (X,Y): base and quote assets.
– (x, y): current pool reserves; k = xy the CPMM invariant.
– p = y/x: on-chain marginal price (Y per unit X).
– p?: external “fair” or efficient price, unaffected by on-chain trades (e.g., a robust

cross-venue midprice).

When we consider several pools for the same pair, we write (xi, yi), ki, and
pi = yi/xi for pool i, and collect pool prices into a vector p = (pi)i. An oracle
or price aggregator applies a deterministic functional A (e.g., liquidity-weighted
mean, weighted median, trimmed mean) to p to obtain the reported oracle price
p̂ = A(p).

Agents and manipulation cost. The strategic agents in our model are:

– an oracle designer, who chooses the aggregation rule A and fee/parameter
settings;

– an attacker, who submits trades to CPMM pools with the goal of pushing p̂
away from p?;

– arbitrageurs, who trade across pools (and vs. external venues) whenever price
discrepancies exceed their frictions.

We measure manipulation cost in units of the quote asset Y as the mark-to-
market loss of the attacker’s trades when valued at p? (slippage loss relative to
the efficient price). This quantity underlies the “adversarial cost” or “manipulation
cost” studied in the rest of the paper.

2.2 Robustness Metric: Cost of Manipulation

We formalize the notion of manipulation cost used throughout the paper. Let
p? denote the efficient price of a given asset in units of a reference asset, and
let A be an aggregation rule mapping observed pool quotes (and possibly other
on-chain data) to an oracle output p̂. We consider a one-shot setting first and
then indicate how to extend to a multi-step dwell requirement.

6 Sebastian Müller, Nordine Moumeni, and Adel Messaoudi

Definition 1 (Cost of manipulation). Fix an aggregation rule A, an efficient
price p?, a distortion factor r ≥ 1, and a reference asset (e.g., the quote asset Y
or a numéraire). Let U denote the set of admissible attack strategies (collections
of on-chain trades on the relevant pools), and write C(u) for the mark-to-market
economic loss of an attack u ∈ U measured in the reference asset at the efficient
prices. The cost of manipulation at level r is

CostA(r) := inf
{
C(u) : u ∈ U , max

{ p̂(u)
p?

,
p?

p̂(u)

}
≥ r
}
,

where p̂(u) := A(quotes after u) is the oracle output after the attack has been
executed and before any corrective arbitrage.

In words, CostA(r) is the minimal economic loss an attacker must incur
to move the oracle by a factor of at least r up or down relative to p?. In the
single-CPMM setting with A equal to the pool price, CostA(r) reduces to the
one-pool formulas C↑,↓Y (r) in (3)–(4). In the multi-pool mean and median settings,
CostA(r) is given by the solutions of the corresponding multi-pool optimization
problems. In the rest of the paper we focus on this “one-step” notion under static
efficient prices; a dynamic extension with dwell-time constraints is discussed in
the outlook section.

3 Manipulation of Single-Pair Oracles

Having fixed notation and the robustness metric, we now analyze how much
economic loss an attacker must incur to manipulate oracles built from one or
several CPMM pools that all trade the same asset pair. We start with two pools,
then consider the general case of N independent pools aggregated by means or
medians, and finally incorporate cross-pool arbitrage.

We will repeatedly use the single-pool cost factor

f(r) :=
√
r +

1√
r
− 2,

so that, when p? = p0, moving a CPMM price from p0 to r p0 (or to p0/r) costs
CY (r) = y0f(r) in quote units; see (1)–(4).

3.1 Two CPMM Pools

As a warm-up and to illustrate the main ideas for the general N -pool setting,
we first analyze the case of two independent CPMM pools aggregated by a
deterministic oracle A. We index pools by a subscript and indicate time by a
superscript in parentheses. Initial (pre-attack) reserves and prices are (x

(0)
i , y

(0)
i)

with invariant ki = x
(0)
i y

(0)
i and price p(0)

i = y
(0)
i /x

(0)
i . An attacker produces

post-trade quotes p(1)
i . The oracle aggregates the updated {p(1)

i } with one of the
following methods.

Cost of Manipulation in AMM-Based Oracles 7

1 3 5 7 9
0

0.05

0.1

0.15

0.2

t = 3

increasing

decreasing

Price multiplier t = p(1)/p0
f
′ (
t)

Fig. 2. Marginal manipulation cost f ′(t) = (t − 1)/(2t3/2) for a single CPMM pool.
Marginal cost peaks at t = 3 and declines thereafter, which makes concentrated mean
attacks attractive once some pools are pushed beyond 3× their initial price.

Weighted Mean Let weights w1, w2 > 0 with w1 + w2 = 1 (e.g., by liquidity
depth wi ∝

√
ki, equivalently wi ∝ y

(0)
i when pre-trade prices match). The

aggregated post-trade price is

p̂(1) = w1 p
(1)
1 + w2 p

(1)
2 .

If the attacker manipulates only pool 1, the aggregator sensitivity is ∂p̂(1)/∂p
(1)
1 =

w1. To move p̂(1) by ∆, one needs ∆p(1)
1 = ∆/w1. Plugging p

(1)
1 7→ p

(1)
1 +∆/w1

into (1) or (2) gives the required trade amounts per direction. We now turn to
the question of how an attacker can influence the aggregated price at lowest cost.
We start with the optimal attacker strategy for any given weights w1 and w2.

Optimal Manipulation. Assume both pools start at the same fair price p0 = p?,
so p(0)

1 = p
(0)
2 = p0. Fix a target distortion factor r ≥ 1. Write p(1)

i = s2
i p0 with

si > 0. Achieving p̂(1) = r p0 at minimum cost reduces to the program

min
s1,s2>0

y
(0)
1 f(s2

1) + y
(0)
2 f(s2

2) s.t. w1s
2
1 + w2s

2
2 = r,

where f(·) is the single-pool factor from (3). A downward distortion p̂(1) = p0/r
corresponds to replacing r by 1/r; since f(r) = f(1/r), the minimal cost is
the same in both directions. At an interior optimum, the Lagrange first-order
conditions take the form

y
(0)
i f ′(ti) = λwi, ti := s2

i ,

for some multiplier λ > 0. Thus the marginal cost f ′(ti) is proportional to the
weight-to-liquidity ratio wi/y

(0)
i . In particular, whenever the relevant multipliers

lie in the convex range ti ∈ (0, 3] (so f ′ is increasing, see Figure 2), pools with
larger wi/y

(0)
i are pushed to larger ti, i.e., manipulated more aggressively.

