
Talk: Mitigating Flash Crashes in DeFi

Preston Vander Vos

Circle

Abstract. Flash crashes—sudden, severe price collapses occurring within seconds—pose
a persistent risk to both traditional and decentralized financial systems. While conven-
tional markets employ regulatory safeguards such as market-wide and single-stock circuit
breakers to limit extreme volatility, no analogous mechanisms exist within decentralized
finance (DeFi). The absence of centralized oversight, combined with automated liquida-
tions, oracle dependencies, shallow liquidity across decentralized exchanges, etc., amplifies
the systemic vulnerability of DeFi protocols to rapid, self-reinforcing crashes. Although
circuit breakers are well-established in traditional markets, their adaptation to crypto has
remained theoretical. The decentralized and permissionless nature of blockchain systems
fundamentally alters how market safeguards can be designed and deployed. Without stan-
dardized coordination across trading venues, the direct translation of existing models has
been infeasible. This work presents the first on-chain circuit breaker framework that oper-
ates natively within token smart contracts, enabling automated and decentralized volatility
halts without external intervention.

1 Introduction

Flash crashes represent one of the most disruptive phenomena in modern financial markets,
characterized by extreme price volatility occurring within minutes or even seconds. In tradi-
tional finance, Limit Up/Limit Down (LULD) mechanisms halt trading for individual securities
experiencing extreme price movements, while market-wide circuit breakers (MWCBs) pause en-
tire exchanges during severe market declines. The decentralized and fragmented nature of DeFi
makes MWCBs infeasible since no entity controls all trading venues. However, the token-centric
nature of blockchain systems enables LULD-style protections to be implemented directly within
individual token contracts. Currently, the DeFi ecosystem operates without such safeguards,
leaving protocols and users vulnerable to catastrophic losses.

The emergence of DeFi has created a new financial paradigm where algorithmic trading, auto-
mated market makers (AMMs), and leveraged positions interact in complex ways. This intercon-
nectedness, combined with the absence of centralized control mechanisms, creates conditions ripe
for flash crashes that can devastate individual investors and destabilize entire protocols. Cryp-
tocurrency markets have a well-documented history of severe flash crashes, and DeFi’s complex
interdependencies only amplify these inherent risks.

This paper proposes an on-chain solution to mitigate flash crash risks in DeFi. By embedding
circuit breaker mechanisms directly into token smart contracts, we can create programmable
safeguards that automatically halt trading during extreme downside volatility events. This ap-
proach preserves the decentralized nature of DeFi while borrowing concepts from traditional
market infrastructure.

Our contributions include:

1. First, we analyze the unique characteristics of crypto and Defi with respect to flash crashes.
2. Second, we design a smart contract-based circuit breaker system that adapts traditional

regulatory mechanisms to the decentralized context.
3. Third, we present a governance framework that enables community-controlled parameter

setting while maintaining system integrity and preventing manipulation.



2 Limitations of Traditional Countermeasures on DEXs

DEXs represent a fundamentally different paradigm that makes traditional circuit breaker ap-
proaches not merely difficult, but impossible to implement. Unlike CEXs that theoretically could
halt trading through administrative controls, DEXs execute trades automatically without any
human intervention. The absence of central operators eliminates the entity that would implement
circuit breakers. Traditional mechanisms require market operators to monitor price movements
and coordinate halts across venues. DEXs, being fully autonomous protocols, have no equivalent
operators.

Most DEX smart contracts are designed to be immutable by default to ensure trustlessness
and prevent manipulation. Introducing circuit breaker functionality would require either main-
taining upgrade capabilities that introduce centralized control points contradicting the protocol’s
decentralized nature or redeploying entirely new contract versions with circuit breakers built-in
and hoping users voluntarily migrate to these new implementations, even though the original
versions without circuit breakers would remain fully operational and accessible.

Unlike traditional markets where identifiable brokers and institutional traders can be held
accountable for compliance violations, DEX users operate behind pseudonymous wallet addresses
that mask their true identities. As users can generate unlimited new addresses or employ privacy-
enhancing tools, holding trading halt violators to account would be a tremendous challenge.

3 Design

The fundamental incompatibilities between traditional regulatory approaches and both CEXs
and DEXs necessitates a novel solution. Rather than futilely attempting to impose a control
mechanism at the exchange level, proper protection must be built into the decentralized pro-
tocols themselves. That is the only way they can effectively operate across the fragmented,
permissionless, and globally distributed nature of crypto.

3.1 Core Concept

The proposed solution embeds a circuit breaker mechanism directly into token contracts through
a timestamp variable that controls transfer functionality. Transfers are prohibited until the times-
tamp is reached, enabling temporary trading halts by updating this timestamp as needed. This
approach ensures that the control is native to the token itself, making it impossible to bypass.

1 contract CircuitBreakerToken {

2 uint256 public pauseUntil = 0;

3 uint256 public constant PAUSE_DURATION = 5 minutes;

4

5 function _activateCircuitBreaker () private {

6 pauseUntil = block.timestamp + PAUSE_DURATION;

7 emit CircuitBreakerActivated(pauseUntil);

8 }

9

10 modifier whenNotPaused () {

11 if (block.timestamp < pauseUntil) {

12 revert CircuitBreakerActive ();

13 }

14 _;

15 }



16

17 // add to transferFrom as well

18 function transfer(

19 address to ,

20 uint256 amount

21 ) public whenNotPaused returns (bool) {

22 ...

