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Abstract. We provide a large-scale empirical audit of DEX routing us-
ing 2.98 million WETH–USDC swaps on Ethereum. Comparing real-
ized routes with optimized benchmarks, we measure an average shortfall
of 2.02 bps per trade or $24 million. To attribute losses, we introduce
three reproducible optimal benchmarks: a Support-Constrained Opti-
mum (SCO) that evaluates split quality conditional on the pools ac-
tually used; a Full-Venue Optimum (FVO) that considers all available
pools to quantify the value of broader pool access; and a Gas-Aware
FVO (G-FVO) that augments FVO with gas costs to capture the trade-
off between additional pool usage and gas expenditure. Computing these
benchmarks at scale is enabled by a bisection-based algorithm for op-
timal routing across multiple pools for the same token pair. Two reg-
ularities emerge. First, information timeliness is crucial: moving from
execution-time state to one-block lagged state optimization significantly
raises mean shortfall and additional delays further degrade performance,
albeit with diminishing increments; evaluated on the same stale snap-
shots, realized routes lie closer to optimal, indicating timing-mismatch as
a key component. Second, inefficiency is heterogeneous and heavy-tailed:
small trades suffer higher percentage losses, while a few extreme outliers
dominate the aggregate dollar shortfalls. Finally, we demonstrate that
sandwiching attacks drive a significant fraction of routing suboptimality.
Our benchmark protocol and algorithm offer a rigorous, reproducible ba-
sis for evaluating and improving information-timely, gas-aware routing.

1 Introduction

Decentralized exchange (DEX) aggregators rely on smart routers to split trades
among multiple automated market maker (AMM) pools for the best execution.
Today’s routers must decide where to split flow across many concurrent pools
and when to execute under gas costs and rapidly changing pool states. Despite
an active design space, the field lacks a careful, large-scale measurement of a
basic question: How optimal are current routing decisions in practice, relative to
economically motivated objectives?

We address this question by conducting the comprehensive empirical audit
of on-chain routing performance, using 2.98 million WETH–USDC swaps on
Ethereum mainnet. We quantify the output value lost due to suboptimal routing
by comparing each realized trade to optimized benchmarks. On average, current
routing strategies sacrifice approximately 2.02 bps of potential output per trade,
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which aggregates to $24 million of forgone value across roughly $120 billion of
volume.

To rigorously evaluate routing suboptimality, we design three rigorous opti-
mal routing benchmarks to assess each trade’s potential performance. First, the
Support-Constrained Optimum (SCO) benchmark restricts the pool set to only
those actually used by the trade, measuring the quality of the volume split across
those pools. Second, the Full-Venue Optimum (FVO) benchmark considers all
available pools without accounting for gas costs, revealing the potential gain
from accessing a broader liquidity pool set. Finally, the Gas-Aware Full-Venue
Optimum (G-FVO) benchmark extends FVO by accounting for gas costs, cap-
turing the trade-off between using additional pools and incurring extra gas fees.
This suite of benchmarks allows us not only to measure the suboptimality of
current routing decisions, but also crucially, decompose these inefficiencies and
measure both the shortfall from failing to utilize the optimal subset of pools and
the cost of imperfect flow-splitting across the pools that were utilized.

In order to efficiently compute our benchmarks, we describe an efficient algo-
rithm for optimally routing across multiple pools for the same token pair based
on bisection. Our method also accounts for discrete gas costs when selecting
pools. Our method finds the exact maximum-output allocation, and we prove
its correctness and characterize its complexity. We use this routine to construct
our optimized benchmarks.

We investigate the value of timeliness of information in routing. Using a con-
trolled experiment on information staleness, we isolate the effect of pool-state
freshness on routing outcomes. Optimizing trades on slightly stale information
significantly worsens outcomes compared to optimizing using up-to-date informa-
tion, by about 1.29 bps under FVO (approximately $15.5 million in our sample)
and 1.78 bps under G-FVO ($21.4 million). Further delays continue to erode
performance, albeit by diminishing increments. Conversely, when we evaluate
the realized routes using earlier (pre-execution) snapshots, they appear less sub-
optimal. This indicates that a sizeable portion of suboptimality is due to timing
mismatch: Routes are planned using outdated information relative to execution.

We further observe significant heterogeneity in routing inefficiency across
trades, with a heavy-tailed loss distribution. Small swaps (< $1,000) tend to in-
cur disproportionately large relative losses (in bps) than larger trades(> $10,000).
Large trades, while nearly optimal in percentage terms, can still suffer greater
absolute slippage. Moreover, the suboptimality distribution has a long right tail
driven by a few extreme outliers, consistent with potential adversarial execution
(e.g. sandwich attacks) or transient liquidity shocks. These findings underscore
the presence of heavy-tailed risk: most trades incur minimal loss, but rare worst-
case events can result in much larger inefficiencies.

Finally, we quantify the contribution of adversarial ordering-sandwich at-
tacks, to measured routing inefficiency. We tag victim transactions whenever at
least one of the four WETH-USDC pools is sandwiched and compare realized
routes to the SCO/FVO/G-FVO optima at execution-time snapshots. Sand-
wiched trades exhibit a pronounced upward shift in both the level and disper-
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sion of suboptimality, with heavier right tails that persist even under gas-aware
evaluation. Cross-router differences are consistent with execution context: expo-
sure concentrates in publicly submitted flow (e.g., Universal Router), whereas
solver-mediated batch auctions and private order flow (e.g., CoWSwap) show
negligible incidence. These patterns reinforce our timing results-when planning
on stale state and facing reordering, timing mismatch widens the execution-time
gap-and provide a concrete channel through which information staleness and
pool activation interact to generate heavy-tailed losses.