Weighted Median Let p(1) ≤ p(2) be the sorted quotes and corresponding
weights w(1), w(2) normalized so that w(1) +w(2) = 1. We use the lower weighted

8 Sebastian Müller, Nordine Moumeni, and Adel Messaoudi

median, defined as the smallest price level whose cumulative weight is at least
1/2. Thus p̃ = p(1) if w(1) ≥ 1/2 and p̃ = p(2) otherwise; under the exact tie
w(1) = w(2) = 1/2, this convention returns p̃ = p(1).

Optimal Manipulation. With two pools, the weighted median is piecewise constant:
the aggregator output is the price of whichever pool carries the majority weight.
To move p̃, the attacker must either (i) manipulate the dominating pool, or (ii)
push the manipulated pool past the other so that the majority-weight index flips.
In either subcase, the required trade sizes and costs follow from the single-pool
formulas with the appropriate target price level.

3.2 Multiple CPMM Pools

We now turn to the general setting of N independent pools. Throughout this
subsection, let

ytot :=

N∑
i=1

y
(0)
i

denote the total quote depth across pools.

Weighted Mean We first define the minimal cost of manipulation FN (w; r)
for a specific choice of aggregation weights w and target factor r ≥ 1. This is the
economic loss an attacker must incur to achieve p̂(1) = r p0 when they optimize
their trades across pools to minimize cost. With si representing the square root
of the per-pool price multiplier (i.e., p(1)

i = s2
i p0), define

FN (w; r) := min
{si>0}

N∑
i=1

y
(0)
i

(
si + s−1

i − 2
)

s.t.
N∑
i=1

wis
2
i = r.

The oracle designer’s problem is to choose w to maximize this adversarial cost.
The following theorem gives a small-distortion (second-order) characterization
and identifies liquidity weights as locally max–min optimal for weighted-mean
oracles near r = 1.

Theorem 1. Fix r = 1 + ε with ε→ 0+. Then, uniformly over weight vectors
w = (wi)

N
i=1 with wi ≥ 0 and

∑
i wi = 1,

FN (w; 1 + ε) =
ε2

4

1∑N
i=1 w

2
i /y

(0)
i

+ o(ε2).

Consequently,

sup
wi≥0,

∑
i wi=1

FN (w; 1 + ε) =
ε2

4
ytot + o(ε2),

and the leading-order term is uniquely maximized by the liquidity weights w?i =

y
(0)
i /ytot.

Proof. Deferred to Appendix C.

Cost of Manipulation in AMM-Based Oracles 9

Convex regime (exact benchmark under a per-pool cap). Fix an upward target
r ∈ [1, 3] and consider attacks constrained by ti := p

(1)
i /p0 ∈ [1, 3]. On this range

f is convex. Under liquidity weights w?i = y
(0)
i /ytot, Jensen’s inequality implies

N∑
i=1

y
(0)
i f(ti) ≥ ytot f(r),

with equality at ti ≡ r. Since ti ≡ r is feasible for every weight vector, no
designer can force manipulation cost above ytotf(r), and thus liquidity weights
are max–min optimal within this capped convex regime. In the unconstrained
model, by contrast, the aggregate condition r < 3 does not preclude concentrated
attacks with some ti > 3 when some weights are small.

Convexity threshold and concentrated attacks. The per-pool cost factor f(t) =√
t+ 1/

√
t− 2 has a crucial inflection point at t = 3, since

f ′′(t) =
3− t
4t5/2

,

so f is convex on (0, 3] and concave on [3,∞). Equivalently, the marginal cost
f ′(t) = (t− 1)/(2t3/2) peaks at t = 3 and decreases thereafter; see Fig. 2.

This implies a qualitative shift in attacker incentives: attacks are dispersed
when the relevant multipliers remain in (0, 3], but can become concentrated once
some pool is pushed beyond t = 3. In particular, if r > 3 then any feasible (ti)i
must satisfy maxi ti ≥ r > 3, and even if r < 3 a concentrated mean attack may
still push some pools past t = 3 when some weights wi are small. We leave a full
max–min characterization of optimal weighted-mean weights outside the small-
distortion regime to future work; Appendix C gives a simple counterexample
showing that liquidity weights need not be max–min optimal at large distortion
levels and discusses alternative weight choices.

Weighted Median Let N ≥ 2 pools start at a common price p0. Write y(0)
i for

the quote reserve of pool i and let wi > 0 be the aggregation weights normalized
so that

∑
i wi = 1. Fix a target distortion factor r ≥ 1 and define the per-pool

cost factor

f(r) :=
√
r +

1√
r
− 2, Ci(r) = y

(0)
i f(r).

The weighted median p̃ at t is the smallest price level such that the cumulative
weight at or below that level is at least 1/2. With all quotes initially at p0, to
enforce an upward distortion p̃ ≥ r p0 it is necessary and sufficient to move a
subset of pools S ⊂ {1, . . . , N} to r p0 so that their cumulative weight covers
half the mass: ∑

i∈S
wi ≥ 1

2 ⇐⇒ p̃ ≥ r p0 . (5)

10 Sebastian Müller, Nordine Moumeni, and Adel Messaoudi

Any pool not in S can remain at p0 (moving it to an intermediate price in
(p0, rp0) does not change the median). Hence the attacker’s problem reduces to
the one-constraint covering program

Cmed(r;w) = min
S⊂{1,...,N}

∑
i∈S

y
(0)
i f(r) s.t.

∑
i∈S

wi ≥ 1
2 . (6)

There is no closed form in general because the feasible set depends on the discrete
weight configuration {wi}. Nevertheless, the structure is simple and yields an
explicit strategy :

Optimal strategy (set form). Because Cmed(r;w) is additive across selected pools,
it suffices to choose a subset S with total weight at least 1/2 that minimizes∑
i∈S y

(0)
i . This “minimum-cost cover” is easy to compute for the pool counts

that arise in practice, and its structure is transparent: optimal attacks prioritize
pools with small depth per unit of weight, i.e., small ratios y(0)

i /wi. A simple
greedy candidate is to sort pools by y(0)

i /wi and add them in this order until
the 1/2 threshold is reached; this is exact in the two-pool and equal-weight cases
below. In particular, there is never a reason to overshoot rp0 on any selected
pool.

Special cases and bounds.

