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Abstract. Blockchain technology and smart contracts have revolution-
ized digital transactions by enabling trustless and decentralized exchanges
of value. However, the inherent blockchain transparency and immutabil-
ity pose significant privacy challenges. On-chain data, while pseudony-
mous, is publicly visible and permanently recorded, potentially leading to
inadvertent disclosure of sensitive information. This issue is particularly
pronounced in smart contract applications, where contract details are
accessible to all network participants, risking the exposure of identities
and transactional details.

To address these privacy concerns, there is a pressing need for privacy-
preserving mechanisms in smart contracts. To showcase this need even
further, in our paper we bring forward advanced use-cases in economics
which only smart contracts equipped with privacy mechanisms can re-
alize, and show how fully-homomorphic encryption (FHE) as a privacy
enhancing technology (PET) in smart contracts, operating on a pub-
lic blockchain, can make possible the implementation of these use-cases.
Furthermore, we perform a comprehensive systematization of FHE-based
approaches in smart contracts, examining their potential to maintain
the confidentiality of sensitive information while retaining the benefits
of smart contracts, such as automation, decentralization, and security.
After we evaluate these existing FHE solutions in the context of the use-
cases we consider, we identify open problems, and suggest future research
directions to enhance privacy in blockchain smart contracts.

1 Introduction

One of the significant challenges of blockchain-based (but also generally all
digital-based) transactions is the issue of privacy. The decentralized and trans-
parent nature of blockchains especially is at odds with privacy, as all on-chain
data is widely distributed and publicly visible, even when hidden behind pseudony-
mous addresses. Moreover, the immutable and permanent nature of blockchain
records can exacerbate such privacy concerns. Once information is written into



a block, it cannot be altered or deleted, which can potentially lead to permanent
disclosure of sensitive information.

These privacy concerns inherently extend to blockchain smart contract ap-
plications. In traditional contract law, the terms and conditions of a contract
are usually known only to the parties involved. In contrast, smart contracts
are typically visible to all participants of the blockchain network. This trans-
parency, while beneficial for verifying transactions and ensuring accountability,
can inadvertently disclose sensitive information. This can include the identities
of the parties involved, the value, and nature of the transactions, among other
details, which can be exploited by malicious actors or even lead to competitive
disadvantage in business scenarios.

Therefore, there is a need for privacy-preserving mechanisms in smart con-
tracts, which has been growing even further after recent works (e.g. Aronoff and
Townsend [9]) have highlighted how smart contracts with those mechanisms can
make novel protocols in economics possible. Privacy-preserving smart contracts
would allow the benefits of this technology, such as programmability, decentral-
ization, and security, ensure that sensitive information remains confidential, and
facilitate new protocols in economics which are not feasible today.

Motivation. Cryptography, distributed ledger technologies (DLTs), and fully
homomorphic encryption (FHE) together enable resource allocation mechanisms
previously infeasible. Smart contracts enforce pre-agreed terms, preventing ex-
post renegotiation, selective privacy limits disclosure to address trust deficits,
and FHE enables verification of correct execution without revealing inputs or
outputs. This combination supports incentive-compatible truth-telling mecha-
nisms [4I]. We present three examples: (i) a model from Lee, Martin, Townsend
(2024) [47] showing how a broker can use atomic smart contracts to match buyers
and sellers without holding inventory; (ii) a self-reporting insurance mechanism
from Townsend (1988) [74], extended with FHE [73] and implemented on DLT
[75]; and (iii) a repo market extension that tokenizes MIT LEAD (2025) [46]
based on Aronoff and Townsend (2025) [9]. These cases show how FHE on DLT
can reduce frictions in financial intermediation by enabling multilateral coordi-
nation under limited commitment, incentivizing truthful preference revelation,
increasing trade, creating new markets, and reducing intermediaries’ inventory
requirements. See Appendix [A] for detailed discussion on related works.

Our contributions. In this paper, we perform a systematization on solu-
tions that adopt fully-homomorphic encryption (FHE) as the main ingredient to
enable privacy-preserving smart contracts. We first make a comprehensive study
on existing FHE solutions in a smart contract setting, highlighting the nuances
that might become a constraining factor in real-world deployments. We then
discuss how FHE can uniquely make novel use-cases possible in economics that
extend beyond the standard tokenized deposit use-case, and provide the proto-
cols of such cases in detail. Given the above available tools and the use-cases,
we examine if and how these tools can indeed realize these use-cases in practice
by performing a comprehensive evaluation. Finally, based on our findings, we
identify open problems and suggest future research directions.



On the SoK nature of this work. We emphasize that this paper is in-
tended as a Systematization of Knowledge (SoK) contribution on the use of
Fully Homomorphic Encryption (FHE) in smart contracts. While the research
area is still in its early stages, our goal is to consolidate and critically analyze
the existing, fragmented body of work (both academic and industrial) into a
coherent structure. We systematically categorize existing approaches according
to their cryptographic capabilities, integration models, and application domains,
and identify the technical and practical challenges that remain unsolved. Our
focus on representative implementations is motivated by their status as the only
publicly accessible and usable FHE-for-smart-contract frameworks at the time
of writing, enabling reproducible, implementation-driven comparisons. Beyond
these case studies, we situate them in the broader design space, highlight miss-
ing functionalities (e.g., verifiable FHE, authenticated ciphertext data, privacy-
preserving branching, communication cost considerations), and articulate open
research questions. In doing so, this paper serves as a structured reference point
for researchers and practitioners, fulfilling the central goal of an SoK: to map,
clarify, and critically assess the state of the art in a rapidly emerging area.

What about other PETs? In the context of smart contracts and economic
applications, several privacy-preserving technologies (PETS) such as zero knowl-
edge proofs, homomorphic encryption, trusted execution environment (TEE) and
secure multi-party computation (MPC) have been explored to address these pri-
vacy challenges. However, it turns out that fully-homomorphic encryption (FHE)
in particular, can make new protocols in economics possible in a smart-contract
setting [T37546], allowing the contract to make the needed computations over
encrypted data directly. Other technologies in such scenarios might introduce
undesireable tradeoffs for these cases. For instance TEEs shift the assumption
from the consensus safety to trusted hardware, while general purpose MPC might
assume non-collusion and liveness of servers instead of the liveness and the de-
centralized nature of a blockchain. In Sections [3.1] and [3:2] we provide more
reasons on why our use-case mechanisms are a better fit for FHE. Finally, FHE
is in a unique position to address blockchain-related problems such as Miner Ex-
tracrable Value (MEV) [31], which is associated with centralization, fairness and
security concerns [48], and is generally considered a desireable and sought-after
technology in blockchain applications [36] as well as in machine learning [58].

2 Background

We provide a brief overview of the three families of FHE schemes as discussed
in [I1], each optimized for a different plaintext algebra and gate set (we provide
the fundamental background of FHE in appendix .

1. Residue-number (exact integer) schemes such as BFV [I8] and BGV.
Based on the Ring-LWE assumption [49], they support exact modular arith-
metic and SIMD packing, making them attractive for privacy-preserving in-
teger workloads (e.g. balances). Noise grows with circuit depth, so periodic
bootstrapping or careful parameter planning is required.



2. Boolean/LWE schemes such as TFHE [27]. Ciphertexts encrypt single
bits (or small moduli) and offer nanosecond Boolean gates and fast boot-
strapping, enabling unbounded depth and efficient encrypted comparisons or
control-flow. They are preferred when smart contracts need many logical or
branching operations.

3. Approximate-arithmetic schemes such as CKKS. These encode fixed-
or floating-point vectors and allow high-throughput linear algebra with small,
controllable error—ideal for private analytics and ML—Dbut their approximate
decoding is not suited to consensus-critical integer logic unless post-processed
by rounding or accompanied by proofs of correct range.