In summary, our study provides a detailed empirical assessment of DEX
aggregator routing quality and pinpoints multiple sources of suboptimality in
current practice. Together, these contributions demonstrate economically signif-
icant inefficiencies in existing router outcomes and offer new tools and insights
to guide the design of more optimal, timing-aware aggregation strategies.

2 Related Literature

Our work relates to several strands of research: (1) Routing and aggregation.
Routers and aggregators split flow across venues facing curved liquidity and
heterogeneous fees. On the theory side, our work builds on the formulation of
optimal routing problems as convex programs [1,6]. Recent work extends these
formulations to richer execution environments (e.g., hooks) and studies their im-
plications for route design [2]. On the empirical side, early evidence documents
routing suboptimality and its drivers [9,7]. Relative to this literature, we intro-
duce a gas-aware activation layer and algorithms with guarantees, and deliver an
implementable benchmark suite (SCO/FVO/G-FVO). (2) Execution frictions,
MEV, and order-submission context. The sensitivity of realized outcomes to
timely state connects to the literature on mempools, reordering, and extractable
value [5,8]. Differences across routers in our staleness experiments are consis-
tent with institutional features, e.g., solver-mediated batch auctions and private
orderflow in CoW Protocol [4,3] that can mitigate within-block state sensitivity.

3 Optimal Routing Methodology

3.1 Routing Problem Formulation

Consider the following setup. An agent seeks to spend a fixed total amount of
the input token and receive as much of the output token as possible by splitting
order flow across a collection of AMM pools indexed by j ∈ J = {0, 1, . . . , n−1}.
Each AMM pool j is a two–asset pool that supports swaps between token 0 and
token 1 (e.g., WETH and USDC). Let qj ≥ 0 denote the input routed to pool
j, and let Q > 0 be the total input budget.

Note that here we are focusing on a simplified version of the full routing
problem: we are restricting to a setting where all the pools under consideration
are for the same token pair, these pools could be different protocols or have fee
tiers, for example. In full generality, one might also want to consider allowing
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trading through other, intermediate token when routing. This raises additional
challenges, for example, determining the full universe of intermediate tokens. For
this study, we will restrict to the simplified same-token setting, which neverthe-
less is quite empirically relevant.

Output functions. For pool j, we write the (fee–inclusive) output function

oj(qj , ωj , z)

for the quantity of the output token obtained when supplying input qj ≥ 0 to
pool j in state ωj and swap direction z ∈ {0, 1}. We take

z =

{
1, swap token 0 for token 1,

0, swap token 1 for token 0,

so that each pool possesses two output mappings, one per direction. The pool
state ωj captures all variables that influence execution on the pool, including,
for example, the spot price on the pool, available liquidity and its distribution
across prices, protocol fees, and any state variables used by hooks (e.g., recent
volatility for dynamic fees).

We make several assumptions on these output functions to ensure well-
posedness of the routing problem and to capture structural features of AMM
liquidity curves observed in practice.

Assumption 1 (Output–function regularity) For every pool j and direc-
tion z ∈ {0, 1}, the mapping q 7→ oj(q, ωj , z) satisfies:

1. Nonnegativity: oj(0, ωj , z) = 0 and oj(q, ωj , z) ≥ 0 for all q ≥ 0.
2. Continuity and monotonicity: oj(·, ωj , z) is continuous and strictly in-

creasing almost everywhere.1

3. Differentiability: oj(·, ωj , z) is continuously differentiable except at finitely
many points.

4. Strict concavity (diminishing returns): oj(·, ωj , z) is strictly concave.
Economically, execution deteriorates with size: each additional unit of input
yields strictly less output than the previous unit.

Gas cost. For pool j in state ωj and input qj ≥ 0, let gj(qj , ωj) denote the gas
expenditure required to execute the swap. Without loss of generality, we treat gas
as paid and measured in a fixed type of token used for swapping in this pool (e.g.,
token 1). Its effect on the routing problem is asymmetric across swap directions:
(i) In a token 0 → token 1 swap, gas reduces net token 1 output (output-side
deduction). (ii) In a token 1 → token 0 swap, gas reduces the effective input
budget in token 1 (input-side adjustment).

1 In practice, some pools have no available liquidity in certain price ranges, at which
point oj can become locally constant. Such edge cases can be easily handled and for
clarity of exposition we will not consider them here.
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Deterministic routing formulation. Given the most recently observed pool
states {ωj}n−1

j=0 , we allocates a fixed input budget Q > 0 across the candidate
pools J = {0, 1, . . . , n− 1} to maximize total output net of gas:

max
q∈Rn

+

n−1∑
j=0

[
oj(qj , ωj , z)− (1− z) gj(qj , ωj)1{qj > 0}

]

s.t.

n−1∑
j=0

[
qj + z gj(qj , ωj)1{qj > 0}

]
≤ Q.