1. Two pools: assume without loss of generality that w1 ≥ w2. If w1 >
1
2 , then

the weighted median equals the quote of pool 1, so an optimal attack sets
p1 = rp0 and leaves p2 = p0, yielding Cmed = y

(0)
1 f(r) = y

(0)
majorf(r). In the tie

case w1 = w2 = 1
2 , our lower-median convention returns the smaller quote, so

to enforce p̃ ≥ rp0 one must move both pools to rp0, giving Cmed = ytotf(r).
If instead ties are resolved by interpolation (e.g., p̃ = (p(1) + p(2))/2), then
in the tie case it also suffices to leave one pool at p0 and move the other
to (2r − 1)p0; choosing the cheaper pool yields cost y(0)

minf(2r − 1) with
y

(0)
min := min(y

(0)
1 , y

(0)
2). Hence, under midpoint interpolation, the tie-case cost

is min{ytotf(r), y
(0)
minf(2r − 1)}.

2. Equal weights (wi = 1/N): let k = dN/2e and order depths as y(0)
(1) ≤ · · · ≤

y
(0)
(N). An optimal attack moves the k pools with smallest depths to rp0

(leaving the others at p0), giving the closed form

Cmed(r) = f(r)

k∑
j=1

y
(0)
(j) .

3. Liquidity weights (wi ∝ y
(0)
i): covering 1/2 of the total weight requires at

least half the total quote depth, so

1
2 ytot ≤ min

S:
∑
wi≥1/2

∑
i∈S

y
(0)
i ≤ 1

2 ytot + y(0)
max,

Cost of Manipulation in AMM-Based Oracles 11

implying the median manipulation cost satisfies the exact bounds

1
2 f(r) ytot ≤ Cmed(r;w

?) ≤ f(r)
(

1
2ytot + y(0)

max

)
.

For comparison, for the weighted mean with the same liquidity weights,
Theorem 1 yields the small-distortion expansion FN (w?; 1+ε) = (ε2/4) ytot+
o(ε2). Table 1 summarizes the contrast between mean- and median-based
aggregation across distortion regimes.

We now show that, within the class of weighted-median oracles, liquidity
weighting maximizes the attacker’s minimal cost.

Theorem 2. Let y = (y
(0)
1 , . . . , y

(0)
N). Define

Θ(y) := min
{∑
i∈S

y
(0)
i : S ⊂ {1, . . . , N},

∑
i∈S

y
(0)
i ≥ 1

2ytot

}
.

Then for any r ≥ 1,

sup
w≥0,

∑
wi=1

Cmed(r;w) = f(r)Θ(y),

attained by the liquidity weights w?i = y
(0)
i /ytot. Moreover, 1

2ytot ≤ Θ(y) ≤
1
2ytot + y

(0)
max, and for N = 2, Θ(y) = max(y

(0)
1 , y

(0)
2).

Proof. Deferred to Appendix D.

3.3 Arbitrage Across Pools

We now consider frictionless, immediate arbitrage between CPMM pools that all
trade the same pair. Any configuration in which some pools are more distorted
than others creates an immediate arbitrage opportunity: an arbitrageur can buy
in the cheap pool and sell in the expensive one until prices equalize, earning
additional profit at the attacker’s expense and partially undoing the oracle
distortion. Hence, in any minimal-cost attack under perfect arbitrage, we may
restrict attention to equalized terminal configurations in which all pools end at
the same target price ptar = r p0 (or ptar = p0/r).

Assume the system starts at a common efficient price p0, so y
(0)
i /x

(0)
i = p0

and ki = x
(0)
i y

(0)
i . In the equalized state, each pool is shifted by the same price

multiplier, so the total economic loss is the sum of the single-pool costs, yielding

C?(r) = ytot f(r). (7)

Thus, under perfect cross-pool arbitrage, the N CPMMs behave like a single
effective pool whose quote reserve equals the total depth ytot: the cost (7) is
exactly the single-pool expression with y0 replaced by ytot. Because equalization
forces all post-arbitrage quotes to coincide, any symmetric aggregator (weighted
mean, median, trimmed mean, etc.) returns ptar, so the cost (7) is independent
of the particular symmetric aggregation rule.

12 Sebastian Müller, Nordine Moumeni, and Adel Messaoudi

Table 1. Summary of manipulation costs and optimal weight designs. Here ti := p
(1)
i /p0

is the per-pool price multiplier, and Θ(y) is the minimum depth of a majority-weight
subset.

Scenario Designer Takeaway (Max–Min) Minimal Cost

Independent Pools (No Arbitrage)

Weighted Mean Local Optimality (r → 1): Liquidity
weights wi ∝ y(0)i are optimal.
Large Distortions: Fragile. Once
some ti > 3, marginal costs decrease
and concentrated attacks can dominate;
no uniform max–min weights.

Small distortions:
∝ ytot;
large distortions:
sublinear

Weighted
Median

Global Optimality (∀r ≥ 1):
Liquidity weights wi ∝ y(0)i are optimal
for any target distortion.
Robust: requires manipulating a
majority-weight subset.

f(r)Θ(y)

Perfect Cross-Pool Arbitrage

Any Symmetric
Aggregator

Irrelevance: Arbitrage equalizes
terminal prices pi → ptar. Aggregation
rule does not affect cost.

f(r) ytot

4 Multi-Asset Extension

We briefly sketch a multi-asset extension. A particularly clean setting is a star
architecture around a numéraire, where each non-numéraire asset is priced by
aggregating CPMM pools that trade against the numéraire and manipulation
cost is measured in numéraire units. Appendix E states and proves that, in such
architectures, liquidity-proportional weights remain optimal asset-by-asset (ex-
actly for weighted medians and locally for weighted means as ra → 1). Extending
this analysis to general CPMM graphs with cross pairs is left for future work.

5 Incorporating Swap Fees

Incorporating proportional swap fees into our CPMM cost formulas is straightfor-
ward. With an input fee φ, only a fraction (1−φ) of the gross input is credited to
the pool, so achieving a fixed distortion factor r requires gross trade sizes larger
by a factor 1/(1 − φ) than in (1)–(2). In our one-shot formulas, this acts as a
simple multiplicative adjustment of the direct manipulation cost. In multi-pool
settings, fees also widen classical no-arbitrage bands for cross-pool cycles (see [6]),
so small cross-pool discrepancies can persist because arbitrage is unprofitable
unless they exceed the fee wedge. This weakens corrective arbitrage and can

Cost of Manipulation in AMM-Based Oracles 13

reduce the gross volume required to sustain a discrepancy, even though each swap
pays fees. Finally, implementation costs such as gas fees contribute an additive
term per transaction. Since our goal is a clean depth-driven baseline, we focus on
the zero-fee case and treat the interaction between fees, arbitrage efficiency, and
gas costs as deployment-specific refinements.