Each family therefore targets a different corner of the design space: BEV/BGV
for high-precision integer arithmetic, TFHE for fast Boolean circuits, and CKKS
for high-dimensional approximate computation. We discuss how these schemes
would fit in smart-contract settings later in our paper.

Smart contract FHE solutions. We defer detailed descriptions of Sun-
screen and Zama to Appendix [C] and here provide only a brief comparison.
Sunscreen compiles high-level programs to efficient BFV-based FHE, making it
well-suited for integer arithmetic in smart contracts. Zama, by contrast, builds
on TFHE, offering richer data types, encrypted conditionals, and extensive pro-
grammability, but at higher cost for integer-heavy workloads. In our bench-
marks, Sunscreen exhibited faster integer operations, while Zama’s strengths
lie in boolean logic, non-linear operations, and advanced features such as config-
urable decryption. Both approaches advance the feasibility of privacy-preserving,
verifiable smart contract execution, but target different points in the perfor-
mance—functionality trade-off.

3 Applications

We now consider use-cases where implementations with FHE and smart con-
tracts on distributed ledgers enable improvements in resource allocations that
are not otherwise obtainable, comparing the performance of Sunscreen and Zama
on trading protocols in two domains with significant economic impact (see Ap-
pendix [E] for some basic use-cases including a model of intermediation without
inventories). Section extends the basic model to an automated situation
without intermediaries, and links that to insurance. Section [3.2] extends previ-
ous models with future repayment legs, and links that to repo and collateral
markets.

3.1 Smart contracts to replace intermediaries, and links to the
insurance industry

One can ask the question of how two parties A and C could negotiate directly
without having intermediary B in the middle. This is similar to a problem asked
in Townsend (1988) [74] and Townsend and Zhang (2020) [73] aiming at creat-
ing incentive compatible “self-reporting” contracts. Indeed, we want A and C to



share with each other their true preferences, so that the trade they end up with
is jointly optimal. This problem is quite general; in fact, this forms the basis of
negotiating the terms of any risk sharing contract between adverse parties. Here
the specificity of Lee, Martin Townsend’s model is that to encourage C to share
its real preference, A must not be able to know how much C wants the asset,
so that A doesn’t take advantage of that knowledge. So this ”self-reporting”
contract must also be non-verifiable, e.g. A shouldn’t be able to verify whether
C is in bad need for that asset. This can be related to the insurance industry,
in which historically contracts have required that claims must be verifiable e.g.
building damage, hospitalization, or drop in asset price. It is desirable however
to provide an insurance mechanism for unverifiable claims, or for claims that
participants would want to keep private even if these could be verified by third
parties (for instance when a bank that has a liquidity shortfall). Examples of
such claims could be “the data I got hacked is worth $x to me” or “I held $y
of Bitcoin and lost my secret key”. Insuring such claims is difficult since self-
reporting of loss creates incentives to either overstate claims (for instance to get
more insurance payouts), or to understate claims (for instance if reputation could
be affected negatively). An especially impactful area of potential application of
self-reporting claims is the provision of loans and contingent money transfers to
low wealth people in amounts that are too small to justify incurring the cost of
verification [44]. A key feature that has, up to the present time, prevented the
development of a self-reporting insurance market is the difficulty of designing a
market mechanism wherein a policyholder is assured that its claim will not be
revealed to any party, including the insurer.

We delegate the details of the exact incentives to [74] and trust here (from
the results of [74]) that C, who is now equivalent to a policyholder, reveals their
true need for the asset A has, in one of either two prices for simplicity - a high
need h which is higher than the price A wants to sell the asset, and a low need
[ which would be lower than the priccec A wants to sell the asset.

The FHE smart contract scheme description. As in Lee Martin Townsend
(2024), there are two time periods, time 1 before A and C meets, and time 2
for delivery of the asset if the trade was agreed upon; two agents, C (now akin
to a policyholder) and A (now akin to an insurer, who deploys a smart contract
to negotiate with C). As stated above, C has two policyholder states (ie of how
much C needs the asset, akin to whether C incurred high losses requiring high
disbursement from the insurer, or low losses requiring less disbursement from the
insurer) h and I, where h > [. At time 1 the agents agree to contract terms that
will be encoded (for instance by equation 6 from with all the encrypted
parameters into the smart contract’s transferFrom() function), which determine
the contingent payouts at to, (h or I). At time 2 the policyholder C messages
the insurer A loss claim h or ! (which, by assumption, is its true state)and the
payout is a random function of the policyholder claim. The high need, h, which
is higher than the price A wants to sell the asset, is imperfectly correlated with
the policyholder reporting a large claim (i.e. there is a small probability the pol-



icyholder will receive the asset even for a low price or in the insurance analogy
in the case of claim of small loss). This is a salient point of [74], as this small
probability, encoded as a random variable in the smart contract, that the poli-
cyholder receives the asset regardless of its true need, which makes it impossible
to infer with certainty the policyholder’s state. A accepts this small probability
to provide the incentives for C to announce its true need without fearing that A
can infer it (and say broadcast to competitors that C needs that asset badly).
The smart contract algorithm is the following:

The smart contract payout formula is Enc(h).Enc(b)+[Enc(1)—Enc(b)].(Enc(l)+
[Enc(h—1)].Enc(rs)), where r3 is the Bernoulli random variable deciding if even
a good state of the world will lead to high payout, and where b is sent by the
policyholder with a value 1 if they are in a bad state of the world, and 0 if not.

This encoding of the terms into the smart contract is shown as step 1 on
Figure [1l Then, still at the first contracting period, the insurer needs to make
a deposit(in the forms of ERC tokens for instance, or tokenized deposits, or
wCBDC) to the smart contract that can accommodate the maximum payout
possible corresponding to those 2 states of the world, i.e. max(h,l)=h (step 2 on
Figure , to ensure that the smart contract can make the payment to match
the loss reported by the policyholder at time 2.

At the second period, the policyholder sends to the smart contract an FHE
encrypted dummy value b, corresponding to 1 if the policyholder is in the high
loss state of the world, and to 0 if the policyholder is in the low loss state of
the world (step 3), as well as a random bit r; (step 4) sampled uniformly. The
contract then adds another layer of randomization through the sampling of o
(step 5), which can be an external randomness source, to ensure that neither the
policyholder nor the insurer can biasthe final random bit r3 (step 6). Finally,
the smart contract through the homomorphic operations shown step 6 in Fig.
computes the payout and transfers the corresponding amount to the policy
holder. Note that the random probability that the low losses state to the world
also leads to a payout h obscures to the outside observers if the high payout was
indeed due to a high or low loss state of the policyholder.

Policyholder Insurer Contract

1. h, 1

2. deposit v = maz(h,l)

3. Enc(b)
4. Enc(r1)

5. sample 72,
Enc(r) = Enc(r1) &2

6. Enc(h)Enc(b) + (Enc(1) — Enc(b))(Enc(l) + Enc(h — 1) Enc(r))

Fig. 1. Policy holder - insurer protocol.

The mechanism requires three things to make it viable; (i) privacy of the
messages sent from agents to the mechanism operator, (ii) trust that the mecha-



nism operator will not leak information on one agent’s message to another agent
and (iii) trust that the mechanism operator will implement the agreed upon al-
gorithm to determine and send money to agents. These three requirements are
met when using FHE-based smart contracts on a public blockchain: Encrypting
messages solves (i). FHE computation on the ciphertext by the smart contract
solves (ii). Verification of the smart contract computation on a public blockchain
solves (iii) (contingent on trust in the integrity of the blockchain).