(1)

Here z ∈ {0, 1} encodes the swap direction for pool j and determines where gas
enters: when z = 1, gas is paid in the input token and therefore appears in the
resource constraint; when z = 0, gas is paid in the output token and therefore
deducts from the objective.

3.2 Optimal Routing Solution without Gas Adjustment

We begin with the routing problem without gas costs, i.e. gj(·, ·) ≡ 0:

max
q∈Rn

+

n−1∑
j=0

oj(qj , ωj , z) s.t.

n−1∑
j=0

qj ≤ Q. (2)

At a fixed snapshot we treat pool states as given and suppress them, writing
oj(qj) ≡ oj(qj , ωj , z). By Assumption 1 (strict monotonicity), any unallocated
budget can always increase output, so the resource constraint binds at the op-
timum. The inequality constraint in (2) can be replaced by

∑n−1
j=0 qj = Q. This

model provides the deterministic benchmark and serves as the inner optimizer
used later when we incorporate gas adjustments.

Lagrangian and optimality conditions. Introducing a multiplier λ for the
budget constraint and µj ≥ 0 for non-negativity, the Lagrangian equation is

L(q, λ, µ) =
n−1∑
j=0

oj(qj) + λ

Q−
n−1∑
j=0

qj

+

n−1∑
j=0

µjqj . (3)

By concavity of the objective and convexity of the feasible set, first-order KKT
conditions are necessary and sufficient for optimality.

We next define the marginal output mj(q) ≡ ∂oj(q)/∂q and the associated
marginal price mpj(q) ≡ 1/mj(q), which could be interpreted as the instanta-
neous input required to obtain one additional unit of output from pool j when
the allocation is q. The KKT conditions imply

mpj(q
∗
j )− λ∗ + µ∗

j = 0, q∗j ≥ 0, µ∗
j ≥ 0, µ∗

jq
∗
j = 0,

n−1∑
j=0

q∗j = Q, (4)
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which is equivalent to this marginal equalization rule

mpj(q
∗
j ) = λ∗ if q∗j > 0, ≤ λ∗ if q∗j = 0. (5)

Thus all active pools share a common marginal price λ∗, while inactive pools
have weakly higher marginal costs. In other words, input is allocated so that
shifting a marginal unit across pools cannot increase total output.

Inverse marginal price formulation. It is convenient to encode non-negativity
directly via the clipped inverse marginal cost function

mp−1
j (λ) ≡ inf{ q ≥ 0 : mpj(q) ≥ λ } (6)

where mp−1
j (λ) = 0 when λ is less than current spot price mp−1

j (0). The KKT
system (4) is equivalent to the fixed point

q∗j = mp−1
j (λ∗) (j = 0, . . . , n−1),

n−1∑
j=0

mp−1
j (λ∗) = Q. (7)

Let S(λ) ≡
∑n−1

j=0 mp−1
j (λ). By Assumption 1, each mp−1

j (·) is strictly in-
creasing and right–continuous, and S inherits these properties whenever λ is
higher than the current price. Therefore, for any feasible budget 0 < Q <
supλ S(λ)

2, there exists a unique λ⋆ with S(λ⋆) = Q, yielding a unique op-
timal allocation via (7).

Searching for solution3 Since S is monotone, λ⋆ can be computed efficiently
by bisection on [λlow, λhigh] with S(λlow) ≤ Q ≤ S(λhigh). At termination we

obtain λ̂ with allocation q⋆ = mp−1(λ̂), which satisfies the marginal equaliza-
tion condition (5). Pseudocode (bracketing, stopping rules, and the evaluation
oracle for mp−1

j ) is given in Appendix A, Algorithm 1. Formal guarantees, in-
cluding existence, uniqueness and convergence, are stated in Theorem 1, with
full statements and proofs deferred to Appendix A.

3.3 Optimal Routing with Gas Adjustment

We extend the deterministic routing problem to incorporate gas under an activa-
tion model. Unlike the previous subsection (where gj ≡ 0), we assume: (i) gas is
paid in token 1; (ii) gas is incurred only when a pool is activated, i.e., qj > 0; and
(iii) conditional on activation, the gas cost is quantity–independent4. Formally,

2 Here supλ S(λ) denotes the maximum total input that can be absorbed across all
pools, i.e., the aggregate capacity of the system.

3 The only oracle required is evaluation of mp−1
j (λ). In both CPMMs and

concentrated-liquidity AMMs this can be computed to machine precision.
4 In practice, some AMMs exhibit size-dependent gas. In concentrated-liquidity de-
signs (e.g., Uniswap v3), gas usage increases with the number of ticks crossed, making
gj(q, ωj) piecewise constant and weakly increasing in q. For tractability, we abstract
to a fixed per-activation cost, which captures the dominant overhead costs while
preserving concavity of the inner allocation problem.
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for pool j in state ωj ,

gj(qj , ωj) =

{
0, qj = 0,

ḡj(ωj), qj > 0
(8)

This activation specification captures the fixed EVM overhead of calling a pool
and cleanly separates the binary activation decision (qj > 0)from the continuous
allocation across activated pools, preserving concavity of the inner allocation.