6 Related Work

CFMM microstructure and AMM oracles. The Uniswap v2 and v3 whitepa-
pers [2,3] and the CFMM framework of Angeris and Chitra [6] describe invariant-
based pricing, depth, and arbitrage for production CPMMs. Subsequent work
analyzes LP risk, fee design, and predictable losses [9,4,12], multi-token AMMs
and closed-form arbitrage in N -asset pools [25], and routing and coupling effects
across CFMM pools [7,23], as well as providing broader surveys of DeFi AMMs
and CFMM mechanics [11]. These papers treat slippage and arbitrage primarily
as descriptive properties or sources of LP risk; to the best of our knowledge, none
defines a general, closed-form cost of manipulation metric of the form “minimal
loss to move the price by a given factor” nor poses a max–min defender problem
over cross-pool weights.

Oracle manipulation, TWAPs, and DeFi security. Empirical and systems work
documents oracle deviations and attacks in DeFi [26,21,24], and surveys oracle
architectures and TWAP designs [8,27,14]. Uniswap v3 TWAP studies [1,13] com-
pute capital requirements for TWAP manipulation, while large-scale evaluations
of Chainlink and cross-chain oracles [20,15] and analysis frameworks such as
OVer [18,10] provide risk metrics and stress tests under adversarial inputs. These
contributions quantify attack costs for specific oracle mechanisms (primarily
arithmetic TWAPs) and propose mitigations such as time windows and circuit
breakers, but most treat AMM pricing as a black box or work numerically with
particular TWAP implementations; they do not derive closed-form manipulation
costs as explicit functions of liquidity and distortion, nor do they analyze a
general multi-pool attacker–designer game over aggregation weights.

Robust aggregation, liquidity weights, and positioning. Robust statistics offers
general tools for aggregation under outliers [16,17,19], and recent crypto-specific
work [5] derives nonasymptotic error bounds for weighted means and medians ap-
plied to exchange price data. Industry indices such as the SIX Crypto Indices [22]
implement volume- or liquidity-weighted medians to down-weight small venues.
These works justify liquidity and volume weights from a statistical-error perspec-
tive under contamination models, but do not model CFMM microstructure or a
strategic attacker who must trade against bonding curves, and, to the best of our
knowledge, they contain no CPMM-aware max–min optimality result for liquidity
weights. Our contribution is deliberately basic: we take the standard CPMM price
curve, define a general, closed-form cost of manipulation metric for single and
multiple CPMM pools, and then solve the associated attacker–designer problems

14 Sebastian Müller, Nordine Moumeni, and Adel Messaoudi

for weighted means, weighted medians, and a multi-asset star architecture. To our
knowledge, this is the first work to show that, in a CPMM microstructure-aware
setting, liquidity weights are max–min optimal for weighted medians (for any
distortion level) and locally max–min optimal for weighted means near r = 1,
and to show by counterexample that weighted means admit no distortion-uniform
max–min weights beyond small distortions.

7 Discussion and Future Work

Multi-pool aggregation and on-chain feasibility In the independent-pool regime,
our analysis shows that liquidity-weighted medians maximize the minimal cost
of manipulation for any distortion level, while liquidity-weighted means are
locally optimal near r = 1 but can be substantially more fragile under large
distortions; under perfect cross-pool arbitrage the effective depth entering the cost
formulas is simply the total quote reserve across pools. Robustness is therefore
primarily driven by how much CPMM depth backs the oracle and how that
depth is distributed across pools, rather than by finer choices among symmetric
aggregators.

Dwell-time robustness and protocol interaction The static cost of manipulation
CostA(r) studied in the main text can be embedded into a dynamic setting via
the dwell-time extension CostA(r, τ) (Appendix A). For any given application,
one can compute or upper bound the maximal exploitable gain from a mispricing
by a factor r maintained for a dwell τ ; denote this by B(r, τ) (e.g., the largest
profit from shifting a liquidation threshold or triggering a mispriced payoff). The
deterrence criterion

CostA(r, τ) � B(r, τ)

then provides a quantitative notion of “economic safety margin”. Our CPMM
cost formulas identify the per-block building blocks entering CostA(r, τ); deriving
sharp multi-block lower bounds in concrete latency and congestion-control models,
and matching them against protocol-specific B(r, τ), is an important avenue for
future work.

Aggregation rules under different fault models Our aggregation results highlight
an important difference between CPMM-based on-chain oracles and the exchange-
based setting studied by Allouche et al. [5], where trimmed medians are optimal
under contamination. For our economic cost of manipulation metric on on-chain
CPMM data, liquidity-weighted means are more expensive to manipulate than
liquidity-weighted medians for small distortions in the independent-pool model,
reflecting that means “use” all pools while medians only require a majority-weight
cover. However, because per-pool CPMM manipulation cost grows sublinearly
once a pool is pushed beyond the inflection threshold of the single-pool factor,
weighted means can become significantly more fragile under large distortions; in
this regime, designer-optimal mean weights can depend on the target distortion
and there is no distortion-uniform max–min choice in general. Weighted medians

Cost of Manipulation in AMM-Based Oracles 15

retain a large-distortion guarantee: moving the oracle requires manipulating a
subset covering at least half of the aggregation weight, regardless of how large
r is. Smart-contract bugs, misconfigured pools, or governance attacks can still
create persistently faulty on-chain venues. In such cases, median- or trimmed-
mean aggregation over pools may be more appropriate to discount structurally
broken pools while still using liquidity weights within the remaining set. Liquidity-
weighted means remain natural when all CPMMs are correct and manipulation
occurs only via trading.

Beyond CPMMs In practice, concentrated-liquidity AMMs (CLMMs) such as
Uniswap v3 are widely used. A convenient reduced-form view is that they induce
a state-dependent effective depth yeff(p) aggregating all active liquidity at price
p. The cost of moving the price from p0 to p1 = r p0 (or p1 = p0/r) is then
obtained by integrating the CPMM slippage formulas along the path in price
with y0 replaced locally by yeff(p), preserving the convexity and monotonicity
properties that underpin our multi-pool optimization at the expense of simple
closed forms in r. Extending our results to CLMMs requires modeling the effective
depth profile yeff(p); we leave a full treatment of CLMM microstructure and tick
dynamics to future work.