3.2 Adding a repayment leg: a repo trade with a coordination
problem

If we add a future repayment leg (the “second-leg”) to our model, so that A
repurchases the asset, we are describing a repo market. The smart contract
delineating the terms of sale of the asset for the first leg (from section I) can
now also include a second transferFrom() (the standard ERC20 function), this
time to be activated at the second-leg. The second-leg introduces a complication.
At least one of A or B is motivated to enter a repo trade in order to use the
financial object it acquires at the first-leg. This means that, say C, will have
transferred the object and the second transferFrom() function in the contract
would have nothing left to withdraw from C’s account. One possible function of
a broker-dealer in a repo trade is to ensure delivery of the object to its client at
the second-leg. To bring the example closer to the empirical structure of repo
market we introduce a second-broker-dealer, adapted from the intermediated
trade model of Aronoff and Townsend (2025) [9] and applied to the FHE on
DLT.A is then the client of B; and C is the client of Bs.

Protocol description. A is now a repo borrower who wants to sell a fi-
nancial asset, 7', in exchange for money, M, at the first-leg and who wants to
repurchases the asset at a the second-leg. So A owns the financial asset 7" and
desires to sell it. C' desires to purchase T in exchange for money M. A trades
with its broker-dealer B and C' trades with its broker Bs. The intermediated
chain is depicted in Figure [d] We set as the objective to trade to maximize
the volume of T' at which the two broker-dealer price/volume pairs match. The
protocol proceeds in the following sequential order:

Step 1, ¢ [off-chain, or in separate sets of on-chain smart contracts |: each
client and its broker-dealer agree to a schedule of money, M, and volume of
financial asset, T, denoted {M,T'}.; where ¢ = {A, C'} indicates the client and
i € {1,...,n} indicates how many units M (resp. how many units T') the client
is willing to trade for i units of T" (resp. for i units of M). For simplicity and
without loss of generality we assume both schedules have the same size n. Below
we represent a visual example where n=3, with two examples of schedules from
A and C. A client ¢ = {4, C'} agrees to transact at any pair {M,T} € {M,T}.;
that gets matched in the inter dealer market as in steps 2 to 4.

Step 2, to: [on-chain] Each broker-dealer then encrypts the schedule of its
client and sends Enc(pk,{M,T}.,:) ¢ € {1,...,n} to the smart contract. To
ensure compliance, a broker-dealer may be required to send a deposit of the



Fig. 2. Steps 0 and 1 Fig. 3. Steps 2,3 and 4

ed; if 1T th

First, each client sends to its broker dealer its desired schedules (eg what prices for
the goods it’s willing to exchange depending on how many units of goods are bought)

if 3 T then 4 M exchanged

financial object it intends to trade into the smart contract escrow, and the client
may be the source of the deposit object.

Step 3, t5: [on-chain] the smart contract compares the encrypted schedules
under FHE and selects from the two schedules the {M, T'} that matches between
the two broker-dealers.

Step 4, t4: [on-chain] B and By send their requisite financial objects to the
smart contract (if not sent at Step 2) and the smart contract swaps the objects
to A and C, sending excess balances back to the broker-dealers if there are any.

There are two key insights to be learned from this exercise. One insight that
using FHE to compare the trading schedules ensures that broker-dealers can
protect the privacy of their client information, which overcomes their reluctance
to reveal their trading preferences. The other insight is that the smart contract
encourages broker-dealer participation to solve the coordination problem and
enables the attainment of a socially, higher desired trading volume.

A B et Bs c

1. {M, T}a, L AM, T}e,

2. enc({M, T}ai)| 2. enc({M, T}e,)

3.enc({M, T}) | 3.enc({M, T})

Fig. 4. Intermediated Markets protocol. Note this figure represents the determination
of contractual terms of trade, not the exchange of financial objects.

4 Evaluation

We benchmark the two leading smart-contract—oriented FHE stacks available
today, Sunscreen (BFV-based) and Zama (TFHE-based), to understand how cur-
rent systems support the two economic applications developed earlier: unverifiable-
loss insurance and improved coordination in intermediated markets. Our goal is
not to exhaustively evaluate each library but to characterize the performance
regimes most relevant for smart contract execution on DLTs.



Methodology and Environments. Experiments were executed in two settings:
(i) a CPU environment on a 2021 Macbook Pro (32GB RAM), and (ii) a GPU
environment (AWS p2.xlarge). We used production library versions from Sun-
screen and Zama’s publicly released test networks, plus an “enhanced” Sunscreen
build that adds several integer operations not yet exposed on-chain. Because
today’s test-network gas charges are arbitrary and not correlated with computa-
tion costs, we focus on runtime and defer gas cost extrapolations to Appendix [D}
Benchmark data points were generated using the Criterion framework [32].

Sunscreen vs. Zama: Micro-Level Behavior. Both systems support addition,
multiplication, key-generation, encryption, and decryption for encrypted inte-
gers, but they differ substantially in how they realize these operations. Sunscreen
uses BFV, which works natively over integer rings and thus performs integer
arithmetic efficiently. Zama uses TFHE over the torus, giving it an advantage
for boolean logic, comparisons, and nonlinear functions.

Our microbenchmarks reveal several robust patterns. First, multiplication
is consistently more expensive than addition in both systems, with Sunscreen
maintaining a noticeable performance lead for 64-bit arithmetic. Second, key-
generation and encryption dominate costs in both stacks, particularly for larger
parameter sizes. Third, GPU acceleration materially improves Zama’s perfor-
mance only for large (128-256-bit) ciphertexts; for low-precision values the ben-
efit is marginal. These trends align with our theoretical expectations: BFV’s
SIMD-friendly integer representation excels at arithmetic circuits, whereas TFHE’s
gate bootstrapping yields higher overhead for multi-bit integers but strong ex-
pressivity for control flow.

Implications for Smart Contract Execution. From the perspective of on-chain
protocols, the relative behavior of both systems matters for incentive-compatible
mechanism design. Many of our applications (particularly the unverifiable-loss
insurance and the intermediated-market matching) require only a small number
of public-key operations and a handful of arithmetic operations. Sunscreen’s
performance profile makes these workloads feasible in permissioned settings and
even marginally viable on public Ethereum (Appendix |§| estimates roughly 4M
gas for the unverifiable-loss contract).

By contrast, Zama’s TFHE-based approach is well suited for comparisons
(needed in the matching mechanism), but current runtimes remain too slow
for permissionless deployment. For example, comparing roughly 100 encrypted
(M,T) pairs requires approximately 25 seconds on a CPU—acceptable for a
consortium chain but not for mainnet Ethereum.

High-Level Takeaways. Current FHE systems are already capable of executing
small, economically meaningful smart contract logic end-to-end. Sunscreen offers
competitive performance for integer-heavy computations; Zama provides richer
programmability, support for comparisons, and configurable decryption mecha-
nisms at the cost of slower arithmetic. For both systems, performance improves
meaningfully with GPU acceleration only for higher bit-width ciphertexts. Full
details including figures, tables, microbenchmarks, circuit configurations, and
gas-cost extrapolations are provided in Appendix [D]



5 Insights and Research Gaps

Having considered the FHE scheme families in section [2] the available FHE
implementations in section [2] the use-cases in section [3| and our benchmarks in
section [4] we now provide our overall findings and observations in the form of
research insights, as well a number of interesting research directions in the space
of FHE used in smart contracts as a privacy tool, in the form of research gaps.