Gas–aware Program. We define the gas-aware routing problem as below:

max
q∈Rn

+

n−1∑
j=0

oj(qj , ωj , z) −
n−1∑
j=0

z ḡj(ωj)1{qj > 0}

s.t.

n−1∑
j=0

(
qj + (1− z) ḡj(ωj)1{qj > 0}

)
= Q.

(9)

The equality budget is without loss: under Assumption 1 the planner exhausts
the available input. Problem (9) is a mixed–integer program due to the activation
terms 1{qj > 0} and such problems are, in general, NP-hard.

Exact solution by subset enumeration. Let S ⊆ J denote the active set of
pools, i.e., those with qj > 0. For any fixed S ̸= ∅, the gas terms are constants,
and the problem reduces to a concave inner allocation:

Y (S) = max
{qj}j∈S

∑
j∈S

(
oj(qj , ωj , z) − z ḡj(ωj)

)
s.t.

∑
j∈S

qj = Qswap(S), qj ≥ 0 (j ∈ S),

(10)

where the effective swap budget is Qswap(S) = Q −
∑

j∈S(1 − z) ḡj(ωj). Fea-
sibility requires Qswap(S) > 0. For any feasible S, the optimizer of (10) is char-
acterized by marginal price equalization across j ∈ S and can be computed via
the bisection procedure in Algorithm 1 (Section 3.2). The outer problem then
selects

S⋆ ∈ arg max
S⊆J , S ̸=∅, Qswap(S)>0

Y (S), q⋆ = {q⋆j (S⋆)}j∈S⋆ .

Complete pseudocode for the outer enumeration is provided in Appendix A,
Algorithm 2. Correctness and complexity are established in Theorem 2 (Ap-
pendix A).

4 Suboptimality Benchmarks

In this section, we formalize the best–in–class benchmarks to evaluate a realized
route observed in a transaction on chain. All evaluations are taken at a fixed
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pool state ω = {ωj}j∈J , in subsequent analysis, we allow this state to vary in
order to compare allocations under different market conditions. Let the realized
allocation be qr = (qr0, . . . , q

r
n−1) with total input Q =

∑n−1
j=0 qrj . The activated

set of pools is denoted A ≜ { j ∈ J : qrj > 0 }.

Optimized route benchmarks. We construct three benchmarks that differ
only in scope (eligible pools) and gas treatment. In each case, the corresponding
program is solved at state ω to obtain a best–in–class allocation (S⋆, q⋆), which is
then compared against the realized route under identical modeling assumptions.

(i) Support–Constrained Optimum (SCO; activated set, no gas). SCO evaluates
split quality conditional on the realized activated set A and ignores gas:

max
{qj}j∈A

∑
j∈A

oj(qj , ωj , z)

s.t.
∑
j∈A

qj = Q, qj ≥ 0.
(11)

(ii) Full–Venue Optimum (FVO; all pools, no gas). FVO expands the scope to
all candidate pools J while still ignoring gas. The program is identical to (2).

(iii) Gas–Aware Full–Venue Optimum (G–FVO; all pools, gas–adjusted).G–FVO
augments FVO by incorporating gas costs via model (9) in Section 3.3.

5 Empirical Results

This section evaluates realized router performance relative to the optimal pro-
grams defined in Section 3 and the benchmarks in Section 4. The analysis ad-
dresses three questions: (i) How do realized routes compare to the best alloca-
tions under alternative assumptions about the scope of the pool and the gas?
(ii) How valuable is it to use the most recent pool state for routing? (iii) Do
certain routers appear to route in advance of on-chain state updates?

Data description Our baseline sample comprises 2.98 million WETH-
USDC swaps on Ethereum mainnet (blocks 19,500,000 to 23,000,000), total-
ing $120.42 billion in USDC-equivalent input. Transactions are reconstructed
by aggregating different pool swap at the transaction level and filtered to drop
counterflow (both directions on the same pair) and trades with less than $100
on the USDC side. We evaluate routes across four Uniswap L1 pools (v2: 30 bps;
v3: 1,5,30 bps) and, for benchmarking, label five routers (Universal Router,
CoWSwap, 1inch v4, 1inch v5, Odos v2), which together account for about 21%
of transactions and 5.6% of volume. Routes are highly concentrated: on average,
fewer than one third of the four pools are activated per transaction and flow
shares are extremely uneven (low entropy, HHI ≈ 1), suggesting potential under-
activation of venues that we quantify in the FVO/G-FVO comparisons below.
Full data construction details and summary tables appear in Appendix B.
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5.1 Performance Relative to Optimal Benchmarks

We first compare realized routes with the three benchmarks developed in Sec-
tion 4, all optimized and evaluated at execution states. Figures 1 report router–level
box plots of suboptimality, defined as the proportional shortfall of the realized
route relative to the benchmark (positive values indicate underperformance of
the realized route):

Economic magnitudes.Although Figure 1 shows bp-level gaps, the implied
dollar amounts are non-trivial, indicating the practical value of better activation
and splitting across pools. Across all trades in our sample ($120.42 billion; Ta-
ble 2), the losses of realized routes amount to $6.58 million when comparing
against SCO route target, $21.39 million dollar against FVO route target, and
$24.20 million against G-FVO route target. For the five labeled routers as a to-
tal, the same conversion yields losses of about $0.77 million againtst SCO, $1.77
million against FVO, and $1.89 million against G-FVO.
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Fig. 1. Suboptimality relative to different optimum. The box plot indicates the 25th,
50th, and 75th percentiles, while the triangle inidicated the mean of each sample.