8 Conclusion

We introduced a quantitative notion of cost of manipulation for AMM-based
oracles and analyzed how it depends on liquidity depth, aggregation rules, and
arbitrage connectivity. For a single CPMM pool, we recalled closed-form formulas
for the trade size and economic loss required to move prices by a factor r (upward
or downward). In independent multi-pool settings, we solved the attacker–designer
game for weighted medians (all distortion levels) and for weighted means locally
near r = 1. We also showed by counterexample that weighted means admit
no distortion-uniform optimal weights beyond small distortions, while under
frictionless cross-pool arbitrage the cost collapses to simple total-depth expressions
that are independent of the particular symmetric aggregator. For weighted means,
we also highlighted the inflection of the single-pool cost factor at multiplier t = 3,
which induces a qualitative shift from dispersed to concentrated optimal attacks
and motivates either median-type aggregation or distortion-aware weighting that
down-weights shallow pools more aggressively in the large-distortion regime. We
extended this analysis to a multi-asset star architecture and proved an analogous
optimality result for per-asset weights. Finally, the dwell-time and rate-limit
extensions illustrate how these static cost benchmarks can be combined with chain-
and application-specific models to design AMM-based oracles whose manipulation
cost dominates the economic gains available from induced mispricings.

16 Sebastian Müller, Nordine Moumeni, and Adel Messaoudi

References

1. A. Adams. Uniswap v3 TWAP oracles in proof of stake. SSRN Working Paper
4384409, 2022.

2. H. Adams et al. Uniswap v2 core. Whitepaper, 2020.
3. H. Adams et al. Uniswap v3 core. Whitepaper, 2021.
4. Algebra Finance Research Team. The impact of market conditions and fee algorithms

on the design of a competitive AMM. Whitepaper, 2022.
5. M. Allouche, M. Echenim, E. Gobet, and A.-C. Maurice. Statistical error bounds for

weighted mean and median, with application to robust aggregation of cryptocurrency
data. Preprint, 2024.

6. G. Angeris and T. Chitra. Improved price oracles: Constant function market makers.
In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies,
pages 80–91. ACM, 2020.

7. G. Angeris, T. Diamandis, M. Resnick, and T. Chitra. Optimal routing for constant
function market makers. In Proceedings of the 23rd ACM Conference on Economics
and Computation. ACM, 2022.

8. A. T. Aspembitova et al. Oracles in decentralized finance: Attack costs, profits and
mitigation. Applied Sciences, 12(24), 2022.

9. P. Bergault et al. Automated market makers: Mean-variance analysis of LPs. arXiv
preprint arXiv:2212.00336, 2022.

10. J. Boe et al. Safeguarding DeFi smart contracts against oracle deviations. Proceed-
ings of the ACM on Programming Languages, 2024.

11. Á. Cartea, F. Drissi, and M. Monga. Decentralised finance and automated market
making. Journal of Economic Dynamics and Control, 2025.

12. Á. Cartea, F. Drissi, and M. Monga. Decentralised finance and automated market
making: Predictable loss and optimal liquidity provision. Journal of Economic
Dynamics and Control, 2025. Forthcoming; see also arXiv:2309.08431.

13. Chaos Labs. Block manipulation: Market risk of uniswap v3 TWAP oracles. Research
report, 2023.

14. X. Deng, S. M. Beillahi, H. Du, P. Tiwari, and A. Veneris. Analysis of defi oracles.
Staff Discussion Paper 2024-10, Bank of Canada, 2024.

15. R. Gansäuer et al. Price oracle accuracy across blockchains. In Proceedings of
CAAW 2025, 2025.

16. F. R. Hampel. Robust statistics: A brief introduction and overview. Allgemeines
Statistisches Archiv, 85(1):1–18, 2001.

17. P. J. Huber. Robust Statistics. John Wiley & Sons, New York, 1981.
18. Q. Luu et al. OVer: A framework for safeguarding DeFi smart contracts against

oracle deviations. In Proceedings of the Web Conference, 2024.
19. R. A. Maronna, R. D. Martin, and V. J. Yohai. Robust Statistics: Theory and

Methods. John Wiley & Sons, Chichester, 2006.
20. M. Nadler. Blockchain price oracles: Accuracy and violation recovery. Finance

Research Letters, 2025.
21. K. Qin, L. Zhou, B. Livshits, and A. Gervais. Attacking the DeFi ecosystem

with flash loans for fun and profit. In Proceedings of the 3rd ACM Conference on
Advances in Financial Technologies, 2021.

22. SIX Group. SIX Crypto Indices: Real-Time Median and Real-Time Volume-Weighted
Median Methodology, 2020.

23. A. Sterrett and A. Adams. A microstructure analysis of coupling in CFMMs. arXiv
preprint arXiv:2510.06095, 2025.

Cost of Manipulation in AMM-Based Oracles 17

24. W. Yang et al. Flash loan attack is more than just price oracle manipulation. arXiv
preprint arXiv:2105.XXX, 2021.

25. X. Yang et al. Closed-form solutions for generic n-token AMM arbitrage. arXiv
preprint arXiv:2402.06731, 2024.

26. F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. A first look into DeFi
oracles. In Proceedings of the IEEE Security and Privacy Workshops, 2020.

27. Y. Zhao, X. Kang, T. Li, C.-K. Chu, and H. Wang. Towards trustworthy defi
oracles: Past, present and future. arXiv preprint arXiv:2201.02358, 2022.

A Sustained Manipulation and Protocol Constraints

The one-step cost of manipulation considered above abstracts away from timing
and protocol-level limits. In practice, block structure, rate limits on shared
objects, and latency all constrain both attackers and arbitrageurs and motivate a
dynamic extension of our metric and of the comparison with application-specific
benefit functions B(r, τ).

Sustained distortions with dwell time. Let time be indexed by blocks t = 0, 1, . . .,
and let At be the aggregation rule at time t, possibly incorporating time-windowed
statistics (e.g., TWAPs). The attacker submits a sequence of trades u0, . . . , uT−1,
incurring cumulative loss C(u0:T−1). For a dwell parameter τ , a natural extension
of our robustness metric is the minimal cost needed to keep the oracle distorted
by a factor of at least r for τ consecutive blocks:

Dt := max
{ p̂t
p?t
,
p?t
p̂t

}
.