23 }

24 }

Listing 1.1. Circuit breaker token core concept. When activated, transfers are paused for 5 minutes.

Listing 1.1 implements this core functionality in Solidity using a standard ERC-20 transfer
function. The code can handle all token standards on Ethereum including ERC-721 (NFTs),
ERC-1155 (multi-tokens), and other variants through using the whenNotPaused modifier on their
respective transfer functions. When paused, all token transfers are rejected, effectively freezing
the token’s market. This creates a mandatory cooling-off period.

3.2 Activation Designs

The question then becomes how and when to activate the circuit breaker. The framework is de-
liberately flexible, allowing any programmatically verifiable trigger function. While the examples
below focus on individual token price movements, implementations can monitor arbitrary met-
rics: baskets of comparable assets, market-wide indices, liquidity depth, volatility measurements,
or any combination thereof. The only constraint is what can be known and encoded in smart
contract logic.

On Every Transfer (Pre-execution) This approach integrates price monitoring directly into
each token transfer operation. Before executing any transfer function, the contract queries a
price oracle to compare the current market price against a reference price. If the price movement
exceeds a predetermined threshold, the circuit breaker is immediately activated, preventing the
transaction from proceeding. This creates a real-time monitoring system where every transaction
serves as a potential trigger point.

The primary advantage of this approach is its immediate responsiveness—no price movement
can escape detection since every transfer is monitored. However, this comes at the cost of high gas
consumption, as each transfer must pay for oracle queries and price calculations. The approach
also introduces significant performance overhead that could make token transfers prohibitively
slow.

External Oracle-Triggered In this model, an external price monitoring service continuously
tracks token prices and compares them against a reference price. When the monitoring system
detects price movements that exceed the predefined threshold, it triggers the circuit breaker by
calling a designated function on the token contract. This approach separates the price analysis
logic from the token contract itself, allowing for arbitrary monitoring algorithms that can account
for any external factors deemed relevant.

External oracle triggering offers superior gas efficiency since monitoring costs are borne by
the oracle service rather than individual token transfers. It also enables more sophisticated price
analysis using off-chain computational resources. However, this approach introduces centraliza-
tion risks through oracle dependency and creates potential attack vectors if the oracle service
is compromised or manipulated. The system’s effectiveness also depends on the oracle’s update
frequency and the reliability of its price data sources.



Periodic Checks This implementation establishes regular intervals at which the token contract
automatically evaluates market conditions against reference benchmarks. Rather than checking
prices on every transaction, the contract monitors cumulative activity and triggers price evalua-
tions based on elapsed time, transaction count, or volume thresholds.

Periodic monitoring provides several advantages over per-transaction checks. Time-based in-
tervals offer predictable gas costs and ensure regular surveillance without burdening individual
transfers, while volume and transaction-based thresholds create dynamic monitoring frequencies
that naturally scale with market activity. The approach distributes gas costs more equitably
across active participants rather than imposing uniform overhead on all transactions. Addition-
ally, concentrating monitoring efforts during periods of heightened trading activity aligns with
when price crash risks are typically elevated.

However, this approach introduces temporal blind spots where significant price movements
occurring between scheduled checks may go undetected until the next monitoring cycle. Fixed
time intervals may be overly frequent during calm periods or insufficient during volatile events.
For threshold-based systems, determining appropriate trigger values requires careful calibration
based on typical trading patterns, and sophisticated attackers might structure their activities to
stay below detection thresholds while still achieving meaningful price manipulation.

3.3 Cross-Chain Coordination

Tokens increasingly exist across multiple blockchain networks through bridges and native deploy-
ments. Thus, effective circuit breaker protection requires cross-chain coordination. The frame-
work leverages cross-chain messaging protocols to synchronize circuit breaker states across all
chains where a token exists. Imagine a smart contract on Ethereum which is in control of a to-
ken’s circuit breaker. When the circuit breaker on Ethereum is triggered, the smart contract will
broadcast a halt signal to all other chains where the token exists through a cross-chain messaging
protocol. The circuit breaker smart contracts on other chains will then pause transfers of the
token on their respective chains. Do note that there is no reason to limit the circuit breaker to
only being triggered on a single chain. In fact, if desired, the protection can be included on every
chain where the token is as long as a smart contract is able to ingest the proper infomation in
order to trigger the circuit breaker correctly. Enabling cross-chain coordination allows for a more
comprehensive protection of the token and prevents attackers from exploiting price discrepancies
across chains to bypass protections.

4 Governance

The decentralized nature of token projects necessitates community-driven governance for circuit
breaker parameters and funding. Each token’s DAO should determine the appropriate trigger
functions, thresholds, and monitoring frequency based on their specific market characteristics and
risk tolerance. Since the token community is most invested in protecting their asset’s value, it is
reasonable for them to bear responsibility for establishing and maintaining adequate safeguards.

The DAO must also fund the infrastructure required for circuit breaker operation, including
oracle services, cross-chain messaging costs, and monitoring contract deployments. This cna be
funded, for instance, through the token’s treasury. This aligns incentives properly: those who
benefit from protection shoulder the costs of implementing it. Governance frameworks should
include mechanisms for updating parameters as market conditions and risk tolerances evolve.