To put these magnitudes in perspective, one naturally asks: Where do such
losses originate?

Losses from mis–splitting within the activated set. Even conditional
on the set of pools that were actually activated, realized splits are not fully
efficient. Relative to SCO, the mean shortfall is 0.05467 bps, which aggregates
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to approximately $6.58million across all trades in our sample. This reflects pure
within–set inefficiency: the router touched the right pools but did not allocate
across them optimally.

Losses from not activating additional pools. The scope for improve-
ment through activating additional pools is also significant. As shown in Fig-
ure 1, moving from SCO to FVO shifts the suboptimality distributions upward
markedly, and although G–FVO attenuates the improvement once per–pool gas
is charged, the effect remains large. Failure to activate additional pools accounts
for the dominant share of inefficiency: even after incorporating per–pool gas, the
aggregate loss is about $24.27million. Hence, while mis–splitting is economically
meaningful, the overwhelming driver of suboptimality is limited pool activation.
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Fig. 2. Suboptimality vs. trade size (relative to FVO).

Heterogeneity by trade size. Suboptimality are size–dependent. Figures 2
display the suboptimality of realized routes relative to FVO and G–FVO. In the
FVO panel, the smallest bins (100–1K and 1K–10K USDC) have the widest in-
terquartile ranges and visibly higher medians, whereas distributions tighten and
center near zero for 10K–100K and >100K. Under G–FVO (right), small orders
are even more dispersed with higher centers—consistent with fixed per–activation
gas costs biting when notional is small—while large orders remain close to zero.
Economically, although small trades are bps–inefficient, contribute modestly to
aggregate dollar loss, while large trades, despite low median bps, account for a
meaningful share of total dollars forfeited due to their high notional.

Impact of outliers. A final observation is that suboptimality is heavily
influenced by outliers. In both Figures 1 and 2, the triangle mean markers lie
well above the medians and often even exceed the upper quartile, while most
boxes concentrate near zero. This pattern indicates long right tails: a small
set of transactions contributes disproportionately to average losses, whereas the
typical trade incurs little or no shortfall. Economically, these outliers account for
much of the aggregate dollar gap reported above. Potential mechanisms include
adversarial execution (e.g., sandwiching) or transient liquidity shocks, both of
which can depress realized output relative to benchmark routes.
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5.2 Impact of Information Staleness

Wemeasure the value of timely pool information via a controlled staleness design.
For N ∈ {0, 1, . . . , 10}, let ωN = {ωN

j }j∈J be the state used both to compute
the benchmark and to evaluate outcomes:

(i) N = 0 (oracle): ω0 is the transaction’s execution-time state (the state at
the trade’s actual execution position within its block).

(ii) N ≥ 1 (implementable): ωN is the bottom-of-block state N blocks before
execution—the freshest on-chain state a planner can deterministically observe
before building the next block.

For each N , we solve the optimized benchmark 5 at ωN and evaluate at the
same ωN . Suboptimality measures the proportional shortfall of the optimized
route using potentially outdated information at ωN , relative to the optimized
route using up-to-date information available at execution. Figure 3 plots subop-
timality versus N (router-level means as lines; overall interquartile box plots).
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Fig. 3. Effect of delayed state on performance (relative to FVO and G-FVO). The
gap between N = 0 and N = 1 quantifies the cost of one-block staleness (oracle vs.
implementable planning), while the monotone drift as N increases captures the growing
loss from routing on progressively older snapshots.

One block of information is economically material. Moving from N =
0 to N = 1 (losing one block of state) almost doubles the aggregate loss. Using
FVO, the mean shortfall rises from the oracle bound at N = 0 to N = 1 by
1.28739 bps, which amounts to about $15.5 million. Under G–FVO, the N =
0 → 1 jump is 1.77525 bps, roughly $21.4 million. Thus, timely visibility of

5 We are not using the on chain routes, only considering the time and total input
quantity in section 5.2.
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pool states delivers material value: even a single–block delay moves aggregate
performance by eight figures, and additional delay continues to erode outcomes.

Additional delay worsens performance, but with diminishing in-
crements. From N = 1 to N = 2, the incremental losses are much smaller, yet
mean lines and interquartile ranges continue to drift upward with N , indicating
cumulative degradation as information ages.

Router heterogeneity and execution context. The mean curves for
Universal Router and Odos v2 steepen more than those for CoWSwap, consistent
with greater sensitivity to the most recent pool state. A plausible interpretation
is execution context: users of Uniswap’s universal router often submit via public
mempools, exposing them to reordering and sandwich risk [5,8]. By contrast,
CoWSwap’s flatter profile is consistent with solver-mediated batch auctions and
private order flow handling that mitigate within-block state sensitivity [4,3].

5.3 Realized Routes vs. Planning-State Optima

In this section we compare the realized routes to planning-state optima. We reuse
the staleness design of section 5.2 but consider two complementary evaluations.

(A) Evaluation at the planning state ωN . This isolates the role of tim-
ing mismatch versus allocation inefficiency and the measured gap answers: how
much of the suboptimality reflects using pre-execution information, as opposed
to suboptimal activation/splitting?
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Fig. 4. Suboptimality of realized routes against optima at ωN , evaluated also at ωN .