CostA(r, τ ;T) := inf
{
C(u0:T−1) : ∃t0 s.t. Dt ≥ r ∀t ∈ [t0, t0 + τ − 1]

}
,

with p̂t = At(quotes after u0, . . . , ut) and p?t the efficient price process. The
asymptotic cost CostA(r, τ) is defined via a liminf as T →∞. Our static results
identify the per-block building blocks entering CostA(r, τ); deriving sharp multi-
block lower bounds in specific latency models, and matching them against protocol-
specific upper bounds B(r, τ), is a natural direction for further work and for
quantitative risk budgeting.

Rate limits and shared-object congestion (Sui example). On high-throughput
platforms with parallel execution such as Sui, contention on shared objects
(e.g., a CPMM pool) becomes a bottleneck, so protocols rate-control how many
transactions per checkpoint may touch the same shared object. This interacts
with the dwell-time notion of CostA(r, τ) by limiting how quickly arbitrageurs
can respond to distortions and how many manipulative trades an attacker can
sustain per block. A detailed analysis of such rate limits—combining our static
cost formulas with models of block-level access constraints, spam behavior, and
explicit B(r, τ) for concrete lending and derivatives protocols—is left for future
work and is particularly relevant for Sui-style shared-object architectures.

18 Sebastian Müller, Nordine Moumeni, and Adel Messaoudi

B Derivations for Single-Pool Formulas

We briefly derive the baseline single-pool manipulation formulas used throughout
the paper.

B.1 Trade needed to hit a relative price target

Consider a CPMM with reserves (x0, y0), invariant k = x0y0 and initial price
p0 = y0/x0. Fix a target factor r ≥ 1. For an upward move we target p1 = r p0,
and for a downward move we target p1 = p0/r. Post-trade reserves (x1, y1) must
satisfy

p1 =
y1

x1
, x1y1 = k.

Solving these two equations yields

x1 =

√
k

p1
, y1 =

√
k p1.

Using y0 =
√
kp0 and x0 =

√
k/p0, write s =

√
r. Then:

– Upward move (p1 = r p0): y1 = y0s, so yin
↑ (r) = y1 − y0 = y0(s− 1), which is

(1).
– Downward move (p1 = p0/r): x1 = x0s, so xin

↓ (r) = x1−x0 = x0(s− 1), which
is (2).

These expressions make explicit that trade size scales like
√
k and depends on

the target only through r.

B.2 Economic cost at p? = p0

We mark attacker losses to market at a reference price p? representing the external
efficient value. For the baseline case p? = p0:

– Upward move. A Y →X trade of size yin
↑ sends reserves from (x0, y0) to (x1, y1)

with x1y1 = k. The attacker receives

xout = x0 − x1 = x0 −
k

y0 + yin
↑
.

Valued at p? = p0, the loss in Y units is

C↑Y = yin
↑ − p0x

out.

Substituting yin
↑ = y0(s− 1), xout = x0(1− 1/s) and p0x0 = y0 yields

C↑Y (r) = y0

(
s+ 1

s − 2
)
,

which is (3).

Cost of Manipulation in AMM-Based Oracles 19

– Downward move. An X→Y trade of size xin
↓ yields

yout = y0 − y1 = y0 −
k

x0 + xin
↓
.

The loss in Y units is
C↓Y = p0x

in
↓ − yout.

With xin
↓ = x0(s− 1), yout = y0(1− 1/s) and p0x0 = y0, we obtain

C↓Y (r) = y0

(
s+ 1

s − 2
)
,

which is (4).

In both directions, CY coincides with the standard notion of slippage loss (dif-
ference between what the attacker pays and the fair value of what they receive)
used in CFMM analyses such as [6].

C Weighted-Mean Multi-Pool Optimization

In this appendix we provide a detailed proof of Theorem 1. We work with price
multipliers ti := s2

i (so that ti = p
(1)
i /p0) and write the attacker’s problem as

FN (w; r) = min
{ N∑
i=1

y
(0)
i f(ti) : ti > 0,

N∑
i=1

witi = r
}
, f(t) =

√
t+

1√
t
− 2.

Why we focus on small distortions. The key technical feature is that the per-pool
factor f is not globally convex: a direct calculation gives

f ′′(t) =
3− t
4t5/2

,

so f is convex on (0, 3] and concave on [3,∞). Equivalently, the marginal cost
f ′(t) = (t − 1)/(2t3/2) increases on (0, 3] and decreases on [3,∞); see Fig. 2.
When some pools are pushed beyond the inflection point t = 3, the attacker
can benefit from concentrating distortion on a small-weight pool while leaving
most pools close to t = 1; this may occur even for moderate aggregate targets r
if some wi are small. For a concrete illustration, take N = 2 pools with quote
depths (y

(0)
1 , y

(0)
2) = (1,M) and liquidity weights w? = (1

M+1 ,
M
M+1). Fix any

target r > 1 and set t2 = 1 and t1 = 1 + (r − 1)(M + 1); then

w?1t1 + w?2t2 =
1

M + 1

(
1 + (r − 1)(M + 1)

)
+

M

M + 1
· 1 = r,

so the attack is feasible at cost F2(w
?; r) ≤ f(1 + (r − 1)(M + 1)), while the

pooled benchmark costs (M +1)f(r). Since f(t) ≤
√
t for all t ≥ 1 and f(t) ∼

√
t

as t → ∞, the ratio between these two costs is O(M−1/2) as M → ∞. Thus

20 Sebastian Müller, Nordine Moumeni, and Adel Messaoudi

the pooled-liquidity benchmark ytotf(r) cannot hold uniformly in r away from
r = 1. Moreover, the same example shows that liquidity weights need not be
max–min optimal for weighted means at large distortion levels: if the designer
instead ignores the shallow pool and sets weights w̃ = (0, 1), then the oracle
depends only on pool 2 and any successful attack must set t2 = r, incurring
cost F2(w̃; r) = Mf(r). For fixed r > 1 (in particular for r > 3), this scales
like Θ(M), while the feasible concentrated attack above achieves cost at most
f(1+(r−1)(M+1)) = O(

√
M) under liquidity weights. Hence, forM sufficiently

large, w̃ yields strictly larger minimal manipulation cost than w?. Accordingly,
Theorem 1 is stated as a small-distortion result.