5.1 Choosing the appropriate FHE scheme for complex logic

As discussed in section [2] there are three major classes of FHE schemes are rele-
vant (BFV/BGV, TFHE, and CKKS) with different trade-offs. In a smart con-
tract setting, computations typically involve integers (token balances, counters)
and conditional logic, which places specific demands on the FHE scheme. Sun-
screen’s initial compiler chose BFV for its efficient integer operations, empha-
sizing performance on arithmetic tasks, as our benchmarks show. The downside
is limited number of operations before noise grows too high (leveled FHE). Thus,
BFV is well-suited for precise, batchable computations (e.g. financial transac-
tions) but need careful parameter tuning for deep circuits [35]. They lack na-
tive support for comparisons or bit operations, which must be implemented via
arithmetic circuits at a higher cost. On the other hand, Zama chose TFHE,
which operates on bits or very small plaintext moduli (e.g. torus representation)
and features fast bootstrapping to refresh ciphertext noise [2I]. Boolean logic
and comparisons are natural in TFHE, since an encrypted bit can represent a
truth value and homomorphic gates (AND, XOR, multiplexers) can implement
arbitrary control flow in encrypted form. Zama’s FHE toolchain centers on a
TFHE-based library (TFHE-1s) for exactly this reason: it supports a full range
of operations including addition, multiplication, encrypted comparisons (<, >,
==), and even encrypted conditional branching (“if-else”) on secret values. Us-
ing TFHE, Zama provides 32-bit and even up to 256-bit encrypted integers
with all basic ops and unlimited circuit depth via bootstrapping. The advan-
tage of TFHE in blockchain contexts is that it can easily handle complex busi-
ness logic or conditional rules in smart contracts (e.g. checking if Enc(balance)
>= Enc(amount) without revealing either) which is more challenging under
BFV/BGYV. The trade-off, however, is performance: TFHE evaluates arithmetic
more slowly than BFV/BGV for equivalent bit-width, since it must compose
many bit operations for multi-bit numbers. Recently, Sunscreen decided that
since BFV is superior at bulk arithmetic but struggles with comparisons and
branching, it would be more beneficial to plan a transition to a TFHE variant to
cheaply support comparison operations and to remove the prior limit on circuit
depth [72]. The rationale behind this decision is also supported by the results of
our experiments from Section [4] where we observe significant variations between
the available solutions for their corresponding data types. Eventually, while the
current version of Sunscreen is more efficient, as it does not support comparison,
we could not use it to implement the coordination in intermediate market ap-



plication. In general, the richness of the operation (or lack thereof) determines
the number of supported applications.

Insight 1 For some data types, FHE operations are more efficient in Sunscreen
than Zama. On the other hand, Zama has more rich data types and operations
available for use.

The third class of FHE schemes, CKKS, is designed for arithmetic on real
numbers by encoding floats and allowing slight precision error. While useful in
domains like privacy-preserving machine learning or statistics, where a small
numerical error is acceptable, non-deterministic approximation can be problem-
atic in economic applications, which require exact integer results. As a CKKS
ciphertexts decrypt to approximate values, two nodes might decrypt to values
differing by a tiny €, which is unacceptable for consensus. One could mitigate
this by allocating large precision and rounding the result to an integer, however
verifying the error stayed below the threshold is non-trivial without extra proofs.
Still, CKKS could still be useful off-chain or in layer-2 solutions for heavy nu-
meric computation, with the final result then converted to an exact form before
feeding into on-chain logic. For completeness, we provide microbenchmarks for
similar FHE operations in appendix [H]

Insight 2 Boolean-gate FHE schemes such as TFHE are steadily becoming the
default choice for privacy-preserving smart-contract logic, not because their per-
formance, but because they support unbounded depth and inexpensive encrypted
comparisons or branching capabilities that integer-arithmetic schemes cannot
match without costly circuit-depth planning or round-trip bootstrapping.

Gap 1 Hybrid, cross-scheme toolchains that combine the arithmetic efficiency
of BEV with the branching expressiveness of TFHE are still missing for on-chain
operations.

Additionally, we focus on the branching methodology itself. Since encrypted
smart contracts cannot observe secret-state conditions, every piece of control
flow comparisons, multi-way branches or loops must be rewritten as a data-
independent circuit. In practice, tool-chains like Zama’s compile both sides of
each branch and use TFHE’s CMux gate [26] to select the correct result with an
encrypted predicate bit. Similarly for loops, recent architecture work observes
that “data-dependent operations (e.g., branching) are not supported in cipher-
text, meaning all loops have compile-time known trip counts,” forcing developers
to unroll them to a public worst-case bound [89]. This transformation preserves
privacy but inflates circuit width and depth, making comparisons and CMux
trees a dominant performance cost for branch-heavy FHE smart-contract logic.

Gap 2 Protocols are needed that let executors skip untaken branches or ter-
minate loops on secret conditions without leakage would reduce run-time over-
head. Also, sub-linear or hardware-accelerated comparison circuits (especially for
128-256-bit integers) are needed to keep encrypted DeFi and other branch-heavy
workloads practical.



5.2 Key management and decryption

One of the first nuances with FHE operations in smart contracts is the issue of
key issuance and management. All encryptions currently need to be performed
under a “global” public key in order to make homomorphic computations pos-
sible. However, a single centralized party holding the corresponding private key
would inherently defeat the whole of having decentralized computation with
smart contracts. Therefore, a natural first approach is to distribute key shares
among some of the blockchain validators.

Insight 3 Both in Sunscreen and Zama, the validators hold the shares of the
secret key for a global public key. Although a (n,t) threshold structure is described,
both are implemented only for n =1 and t = 0. It is unclear at this point if for
n > 1 and t > 0 if it will be scalable and decentralizeable.

Gap 3 FHE additions and multiplications are performed under a single global
key. Having protocols to perform these operations with a mized key would make
even more unique cases possible, and would not require distributing key shares
to validators or other parties.

Zama’s new framework [I6] advances key management beyond “secret-key-
in-the-gateway” designs by providing a unified, audited protocol for BGV, BFV,
and TFHE: an n-party MPC over Galois rings jointly generates the public key
and splits the secret so that any subset of at most ¢ < n/3 cannot decrypt,
while honest parties always can; correctness is ensured via noise-flooding for
BFV/BGV and a tailored adaptation for TFHE, and optional MPC-in-the-
Head proofs certify ciphertext validity before computation. This removes the
single point of failure, but still relies on a relatively small, semi-static off-chain
committee, raising an unresolved governance issue: how are these MPC par-
ties selected, granted authority, and deterred from colluding when the entire
FHE ecosystem is at stake? Validator reputation alone is inadequate; a robust
solution must embed open admission and slashing mechanisms that scale to per-
missionless blockchains without central trust. In addition, as Zama currently
has a design target for n ~ 13 with highly-reputable validators, it is unclear
how current MPC rounds and message complexity would scale to thousands of
validators who join/leave unpredictably.

Gap 4 Frameworks such as Zama’s KMS might be cryptographically robust,
however mechanisms such as slashing, staking or other reputation-based mech-
anisms that deter key-share collusion or other malicious behavior in an open
network are missing. Formal incentive models are required to have a complete
and secure system.

Gap 5 While combining “Proofs of Authority” with threshold MPC would avoid
having a single centralized private key, question remains how proof of authority
consensus validators would be selected, in a way that would be acceptable by all
participants in permissionless settings. More research is required to make such
approaches compatible with decentralized Proof of Stake blockchain ecosystems.



5.3 Gas costs and scalability on public blockchains

From considering the use-cases and the benchmark results presented in section [4]
and our rough estimates on the needed gas costs, making the needed computation
by smart contracts would be infeasible in a permissionless blockchain such as
Ethereum. However these use-cases would still be feasible in a permissioned
blockchain run by a few validators, where gas costs is not an issue. The same
workloads can become viable when run in a dedicated roll-up, or an off-chain
“coprocessor” (which is the approach followed by Zama), exposing only a low-
cost precompile to mainnet, still under the corruption threshold assumptions.