Evaluated earlier, realized routes are less suboptimal. Suboptimality
declines monotonically with N : mean gaps fall as the benchmark is pushed fur-
ther back in time. This pattern indicates that a material share of execution-time
gaps stems from timing mismatch (decisions keyed to pre-execution information),
rather than purely to allocation inefficiency (suboptimal activation/splitting).

(B) applicable ω1 router v.s. current routers We operationalize an
implementable router that optimizes at the bottom of the previous block, i.e.,
computes the FVO/G–FVO allocation at ω1 and submits the transaction in the
next block. This uses the freshest on-chain state a planner can deterministically
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observe before building the next block. We then ask: at execution, how would
applicable router based on our algorithm perform relative to current routers?

The execution–time comparisons indicate sizable gains. Figure 5 shows that,
when evaluated at execution, these ω1-based optima outperform realized routes
across routers. Aggregating over the labeled routers’ total trade amount (Ta-
ble 2), the implied gain amount to $0.77 million for FVO1 and $0.66 million for
G–FVO1.
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Fig. 5. Suboptimality of realized routes against optima at ωN , evaluated at execution.

5.4 Sandwiching Effect

We assess how sandwich attacks shift routing shortfalls at the router level, keep-
ing the evaluation identical to Section 5.1. For each pool in our universe (Sec-
tion B), we tag sandwiched victim swaps using a within-block heuristic: a swap
is labeled sandwiched on a pool if it is bracketed in the same block by two
opposite-direction swaps attributable to the same counterparty cluster (front-
run then back-run). A transaction (its multi-pool combined route) is labeled
sandwiched if at least one of the four pools flags as sandwiched. We then re-
compute suboptimality relative to the benchmarks in Section 4, optimizing and
evaluating at execution-time snapshots.

Router Count Dollar value

total sandwiched percentage total sandwiched percentage

Overall 3.36× 106 1.03× 104 0.308% 1.21× 1011 1.35× 109 1.12%
Universal router 5.85× 105 1.26× 103 0.215% 3.37× 109 2.06× 108 6.12%
CoWSwap 4.29× 104 1.00× 100 0.00233% 9.90× 108 4.53× 104 0.00458%
1inch v4 5.10× 104 7.97× 102 1.56% 1.83× 109 1.45× 108 7.93%
1inch v5 8.73× 104 4.60× 101 0.0527% 3.84× 108 2.61× 106 0.680%
Odos v2 3.39× 103 1.20× 102 3.54% 1.28× 108 8.14× 106 6.34%

Table 1. Sandwiched transactions summary by router

Summary statistics. The table summarizes the incidence of sandwiching by
count and by USDC-equivalent volume across routers. It highlights pronounced
cross-router heterogeneity: dollar exposure concentrates in Universal, 1inch v4,
and Odos v2, whereas CoWSwap is negligible and 1inch v5 remains modest.
This pattern aligns with the execution-context interpretation in Section 5.2:
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publicly submitted flow (e.g., Universal/Odos) is more exposed to reordering
and sandwich risk, while solver-mediated batch auctions and private order flow
(CoWSwap) mitigate within-block state sensitivity.

Level shift and dispersion under sandwiching. Comparing the middle and
bottom rows of Figure 6 reveals a clear upward shift in both levels and dispersion
once we restrict to sandwiched transactions. Non-sandwiched distributions clus-
ter near zero in the low single-digit bps range, whereas the sandwiched panels
expand to tens of bps with heavier right tails. This echoes Section 5.1: average
shortfalls are driven by a minority of extreme observations, which are concen-
trated in the sandwiched set.

Router-level comparisons. In the non-sandwiched subset, CoWSwap exhibits
the lowest medians and tightest IQRs across panels; Universal Router and Odos
v2 show higher baselines; 1inch v4/v5 lie in between (with v5 modestly tighter
than v4). Restricting to sandwiched transactions (bottom row) preserves this
ordering but amplifies gaps: Universal and Odos experience the largest up-
ward shifts and the heaviest right tails, 1inch rises moderately, and CoWSwap
shifts the least. These cross-router patterns align with execution context: solver-
mediated batch auctions and private order flow (e.g., CoWSwap) reduce within-
block state sensitivity, while publicly submitted flow faces greater exposure to
adversarial ordering.

6 Conclusion

We conduct a large-scale empirical audit of on-chain routing for AMMs, pairing a
reproducible benchmark suite-SCO (within-activation split quality), FVO (full-
venue access without gas), and G-FVO (gas-aware activation), with an exact
and scalable optimizer. This framework provides a unified and implementable
yardstick for evaluating realized routes.

Three findings emerge. First, realized routes leave meaningful value on the
table: average shortfalls are on the order of a few bps per trade and aggregate to
tens of millions of dollars in our sample. Decomposition shows that insufficient
pool activation dominates mis-splitting within the activated set, even after charg-
ing per-pool gas. Second, information timeliness is crucial: moving from oracle
execution snapshots to one-block stale planning materially worsens outcomes.
Third, losses are heterogeneous and heavy-tailed: most trades are near-optimal
in bps, but a small set of extreme errors drives mean shortfalls. These tails are
amplified in transactions flagged as sandwiched and differ systematically across
routers, consistent with execution-context exposure to reordering and MEV.