A concentration bound and a large-distortion design heuristic. For any weights
w and any target r ≥ 1, a feasible attack is to leave all pools at tj = 1 except
one pool i, and set ti = 1 + (r − 1)/wi; this yields

FN (w; r) ≤ min
i
y

(0)
i f
(
1 +

r − 1

wi

)
.

Since f(t) ∼
√
t as t→∞, this upper bound behaves like

√
r − 1 mini y

(0)
i /
√
wi

for large distortions, suggesting quadratic liquidity weights wi ∝ (y
(0)
i)2 as a

conservative way to equalize the cost of such single-pool attacks.

Second-order expansion and attacker optimum

Fix weights wi ≥ 0 with
∑
i wi = 1 and set r = 1 + ε with ε → 0+. Write

ti = 1 + δi with δi > −1, so the constraint becomes

N∑
i=1

wiδi = ε.

Since the constant choice δi ≡ ε is feasible, we have FN (w; 1+ε) ≤ ytotf(1+ε) =
O(ε2) uniformly in w. Because f(1+ δ)→∞ as δ ↓ −1 or δ →∞, any minimizer
must satisfy maxi |δi| → 0 as ε→ 0 (otherwise the objective would be bounded
below by a positive constant). Hence we may use the Taylor expansion

f(1 + δ) =
δ2

4
+O(δ3) (δ → 0),

to obtain

FN (w; 1 + ε) =
1

4
min

{ N∑
i=1

y
(0)
i δ2

i :

N∑
i=1

wiδi = ε
}
+ o(ε2).

The quadratic program is solved by Cauchy–Schwarz:

ε2 =
(N∑
i=1

wiδi

)2

≤
(N∑
i=1

w2
i

y
(0)
i

)(N∑
i=1

y
(0)
i δ2

i

)
,

Cost of Manipulation in AMM-Based Oracles 21

with equality iff δi ∝ wi/y(0)
i . Therefore,

min
{ N∑
i=1

y
(0)
i δ2

i :

N∑
i=1

wiδi = ε
}
=

ε2∑N
i=1 w

2
i /y

(0)
i

,

and thus

FN (w; 1 + ε) =
ε2

4

1∑N
i=1 w

2
i /y

(0)
i

+ o(ε2).

Designer optimum

To maximize the leading-order term, the oracle designer minimizes
∑
i w

2
i /y

(0)
i

over all weights wi ≥ 0 with
∑
i wi = 1. By Cauchy–Schwarz,

1 =
(N∑
i=1

wi

)2

≤
(N∑
i=1

w2
i

y
(0)
i

)(N∑
i=1

y
(0)
i

)
= ytot

N∑
i=1

w2
i

y
(0)
i

,

with equality iff wi ∝ y
(0)
i . Hence

∑
i w

2
i /y

(0)
i ≥ 1/ytot, and the leading-order

cost is uniquely maximized by the liquidity weights w?i = y
(0)
i /ytot, giving

sup
wi≥0,

∑
i wi=1

FN (w; 1 + ε) =
ε2

4
ytot + o(ε2).

D Weighted-Median Multi-Pool Optimization

We now prove the weighted-median weight-design result stated in Theorem 2.
Recall the setup of the N -pool median: for quote reserves y(0)

i > 0 and weights
wi ≥ 0 with

∑
i wi = 1, the attacker’s minimal cost to enforce a distortion factor

r ≥ 1 is
Cmed(r;w) = f(r)m(w),

m(w) := min
{∑
i∈S

y
(0)
i : S ⊂ {1, . . . , N},

∑
i∈S

wi ≥ 1
2

}
.

Thus the oracle designer solves

sup
w∈∆N

Cmed(r;w) = f(r) sup
w∈∆N

m(w), ∆N = {wi ≥ 0,
∑
i

wi = 1}.

We therefore focus on the purely combinatorial quantity m(w).
Let y = (y

(0)
1 , . . . , y

(0)
N) and ytot =

∑
i y

(0)
i . Define

Θ(y) := min
{∑
i∈S

y
(0)
i : S ⊂ {1, . . . , N},

∑
i∈S

y
(0)
i ≥ 1

2ytot

}
,

i.e., the smallest total depth carried by any subset whose total depth is at least
half of ytot.

22 Sebastian Müller, Nordine Moumeni, and Adel Messaoudi

Lemma 1. For any y as above,

1
2ytot ≤ Θ(y) ≤ 1

2ytot + y(0)
max,

where y(0)
max := maxi y

(0)
i . Moreover, when N = 2 we have Θ(y) = max(y

(0)
1 , y

(0)
2).

Proof. By definition, every admissible subset S satisfies
∑
i∈S y

(0)
i ≥ 1

2ytot, so
the minimum is at least 1

2ytot. For the upper bound, sort indices so that y(0)
(1) ≤

· · · ≤ y(0)
(N) and let k be the smallest index with

∑k
i=1 y

(0)
(i) ≥

1
2ytot. Then Θ(y) =∑k

i=1 y
(0)
(i) and

Θ(y) ≤ 1
2ytot + y

(0)
(k) ≤

1
2ytot + y(0)

max.

When N = 2, either y(0)
1 ≥ 1

2ytot or y(0)
2 ≥ 1

2ytot (or both), and the minimal
subset achieving the half-depth threshold is the index with larger depth, so
Θ(y) = max(y

(0)
1 , y

(0)
2).

Lemma 2. For any w ∈ ∆N and r > 0,

Cmed(r;w) = f(r)m(w),

with m(w) as defined above.

Proof. By definition of the weighted median, moving the median from p0 to rp0

requires the attacker to select a subset S of pools whose cumulative weight is
at least 1/2 and move exactly those pools to rp0; moving any pool to a price in
(p0, rp0) does not change the median level. Since all pools start at p0 and each
moved pool must be at rp0, the attack cost is the sum of per-pool manipulation
costs Ci(r) = y

(0)
i f(r) over i ∈ S. Minimizing over all subsets with

∑
i∈S wi ≥ 1/2

yields precisely the expression for m(w).

Proposition 1. For any y as above and any r ≥ 1,

sup
w∈∆N

Cmed(r;w) = f(r)Θ(y),

attained by the liquidity weights w?i = y
(0)
i /ytot. In particular,

sup
w∈∆N

m(w) = Θ(y).

Proof. By Lemma 2 it suffices to study supw∈∆N m(w).
Lower bound and attainment. Take liquidity weights w?i = y

(0)
i /ytot. For any

subset S, ∑
i∈S

w?i ≥ 1
2 ⇐⇒

∑
i∈S

y
(0)
i ≥ 1

2ytot.