Our gas-cost projections extrapolate runtimes from today’s on-chain oper-
ations in the spirit of [22] and from Zama’s preliminary fhEVM fee table [87],
yet what the Ethereum community will ultimately judge as “reasonable” for
FHE workloads, and how that standard will shift as libraries mature, remains
uncertain, especially because validators equipped with GPU or FPGA accelera-
tors could move the cost curve dramatically. At present the numbers are largely
ad-hoc: Sunscreen and Zama each assign their own prices, while ciphertext sizes
alone illustrate the challenge (e.g., ~ 22.5 kB for a CKKS ciphertext, 2612 bytes
for a Zama encrypted u64, and 372 bytes for a u8), implying roughly 40K gas
just to pass a single u64 in calldata and about 544K gas to store it on chain.
Standard tricks such as storing only a hash on L1 and requiring users to supply
the full ciphertext in calldata, or replacing state with succinct commitments can
help. Greater savings could be achieved by executing FHE logic in dedicated roll-
ups or other layer-2s where storage and compute tariffs are set independently of
main-net constraints.

Insight 4 Gas costs in both Zama and Sunscreen are arbitrarily defined. Actual
costs will depend on the community supply and demand after deployment. Poten-
tially, FHE operations can be accelerated by specialized hardware and therefore
gas costs can be improved.

Introducing such hardware however in a permissioned blockchain is a double-
edged sword. While such hardware would make FHE (and the desired use-cases
we presented) possible, that would come at the cost of substantially raising the
bar for the required hardware from the validators (as of today, more than 1
million validators maintain the Ethereum blockchain). This would make par-
ticipation in the proof-of-stake consensus even harder for the typical user, as
joining the validator pool would require not only staking Ethereum coins, but
also a substantial invenstment in hardware (a validator today requires relatively
basic hardware). This would inadvertently lead to a higher degree of centraliza-
tion, more energy usage from the Ethereum ecosystem, and eventually defeating
the purpose of the proof-of-stake consensus algorithm.

Gap 6 Based on our benchmarks, FHE would not be scalable today in public
permissionless smart contracts. While GPUs, FPGAs and ASICs could accelerate
FHE computations, validators would need to adopt such hardware, potentially
inducing centralization in the system and defeating the original purpose of Proof



of Stake. More research is required to accelerate FHE in smart contracts without
inducing such centralization. At this point, it is unclear if true decentralization
is possible, i.e, implement FHE smart contracts in a permissionless setting.

5.4 Malicious behavior

We also notice the lack of native, on-chain mechanisms for checking the correct-
ness of FHE ciphertexts that users pass to smart contracts. In practice, existing
implementations offload that burden off-chain: Sunscreen expects each cipher-
text to be accompanied by a ZK proof, and Zama’s fhEVM hands the proof
to a gateway (or a small set of operator nodes) that verifies it in &~ 1.5s, then
posts a signed attestation back on chain confirming the ciphertext is well-formed
and within required bounds. While this design avoids the prohibitive gas cost
of doing heavy lattice-based proof verification on chain, it re-introduces a trust
assumption, as validators must now accept the gateway’s signature and still
leaves open the possibility that a malicious actor targets that off-chain layer or
slips in malformed ciphertexts that never pass through it. A truly permissionless
FHE stack therefore needs verifiable FHE primitives that allow validators to
cryptographically validate ciphertext integrity without decryption. Such tech-
niques could include zero-knowledge proofs, TEE attestations or homomorphic
authenticity primitives such as homomorphic MACs and signatures [39/76]. Yet
combining these tools with lattice-based FHE at blockchain scale remains largely
unexplored, both in computational overhead and communication cost, making
the design of efficient, fully verifiable FHE protocols a key open research problem
for secure and reliable smart-contract deployments.

Malicious parties beyond the users themselves also need to be considered, as
encrypted values might be altered during off-chain protocols where blockchain-
based integrity guarantees do not apply. For instance in Zama, computation is
offloaded to FHE coprocessors. If those parties are corrupted above the threshold
t, the FHE results can still be tampered with by an adversary.

Gap 7 Further research is needed to design homomorphic authentication schemes
that minimize computational overhead and are fully compatible with existing FHE
systems to enable secure and scalable verification of encrypted data in decentral-
ized applications.

In the case of Zama, trusted execution environments and synchronous net-
works are assumed in order to ensure the correctness and robustness of their
MPC protocol. However, Ethereum for instance assumes malicious players and
partially synchronous networks in order to uphold the security guarantees of
their blockchain. For the end-user, both assumptions need to be compatible, i.e.,
non-conflicting, in order for the end-to-end protocol to be secure. An example
of conflicting assumptions is semi-honest and rational players in a system.

Gap 8 Formal analysis and proofs are needed to ensure compatibility of consen-
sus assumptions and FHE assumptions for bootstrapping, MPC' etc. to ensure
end-to-end system security.



6 Conclusion

In this paper, we examined the intersection of fully homomorphic encryption
(FHE) and smart contracts, systematizing existing approaches for enabling privacy-
preserving computation on blockchains. Our analysis highlights the need for such
mechanisms, particularly for advanced economic use-cases requiring secure and
confidential decentralized computations. We reviewed the current FHE-based
frameworks for smart contracts, assessed their ability to preserve privacy while
retaining automation, decentralization, and security, and identified key chal-
lenges such as key management, suitable FHE schemes for blockchain settings,
and the high gas costs of FHE operations on permissionless networks.

Our study highlights open research directions, including efficient branching,
mixed-key protocols, validator selection in Proof of Authority settings, mitigat-
ing centralization risks from specialized hardware, verifiable encrypted data, and
reconciling FHE with blockchain consensus assumptions. By addressing these
challenges, future work can advance scalable, privacy-preserving smart contracts
and unlock novel decentralized applications.
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considering advanced use-cases in economics beyond standard ones such as tok-
enizations or auctions. In contrast, our work has a narrower scope on applying
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FHE in a smart contract setting, considers existing implementations, and shows
the potential of this technology to realize novel applications in economics. An-
other SoK work investigated the integration of PETSs in blockchain applications,
including smart contracts [7]. While this work extended beyond confidentiality
in blockchains and considered applications which hide the computation itself
(“Function Privacy”), it is limited to SmartFHE [64] as an FHE implemenation
in smart contracts, without specifying how FHE can be deployed in practice in
a smart contract environment or considering actual use-cases to further support
the need of Function Privacy. Other works include Zkay [66] which extends So-
lidity smart contracts by data privacy annotations using additive homomorphic
encryption and non-interactive zero-knowledge (NIZK) proofs, and ZeeStar [65],
which provides a compiler to enable instantiation of privacy preserving smart
contracts without substantial expertise, however it also only supports additive
homomorphisms. Zexe [I7] similarly implements a privacy-oriented scripting lan-
guage for digital currencies similar to Zerocash [I3], without however a direct
support for stateful computations such as those in smart contracts. Also, [50]
shows how account-based cryptocurrencies can attain both confidential values
and sender /receiver anonymity by updating every account’s ciphertext in each
transfer, thereby demonstrating a ledger-layer use of FHE for full-privacy pay-
ments that complements contract-level FHE systems discussed above. Note that
anonymity is out of scope in our work.

In a more general setting, outside the field of blockchains and smart con-
tracts, there is a plethora of works in implementing or improving FHE com-
putations. A recent SoK paper [88] focused on the inefficiencies of FHE com-
putations stemming from complex polynomial multiplications and maintenance
operations such as bootstrapping, and how these can be improved using GPUs
or Field Programmable Gate Arrays (FPGAs). In fact, several recent works
have proposed methods for accelerating various FHE computations using FP-
GAs, such as [6955]79] for the BGV FHE scheme [19], [51/68/6742] for the BFV
scheme [I§], [60J80IRT] for CKKS [24] and [38/52] for THFE [27]. These methods
utilizing FGPAs can enable acceleration of FHE computations over a few orders
of magnitude depending on the FPGA hardware, the encryption parameters
and the FHE scheme itself. Other related works include a survey on the existing
FHE compilers [77], implementing an open-source library (OpenFHE) which of-
fers support for a wide range of FHE schemes such as leveled and bootstrappable
FHE [11] and implementing libraries utilizing GPUs for efficiency [91]. Finally,
[10] proposes the use of FHE to facilitate privacy in “Dark Pools”, however with
the absence of publicly available evaluation data it is unclear how this would
perform in a smart contract setting. Other papers followed an MPC approach
for the same problem [37U54].