Taken together, the results motivate router designs that (i) expand pool
access while explicitly pricing activation gas, (ii) minimize timing mismatch
via planning on the freshest implementable state, and (iii) reduce within-block
state sensitivity through solver-mediated batch auctions, private order flow, or
other MEV-mitigation mechanisms. Our benchmarks offer a practical harness for
benchmarking such designs and for A/B testing policy choices (e.g., activation
thresholds, venue whitelists, and timing rules) under identical market states.
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Fig. 6. Router-level suboptimality relative to SCO/ FVO/ G-FVO, evaluated at exe-
cution snapshots. Rows show the full sample (top), non-sandwiched subset (middle),
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angles indicate means.

Our study has limitations that point to fruitful extensions. We restrict atten-
tion to a single token pair on L1 and to same-pair pools, abstract from multi-hop
routes and cross-domain execution, and model gas activation as a fixed per-call
cost (ignoring tick-cross variability). Extending the benchmarks to multi-hop
routing, richer gas models, additional venues and chains, and end-to-end mem-
pool interactions (including private relay selection) is a natural next step. Dis-
tinguishing causal impacts of adversarial execution from confounding volatility,
and stress-testing robustness to rapidly evolving AMM features (e.g., hooks),
are additional directions.



16 Weiye Xi and Ciamac C. Moallemi

Disclosure

The second author is a research advisor for Paradigm and for Uniswap Labs.
This research was supported by a grant from the Columbia Center for Digital
Finance and Technologies.



Quantifying Sub-Optimality in Routing for Automated Market Makers 17

References

1. Angeris, G., Evans, A., Chitra, T., Boyd, S.: Optimal routing for constant function
market makers. In: Proceedings of the 23rd ACM Conference on Economics and
Computation (EC ’22). pp. 115–128 (2022). https://doi.org/10.1145/3490486.
3538336

2. Chitra, T., Kulkarni, K., Srinivasan, K.: Optimal routing in the presence of hooks:
Three case studies. arXiv preprint (2025), https://arxiv.org/abs/2502.02059

3. CoW Protocol: CoW protocol documentation: Batch auctions, solvers, and archi-
tecture. https://docs.cow.fi/ (2023)

4. CoW Protocol Team: CoW protocol: A trustless meta-DEX aggregator using batch
auctions and ring trades. https://docs.cow.fi/ (2023)

5. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Eyal, I., Juels, A., Tramèr, F.,
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A Algorithms and Implementation Details

A.1 Bisection for the Lagrange Multiplier

Algorithm 1 Bisection for the Lagrange Multiplier λ⋆ (Support J , Budget Q)

Require: Monotone maps {mp−1
j }

n−1
j=0 ; budget Q > 0; bracket [λlow, λhigh] with

S(λlow) ≤ Q ≤ S(λhigh); tolerances ελ, εS > 0; maximum iterations K.

Ensure: Approximate multiplier λ̂ and allocation q⋆.
1: k←0
2: while k < K do
3: λ←(λlow+λhigh)/2; S(λ)←

∑
j mp−1

j (λ)
4: if |S(λ)−Q| ≤ εS or λhigh−λlow ≤ ελ then
5: break
6: else if S(λ) < Q then
7: λlow←λ
8: else
9: λhigh←λ
10: end if
11: k←k + 1
12: end while
13: λ̂←(λlow+λhigh)/2; q⋆j←mp−1

j (λ̂)

14: return λ̂, q⋆

Theorem 1 (Correctness and Complexity of Bisection).

1. (Existence and uniqueness) There exists a unique λ⋆ ∈ [λlow, λhigh] such that
S(λ⋆) = Q, the allocation q⋆j = mp−1

j (λ⋆) is the unique optimizer of (7).
2. (Convergence in λ) After k iterations of Algorithm 1, the current bracket

contains λ⋆ and has width λ
(k)
high−λ

(k)
low ≤ (λ

(0)
high−λ

(0)
low)/2

k. Hence to achieve

|λ̂− λ⋆| ≤ ελ it suffices to take

k ≥
⌈
log2

(
(λ

(0)
high − λ

(0)
low)/ελ

)⌉
.

3. (Convergence in output space) If, in addition, S is L-Lipschitz on the

bracket, then |S(λ̂)−Q| ≤ L (λ
(0)
high−λ

(0)
low)/2

k. Therefore to reach |S(λ̂)−Q| ≤
εS it suffices that

k ≥
⌈
log2

(
L (λ

(0)
high − λ

(0)
low)/εS

)⌉
.

Proof sketch. Since S is continuous and increasing with opposite-sign deviations
at the bracket endpoints, the intermediate value theorem yields a unique root of
S(λ)−Q. Each bisection step halves the bracket, establishing convergence in λ.
Convergence in output space follows by Lipschitz continuityof S. The resulting
q⋆ satisfies the resource constraint and the marginal price equalization (5).
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A.2 Subset Enumeration for Gas–Aware Routing

Algorithm 2 Subset Enumeration for Gas–Aware Routing

Require: Pool set J , budget Q, states {ωj}, directions {z}, gas {ḡj(ωj)}.
Ensure: Optimal active set S⋆ and allocation q⋆ for (9).
1: Initialize Y ⋆ ← −∞, S⋆ ← ∅, q⋆ ← 0.
2: for all S ⊆ J , S ̸= ∅ do
3: Qswap(S)← Q−

∑
j∈S(1− z) ḡj(ωj).