Thus
m(w?) = min

{∑
i∈S

y
(0)
i :

∑
i∈S

y
(0)
i ≥ 1

2ytot

}
= Θ(y),

Cost of Manipulation in AMM-Based Oracles 23

so supwm(w) ≥ m(w?) = Θ(y) and therefore

sup
w
Cmed(r;w) ≥ f(r)Θ(y).

Upper bound. Fix an arbitrary w ∈ ∆N . By definition of Θ(y) there are only
finitely many candidate subsets S ⊂ {1, . . . , N}, so the minimum in its definition
is attained. Let Sθ be any subset achieving this minimum, i.e.,∑

i∈Sθ
y

(0)
i = Θ(y),

∑
i∈Sθ

y
(0)
i ≥ 1

2ytot.

There are two cases.

– If
∑
i∈Sθ wi ≥

1
2 , then S

θ is feasible for m(w), so

m(w) ≤
∑
i∈Sθ

y
(0)
i = Θ(y).

– If
∑
i∈Sθ wi <

1
2 , let S

c be its complement. Then∑
i∈Sc

wi = 1−
∑
i∈Sθ

wi >
1
2 ,

so Sc is feasible for m(w). Its cost is∑
i∈Sc

y
(0)
i = ytot −Θ(y) ≤ ytot − 1

2ytot =
1
2ytot ≤ Θ(y),

where the first inequality uses the lower bound Θ(y) ≥ 1
2ytot from Lemma 1

(which implies ytot − Θ(y) ≤ ytot − 1
2ytot), and the last inequality uses the

same bound to conclude 1
2ytot ≤ Θ(y). Hence

m(w) ≤
∑
i∈Sc

y
(0)
i ≤ Θ(y).

In all cases we have m(w) ≤ Θ(y), so supwm(w) ≤ Θ(y). Combined with the
lower bound and attainment at w?, this proves the claim.

E Star-Architecture Multi-Asset Extension

Theorem 3 (Star-architecture optimal weights). Let the asset set be A =
{0, 1, . . . ,M}, with asset 0 a numéraire (e.g., a stablecoin). For each a 6= 0,
suppose there are CPMM pools indexed by i ∈ Ia,0 quoting a against the numéraire
with quote reserves y(0)

a,i , and let the oracle report

p̂a = Aa
(
{p(1)
a,i}i∈Ia,0

)
, a = 1, . . . ,M,

where each Aa is either a weighted mean or a weighted median with weights
wa,i > 0,

∑
i wa,i = 1.

Fix target distortion factors ra = 1 + εa with εa → 0+ for a = 1, . . . ,M , and
write Costa(ra;wa,·) for the minimal economic loss required to distort p̂a by a
factor of at least ra (upward or downward). Then,

24 Sebastian Müller, Nordine Moumeni, and Adel Messaoudi

1. for each asset a, liquidity weights w?a,i ∝ y
(0)
a,i maximize the leading-order

(second-order in εa) term of Costa(1 + εa;wa,·) when Aa is a weighted mean,
and

2. maximize Costa(ra;wa,·) for any ra ≥ 1 when Aa is a weighted median

Moreover, the star architecture decouples assets, so the minimal total cost to
distort the vector (p̂a)a6=0 by factors ra equals

∑M
a=1 Costa(ra;w

?
a,·).

Proof. Throughout, assets are indexed by a ∈ {1, . . . ,M}, with asset 0 a
numéraire. For each a we write Ia,0 for the set of CPMM pools quoting a

against the numéraire, and we write p(t)
a,i for the on-chain marginal price of one

unit of a in numéraire units in pool i ∈ Ia,0 at time t ∈ {0, 1} (pre-attack t = 0,
post-attack t = 1).

Reduction to Single-Asset Problems

Fix an asset a 6= 0 and a target distortion factor ra = 1 + εa with εa → 0+. In
the star architecture, the oracle price for a is

p̂a = Aa
(
{p(1)
a,i}i∈Ia,0

)
,

where Aa is either a weighted mean or a weighted median with weights wa,i > 0,∑
i wa,i = 1. By construction, p̂a depends only on the pools in Ia,0, and trades

on pools for other assets do not enter Aa.
Let Costa(ra;wa,·) denote the minimal economic loss (in numéraire units)

that an attacker must incur to enforce a distortion of at least ra on p̂a (upward
or downward) using trades on the CPMMs in Ia,0, holding all other assets fixed.
This is exactly the single-asset multi-pool manipulation problem analyzed in the
main text, with (X,Y) replaced by (a, 0), quote reserves {y(0)

a,i }, and aggregation
weights {wa,i}.

Consequently:

– If Aa is a weighted mean, Theorem 1 applies (as εa → 0) and implies that the
maximizing weights w?a,i are the liquidity weights

w?a,i =
y

(0)
a,i∑

j∈Ia,0 y
(0)
a,j

.

– If Aa is a weighted median, Theorem 2 yields the same conclusion: liquidity
weights w?a,i ∝ y

(0)
a,i maximize the minimal manipulation cost for p̂a.

Thus, for each asset separately, liquidity weights are max–min optimal within
weighted medians and asymptotically max–min optimal within weighted means
(as εa → 0).

Cost of Manipulation in AMM-Based Oracles 25

Separability Across Assets

In the star architecture, the CPMM pools split into M disjoint groups {Ia,0}Ma=1,
one per asset–numéraire pair. The attacker’s total cost to distort a vector of
prices (p̂a)a6=0 by factors ra is the sum of the per-asset costs:

M∑
a=1

Costa(ra;wa,·),

because trades on Ia,0 affect only asset a and costs are measured in the common
numéraire. There are no cross-terms in the objective, and no constraints couple
trades across different Ia,0.

The oracle designer’s max–min problem is therefore

sup
{wa,·}

inf
attacks

M∑
a=1

Costa(ra;wa,·) =

M∑
a=1

sup
wa,·

inf
attacks on Ia,0

Costa(ra;wa,·),

where the equality follows from separability of both the cost and the admissible
attack sets across assets. Maximizing each term on the right-hand side indepen-
dently and using the single-asset results above shows that the joint optimizer is
given by choosing, for every a, the liquidity weights w?a,i ∝ y

(0)
a,i .

With this choice, the minimal total cost decomposes as the sum of the optimal
per-asset values Costa(ra;w?a,·).

	Cost of Manipulation in AMM-Based Oracles