Works in the Economics field. There is a nascent literature in economics
leveraging encryption for privacy-preserving computations. Previous research
that has used MPC include a double auction for Danish sugar beet market [I5];
securely link Estonian education and tax databases [14]; a proposed method for
protecting privacy in large-scale genome-wide association studies [43]; a simu-



lation of a decentralized and privacy-preserving local electricity trading market
[B]; an analysis of the gender wage gap in Boston using data from a large set
of Boston employers [45]; use of FHE-MPC to collect financial risks [4] and
cybersecurity data [23].

B Smart contract operations

One of the common standards in Ethereum smart contracts is ERC-20 [78],
a standardized framework for creating and handling tokens on the Ethereum
blockchain. ERC-20 specifies a set of functions and events that a contract must
implement to be considered compliant, allowing different tokens to be easily inte-
grated into decentralized applications (dApps), wallets, and exchanges. It defines
several key functions, such as transferFrom(address, address, uint256) which
transfers tokens from one address to another, using the approved amount. How-
ever, transferFrom() does not preserve privacy of the sender and receiver,
nor of the amount. Since all transactions and contract interactions are pub-
licly recorded on the blockchain, sender and receiver addresses, the amount
transferred, and other associated metadata are visible to anyone observing the
Ethereum’s blockchain. In fact, the amounts any participants hold of that ERC-
20 token (represented as a mapping of amounts to addresses in the ERC-20
smart contracts) are public too.

One of the first proposed solutions to address this was Zether [20], adding
confidential transactions capabilities into smart contracts. It introduced a layer
of privacy using zero-knowledge proofs (ZKPs) and the additively-homomorphic
variant of ElGamal encryption scheme, which enabled users to hide the transac-
tion amount while still enabling the contract (and its validators) to validate the
correctness of those transactions without needing to learn their details. How-
ever, it introduced additional complexity and resource requirements, increasing
the gas costs per transaction. In the variant of Zether hiding the sender and the
receiver as well (i.e., anonymity) beyond just hiding the transferred amount (i.e.,
confidentiality), is considered impractical for deployment in the public Ethereum
blockchain, despite its subsequent efficiency improvements [33].

Regardless, approaches such as Zether do not provide any additional privacy-
preserving functionalities on smart contracts besides token transfers. In fact,
smart contracts have much more powerful functionalities such as digital bonds
[3], or more advanced standards such as ERC1155, ERC1440, ERC2020 [57/112],
etc. In addition, even in standard tokenized asset contracts, there is a need
for additional functionalities beyond simply minting, burning and transferring
assets, such as applying interest over balance sheets, exchange assets with differ-
ent rates, etc. As a result, protocols such as Zether using additive homomorphic
encryption fall short of enabling more advanced smart contract functions and ful-
filling more complex use cases. Therefore fully-homomorphic encryption (FHE)
would be required to realize these in a privacy-preserving way.



C Smart contract FHE solutions

C.1 Sunscreen

Sunscreen implements an FHE compiler to enable web3 (and web2) engineers to
write programs using FHE without requiring extensive knowledge of the under-
lying FHE mechanics (such as arithmetic circuits, polynomial parameters, etc.)
while remaining efficient. The compiler is based on Microsoft’s SEAL library [59]
and uses the BFV-FHE scheme [19]. Its core cryptographic library [71] (written
in Rust) implements the compiler (Rust decorator) to compile circuits into a
program, a runtime to evaluate the generated program on encrypted values, and
a codec to encrypt and decrypt 256-bit numbers. Sunscreen’s technology also
includes an Ethereum Virtual Machine (Rust EVM) [70] with adds two addi-
tional opcodes: FHE_ADD and FHE_MULTIPLY. The SmartFHE framework [63//64]
is similar to Sunscreen because it utilizes the same underlying cryptography
(e.g., BFV). The difference is that SmartFHE adds zero-knowledge proof sys-
tems to prove the properties of ciphertexts. Therefore, for our purposes, we treat
SmartFHE in a fashion similar to that of Sunscreen.

C.2 Zama

Zama offers a comprehensive software suite to make FHE accessible and practi-
cal. Zama’s technology includes the following components:

— The core cryptographic library TFHE-rs [85] which uses Fully Homomorphic
Encryption over the Torus (TFHE) encryption scheme [27], and includes:
e A codec to encrypt and decrypt 32-bit numbers
e API to run FHE operations in Rust
— An SDK [84129] to develop FHE enabled smart contracts in Solidity
— An SDK to develop FHE programs written in Python [82]
— An Ethereum client [83] that can understand execute the smart contracts.

Zama's cryptographic library offers a wide range of programmability features,
such as high-precision encrypted integers (up to 256 bits), a full range of opera-
tors (such as ‘47, =7, ¥ €704 40 f=="etc.), encrypted “if-else” conditionals
to check conditions on encrypted states, on-chain PRNG to generate secure ran-
domness without using oracles, unbounded compute depth for consecutive FHE
operations and a look-up table optimization [28].

A vital feature also is “Configurable Decryption”, which users can instantiate
with threshold [30], centralized, or on a “Key Management System” (KMS)
based decryption [86]. The purpose is to alleviate the problem of having a single
“global” public key used for FHE operations, where a naive approach would
require a single centralized private key contradicting the decentralized setting of
a blockchain. Zama’s KMS combines a threshold MPC protocol [30] to facilitate
key generation and decryption, a Proof of Authority consensus [§] to ensure the
integrity of decryptions, and TEEs to store private key shares. However, at the
time of writing, KMS is still in the early stages and is not deployed by Zama.



Fhenix [90] is a similar framework built on top of Zama’s TFHE-rs; however,
it serves as a layer-2 blockchain solution rather than a layer-1. Therefore, we
treat Fhenix similarly to Zama’s layer-1 SDK for our systematization purposes.

D Evaluation Details

With the motivation for the two economic use cases described in sections [B.1]
and that utilize FHE and smart contracts, we perform a series of evaluation
experiments using the solutions available today as discussed in section [2l We
first perform microbenchmarks for all operations and all data types offered by
both. Then, we benchmark the FHE smart contract operations costs for each
use case and the FHE smart contract solution.

Environments. We used: (i) CPU environment — 16-inch Macbook Pro (2021),
32GB RAM, 1TB HDD, Sequoia 15.1. (ii) GPU environment — AWS p2x.large
instance, Amazon Linux OS.

Libraries: Sunscreen and Zama production test-network versions; Sunscreen
“enhanced” version added operations absent from testnet; Zama v0.5 compiled
for GPU. Criterion Benchmark framework [32] used. Gas costs ignored; see sec-
tion

D.1 Sunscreen Performance

Sunscreen compiles Rust functions into FHE circuits (“applications”), gener-
ating keys, encrypting inputs, executing circuits, and decrypting outputs. Pro-
duction benchmarks used addition and multiplication for encrypted 64-bit inte-
gers; enhanced version added subtraction, negation, and scalar variants. Opera-
tions benchmarked for all six data types: Signed, Rational, Fractional64, Frac-
tionall128, Fractional256, Fractional512.

Benchmark Times by Operation and Datatype

I Datatype (Circuit Type)
g A Fractional128 (enhanced)
105 ’ [ Fractional128 (production)
’ BB Fractional256 (enhanced)
‘ Bl Fractional256 (production)
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Fig. 5. Microbenchmarks for all operations and all data types supported by Sunscreen



Key generation was slowest; addition fastest, multiplication expensive; Ra-
tional type most costly due to division by encrypted ciphertexts requiring larger
parameters. Enhanced circuits showed no significant performance change.