4: if Qswap(S) ≤ 0 then
5: continue
6: end if
7: Solve (10) on S using Algorithm 1, obtaining {q⋆j (S)}j∈S and objective Y (S).
8: if Y (S) > Y ⋆ then
9: (Y ⋆, S⋆, q⋆)← (Y (S), S, {q⋆j (S)}j∈S)
10: end if
11: end for
12: return (S⋆, q⋆).

Theorem 2 (Correctness and Complexity of Subset Enumeration).
Under Assumption 1, Algorithm 2 returns a global maximizer of (9). Let Tinner(ε)
denote the time to solve a single inner allocation (10) to tolerance ε via bisection
(Theorem 1), i.e.

Tinner(ε) = O

(
log

λhigh − λlow

ε

)
.

Then the worst–case runtime is O
(
2|J | Tinner(ε)

)
, which is exponential in the

number of candidate pools due to subset enumeration.
Proof sketch. For fixed S, Theorem 1 ensures a unique optimizer, attained

via Algorithm 2. Exhaustive search across feasible S then delivers the global op-
timum.

B Data Description

This section documents the dataset used in our empirical analysis: the universe
of pools and routers, the sample period, transaction construction and filters, and
descriptive statistics relevant for the gas–aware routing problem.
Block range. The baseline sample covers Ethereum mainnet blocks 19,500,000
(Mar-23-2024 09:34:59 PM +UTC) to block 23,000,000 (Jul-26-2025 01:22:11
AM +UTC).

Pools. We study four Ethereum L1 Uniswap pools for the WETH–USDC pair:
(i) the Uniswap v2 pool with 30bps fee and (ii) three Uniswap v3 pools at fee
tiers 1 bp, 5 bps, and 30 bps. Each pool is treated as a distinct element j ∈ J =
{0, 1, . . . , n− 1} with its own output function oj(·, ωj , z) as in Section 3.1.
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Transaction construction and filters. Transactions are reconstructed at
the transaction level by parsing AMM swap events from individual pools and
aggregating them by transaction hash. We apply the following filters to obtain
a clean routing sample:

(i) Counterflow exclusion. We drop transactions containing swaps in both
directions on the same pair (e.g., USDC→WETH and WETH→USDC). This is
because the desired direction of trade is ambiguous.

(ii) Minimum trade amount. We drop transactions where the USDC side,
summed across all pools used in the transaction, is less than $100.

Routers. The sample includes all transaction subject to the filters above. For
benchmarking purposes, in addition, we label trades executed by five widely used
routing contracts: Uniswap Universal Router, CoWSwap, 1inch v4, 1inch v5, and
Odos v2. Labels are assigned by destination contract address in transaction logs.

Transaction counts and sizes. Table 2 summarizes transaction counts, trade
amount and average trade size. The core sample contains 2.98 million transac-
tions totaling $120.42 billion in USDC–equivalent input. The five labeled routers
jointly account for about 21% of transactions and 5.6% of trade amount.

Router Count Trade Amount(USDC) Avg Trade Size(USDC)

Overall 2,978,019 1.2042×1011 40,437
Universal 456,046 3.3653×109 7,379
CoWSwap 41,901 9.8510×108 23,510
1inch v4 47,812 1.8241×109 38,151
1inch v5 77,769 3.8342×108 4,930
Odos v2 3,332 1.2841×108 38,540

Table 2. Transaction counts and trade size for WETH–USDC swaps across the four
Uniswap pools (blocks 19,500,000 to 23,000,000).

Transaction concentration. Since the gas model (Section 3.3) imposes a
per–pool activation cost, the degree to which order flow is concentrated across
pools is empirically relevant. For transaction t, let qj,t ≥ 0 be the input allocated
to pool j and define the normalized share xj,t ≡ qj,t /

∑
k∈J qk,t. We measure

concentration using three complementary statistics:

(i) Fraction of pools activated: κt =
∑

j∈J 1{xj,t > 0}/|J |.
(ii) Entropy (dispersion): Ht ≡ −

∑
j∈J xj,t log xj,t (with 0 log 0 ≡ 0).

(iii)Herfindahl–Hirschman Index (HHI):HHIt =
∑

j∈J x2
j,t ∈ [1/|J |, 1].

We report transaction–weighted means of these statistics by router and provide
trade-size–weighted means:
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Metric Overall Universal CoWSwap 1inch v4 1inch v5 Odos v2

Activation Rate 0.283 0.296 0.324 0.380 0.250 0.355
Entropy 0.048 0.090 0.123 0.195 0.0004 0.175
HHI 0.971 0.942 0.923 0.882 0.9997 0.892

Table 3. Execution concentration metrics by router. Values are transaction–weighted
means. Lower entropy and higher HHI indicate more concentrated execution.

On average, fewer than one–third of the four pools are activated per transac-
tion. Entropy are close to zero, indicating that flow shares are highly unevenly
distributed rather than split evenly across pools. Consistently, the Herfind-
ahl–Hirschman Index (HHI) is near one, confirming that realized routes are
almost always dominated by a single pool.
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