D.2 Zama Performance

Zama testnet (n = 1, ¢ = 0 threshold servers) supports unsigned/signed integers

(8-256 bits). Benchmarks run on CPU and GPU.

Benchmark Times by Operation, Provider, and Datatype

108 Provider (Datatype)
Em CPU (u8) B CPU (i64)
B CPU (ul6) B CPU (i128)
107 B CPU (u32) = CPU (i256)
B CPU (u64) B GPU (u8)
q Em CPU (u128) B GPU (ul6)
106 BN CPU (U256) EEE GPU (u32)
= CPU (i8) B GPU (u64)
B i B CPU (i16) GPU (u128)
10° ! ! | f == CPU(32) EER GPU(u256)
E 10¢
5
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102
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100 ‘ ‘
X X g N
S & &8 & N & & S B S s

Operation

Fig. 6. Microbenchmarks for all operations and all data-types supported by Zama

Multiplication slower than addition; larger bit-widths increase runtime. GPU
acceleration gave significant gains for high-precision types (u256/i256), minimal
for low-precision.

D.3 Comparison: Zama vs Sunscreen

Both support signed 64-bit integers and common ops (keygen, encrypt, decrypt,
add, sub, neg, mul). GPU used unsigned 64-bit type.

Sunscreen markedly faster for integer arithmetic due to BF'V’s RLWE struc-
ture; Zama’s TFHE excels at boolean/non-linear ops but is less integer-efficient.
GPU improved Zama performance overall.

D.4 Unverifiable Losses Protocol

Benchmarks for unsigned 8-bit integers (ideal for single-bit encryption) and other
types (Sunscreen supports only 64-bit). See fig.

Feasible in permissioned chains; costly for permissionless Ethereum. Sun-
screen 4M gas ( $80), Zama exceeds 30M gas limit. GPU acceleration negligible
for low-bit types.



Benchmark Times by Operation and Provider
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Fig. 7. Comparing Zama and Sunscreen for common data type: Signed 64-bit integers
and common operations.

Benchmark Times by Operation and Provider
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Fig. 8. Benchmarking the operations for the unverifiable losses protocol.



D.5 Coordination in Intermediated Market Protocol

Benchmarked matching encrypted {M, T'}.; pairs (100 samples, u32) using Zama
(comparison only in Zama). Sorting done off-chain by broker-dealers before en-
cryption.

Comparisons averaged 25s CPU — feasible for permissioned, impractical for
permissionless Ethereum.

Gas costs in Sunscreen and Zama are arbitrarily set; actual feasible costs
depend on validator hardware and consensus rules. GPU/FPGA acceleration
could enable these workloads but risks raising validator hardware requirements,
increasing centralization, and undermining PoS accessibility.

E Basic applications

Fig. 9. B and C using the smart contract ~ Fig. 10. Illustration of the payment and
negotiated between A and B the repayment legs, with different ”insur-

The ERC20 tokenized asset smart contract (deployed on a “trusted” TJLT) ers” - e g broker dealers - for each le o
At the first-time leg B intermediates for A to send an asset to C
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uch B’s balance sheet

Smart contract between A and B
TF & WHENEVER is deposited here THEN execute the Eﬁcggrm'sferh‘om At the repayment leg:

function to move the 1 unit of asset from A’s account to C's account pn-chain - C (or its broker dealer B, if C can’t repay) sends back the asset to A

& transfer from here to A’s account on-chain, all these ATOM] ¥ - A (or its broker dealer B if A can’t repay) sends back money to C
- if Band B, are one single entity it would be a triparty agent
s &=

If C agrees C (or it can be B, it would work thasams
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A & B and this triggers atomic settlements foxall-stéps

After reviewing the basics of FHE applied to exchanges of tokenized assets
in Section Section [E2] presents a first and very general model of financial
intermediation.

E.1 Some first use-cases with privacy

A straightforward application for FHE would be to implement privacy-preserving
tokenized assets in smart contracts, such as ERC20, ERC1155 extensions [78/57].
In such contracts, the asset values are hidden with FHE, therefore providing con-
fidentiality for the sender and receiver. Essentially this approach would enhance
existing confidential smart contracts [62034], i.e. it would not be limited to only
adding and subtracting amounts (e.g. when minting, burning, sending or receiv-
ing assets) but also performing multiplication operations (e.g., applying inter-
est, or performing computation as in Automated Market Makers (AMMs) [12]).
The costs of these operations is typically associated with the cost of a single
add() or mul(). Note that one could still implement such contracts using semi-
homomorphic encryption instead of FHE, if the expected mul() operations will



be sparse - in this approach semi-homomorphic encryption would be used for
everyday add() operations while ZK proofs would be used for showing correct
transitions between states for mul() operations. Other potential use-cases for
privacy-preserving smart contracts include a collateral pledge between funds
with ERC1155 token contracts [53], dark pools in securities trading [T0/37U54],
or information flows to deal with crisis contagion [61].

E.2 A model of intermediation without inventories

Lee, Martin, Townsend (2024) [47] describe a model where a smart contract on
a DLT eliminates the requirement of intermediaries to pre-fund trades between
clients. The model demonstrates how these technologies enable an expansion of
trade and reduction of inventories at the same time. The model is as follows:

— Participant A has an asset that participant C desires.

— A and C do not interact directly with each other.

— A broker B intermediates between A and C, interacting with either one first
with equal probability (50%).

If B interacts with A first, B must decide whether to take on risk and purchase
the asset to sell it to C later (potentially profiting if C buys it or incurring losses
if C does not). Conversely, if B interacts with C first, they can agree that B
will acquire the asset from A for C. However, this leads to a hold-up problem.
After B has purchased the asset from A, C could opportunistically reneg and
lower its bid, knowing that B will suffer a loss if it is unable to resell the asset.
In response, C could mitigate risk of loss by lowering the price it is willing to
purchase from A. This will reduce the volume of tradel]

Building on Lee, Martin, Townsend (2024), [46] show the hold-up problem
can be eliminated and the trade volume increased if the following two conditions
are obtained; (i) C does not know whether B has acquired the asset when it agrees
to the price and (ii) B and C place the asset and money in escrow. There are two
obstacles to implementing this solution. One is that B must trust that the escrow
will not leak information to C. The other is that the transaction must be executed
atomically, so that C’s money is not locked in escrow without consummating a
transaction. Under current technology trust is reputational. One way to overcome
these obstacles is with an FHE smart contract that moves tokenized financial
objects on a blockchain. In that case trust resides in the guaranteed execution
of the smart contract and the guaranteed atomicity. [46] propose the following
simplest smart contract implementation, which effectively leveraged blockchain-
based programmability and privacy-preserving smart contracts:

Assume the tokenized asset resides on the blockchain as an ERC20 token.
The ERC20 contract employs Fully Homomorphic Encryption (FHE), keeping
allocations private. Initially, A owns the token, as shown in A and
B meet. They can agree on conditions for B to potentially sell to C later, but

3 There is an analogous hold-up problem in A’s transaction with B. If A knows that
B has a buyer (C) lined up, then A can strategically renegotiate its price with B.



B may not want to commit to buying the asset outright. They draft a smart
contract specifying the conditions under which B would buy the asset (e.g., a
minimum price). A also authorizes the ERC20 smart contract to transfer 1 unit
of the asset from A to B when the conditions are met, as illustrated in
B and C meet later. If they agree on a deal, C deposits the price into the smart
contract B drafted with A. This smart contract will then transfer 1 unit of the
asset from A to B. The transaction can be made atomic, ensuring that either
both transfers (price from C to B and asset from A to B) occur simultaneously,
or neither happens. This atomicity can also be extended to the transfer of the
price from C to B and the asset from B to C. This mitigates the risk of reneging

and incentivizes all participants to announce their true prices, as illustrated in
O

Fig.11. Initial allocation before any  Fig.12. Smart contract negotiated be-
trade. tween A and B
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F Economic Motivations for FHE Smart Contract
Applications

In this appendix we provide additional motivation and context for the latter
two mechanisms presented in Section |3l Each mechanism addresses a circum-
stance where agents have private information which they are reluctant to reveal
truthfully to a counterparty who could make strategic use of the disclosures
to increase its payoff at the expense of the disclosing party. The trust deficit is
overcome by using FHE on a public blockchain to prevent leakage of information
while enabling verification of the computation on the data. Information leakage
is prevented by computation on encrypted data. Verification of computation is
enabled by the immutable record on the blockchain of the smart contract oper-
ation. The examples in Sections and are derived from mechanisms that
contain incentives for agents to send truthful reports of the information they are
instructed to submit, provided they are assured that their data remain private
and the data transformations that determine resource allocations are correct.



The truthful reporting enables each mechanism to achieve a Pareto improve-
ment in resource allocation compared to the situation where leakage occurs. The
protocols are examples of how application of FHE, distributed ledgers, smart
contracts and relevant mechanism design can improve welfare.

F.1 Private loss insurance smart contract - general model

Here we discuss the generalization of of the toy example in Section The
general protocol applies to an insurance market where policyholders (in the case
of private insurance) and citizens (in the case of public insurance) experience
idiosyncratic shocks that are not common knowledge. The model in Townsend
(1988) [74], from which the example in the text is derived, has the following
features. There are two agents, a and b two dates, ty and ¢t; and a smart contract,
denoted the ”Contract”. At each date ¢ and b experience private shocks 67 and
2. The joint distribution of shocks {6%,60%,60% 6%} is over a finite set 2 which
is common knowledge. The joint distribution has two salient properties. One
is that an agent is not able to infer with certainty the counterparty’s date 0
shock based on its own shocks; e.g. for agent a, Pr(0%_,[0%_,0%_,) > 0 for every
possible value of #%. It is also supposed that date 1 shocks cannot be inferred
with certainty from date 0 values. That is Pr(6{, 62|65, 63) > 0 over the set [
The Contract allocates resources ¢; (which is common knowledge) to agents in
each period. The resources can be premiums in the case of private insurance
and endowments in the case of public insurance. Agents communicate with the
Contract via a message space M{ at date to for each agent (i = a,b) and a
message space Mi(mb, co). The key idea is that the message sent by agent a at
date t; cannot be known to agent b at date 1 (and vice versa). At date 1 each
agent knows only its own past message and its payout at date ty. The Contract
computes payouts based solely on the messages it receives from the agents, and
does not receive any other information related to the true state of the agents.
An insurance contract that achieved a social welfare optimum would condi-
tion payouts on the realized shocks. But since the shocks are private (or costly to
verify) the achievement of the social welfare optimum would require each agent
to truthfully reveal the value of the shock to its counterparty or to an operator
of the insurance mechanism. That, in turn, requires the agents be given an in-
centive to truthfully report their shock, because an agent will report whatever
shock value maximizes its payout. This can prevent a viable market from coming
into existence. Townsend (1988) [74] overcomes this limitation with a payout al-
gorithm that creates an incentive for truthful reporting. Agents are not paid the
amount of their claims, but rather are paid amounts that are functions of the
collective (i.e. agent and counterparty) claims sent in the current and past time
period plus a random variable. The precise formula in [74] (a) prevents infer-
ence of the counterparty’s message, which is a necessary condition to incentivize
truth revelation and (b) is calibrated to incentivize an agent to send a truthful

4 The example in the text sets degenerate shocks for b at date 0 and a at date ¢;. See
Townsend (1988) [JME] for details.



message to the Contract. The resulting payout to an agent is correlated with its
realized shock value in expectation, which is what enables an insurance market
to exist. However, the randomized payout function induces an imperfect corre-
lation between payout and loss. Consequently, the Contract achieves a Pareto
improvement versus no self-reporting insurance, but it does not achieve a social
optimum.

G Cryptographic primitives - Fully Homomorphic
encryption

We now provide a basic background on FHE as a cryptographic primitive.
A public key encryption scheme for a message space M is a triple of (prob-
abilistic polynomial time) algorithms (KeyGen, Enc, Dec) given by

— The key generation algorithm KeyGen which, on input a security parameter
1%, outputs a pair of secret and public keys (sk, pk).

— The encryption algorithm Enc which, on input the public key pk and message
m € M, outputs a ciphertext c. When clear from context, we suppress the
input pk to Enc.

— The decryption algorithm Dec which, on input the secret key sk and a
ciphertext ¢, outputs either a message m € M or L.

We say that the encryption scheme is correct if
Dec(sk, Enc(pk,m)) =m

for all messages m € M and key pairs (sk,pk) < KeyGen(1*).

We say that the encryption scheme is IND-CPA secure if for any probabilistic
polynomial time adversary A, the probability that A wins the following game is
at most 1 + negl(\):

— Sample b < {0,1}, (sk, pk) + KeyGen(1?*).

— Send pk to A and receive mg, m; € M from A.
Send Enc(my) to A and receive b’ € {0, 1} from A.
— Awinsifb=10.

Let F C Uyso{f : M™ — M} be a set of functions over message tuples. A
public key encryption scheme is F-homomorphic if it has an evaluation algorithm
FEwval which, on input the public key pk, a function f € F with f : MY — M
for some w > 0, and a ciphertext tuple ¢ = (c1,...,cy), outputs a ciphertext c.
We say that the homomorphic encryption scheme is correct if

Dec(sk, Eval(pk, f,¢)) = f(m)

for all functions f € F with f: M"Y — M for some w > 0, message tuples m =
(m1,...,my) € MY, key pairs (sk, pk) < KeyGen(1*), and ¢ = (c1,...,¢Cw)
where ¢; < Enc(pk,m;) for all i € {1,...,w}.



A homomorphic encryption scheme is fully homomorphic if it is F-homomorphic,

where F is the set of all (efficiently computable) functions.

A homomorphic encryption scheme is leveled homomorphic if all algorithms
take in an auxiliary parameter ¢, run in time polynomial in ¢ (and A), and are
(say) Fe-homomorphic, where Fy is the set of all “depth-¢ computations”. Since
the details of this will not be pertinent to our discussion, we do not elaborate
further and instead refer the reader to [40] for further details. The standard
technique of bootstrapping (homomorphically decrypting and re-encrypting) can
be used to turn leveled homomorphic encryption schemes into fully homomorphic
ones. However, the bootstrapping is extremely time consuming.

H CKKS for Blockchains

In this section we evaluate the CKKS [25] FHE scheme for blockchain adoption.
In a nutshell, CKKS allows approximate homomorphic operations over encrypted
floating point numbers. However, CKKS has the following limitations:

— CKKS supports only approximate arithmetic, which is not suitable for ap-
plications that require exact results.
— CKKS does not support circuits of unbounded depth.

To evaluate CKKS, we implemented a microbenchmark that measures the time
taken for encryption, addition, multiplication, and decryption operations. We
used the OpenFHE library [6] with the CKKS scheme. OpenFHE is a C++
library that provides a high-level interface for FHE schemes, including CKKS.
It automatically handles the underlying complexities of CKKS, such as scaling
and noise management. We used the default parameters provided by OpenFHE
for a precision of 59 bits, which are suitable for most applications. We ran the
microbenchmark in the CPU environment. The results of the microbenchmark
are shown in table [I1

Table 1. CKKS Microbenchmarks

Operation Time

Encryption  13.47 ms
Addition 0.528 ms
Multiplication 12.71 ms
Decryption 17.42 ms

We observed that CKKS is relatively fast for addition and multiplication
operations, but encryption and decryption are significantly slower. Between ad-
dition and multiplication, multiplication is much slower, as expected. The cost
of the addition and multiplication operations are comparable to the BFV FHE
schemes.
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