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Abstract. Restaking protocols expand validator responsibilities beyond
consensus, but their security depends on resistance to Sybil attacks. We
introduce a formal framework for Sybil-proofness in restaking networks,
distinguishing between two types of attacks, one in which other Sybil
identities are kept out of an attack and one where multiple Sybil identi-
ties attack. We analyze marginal and multiplicative slashing mechanisms
and characterize the conditions under which each deters Sybil strategies.
We then prove an impossibility theorem: no slashing mechanism can si-
multaneously prevent both attack types. Finally, we study the impact
of network structure through random graph models: while Erdgs—Rényi
networks remain Sybil-proof, even minimal heterogeneity in a two-block
stochastic block model makes Sybil attacks profitable. These results re-
veal fundamental limits of mechanism design for restaking and highlight
the critical role of network topology.
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1 Introduction

Restaking protocols have recently emerged as an important primitive in proof-of-
stake blockchains. They allow staked tokens to be reused across multiple services,
such as decentralized oracles, bridges, and data-availability layers. By opting in
to secure additional services with their stake, validators can earn extra rewards,
while services benefit from the economic security of the base layer. This mech-
anism has gained traction in practice, with systems such as EigenLayer [§] on
Ethereum already attracting significant adoption.

However, restaking also introduces new attack surfaces. A central concern is
the possibility of Sybil attacks, where a participant splits their stake across mul-
tiple identities to manipulate service outcomes or reduce penalties. For example,
if an attack requires a 100 ETH commitment but the attacker controls 200 ETH,
committing the entire amount would expose all 200 ETH to slashing. By creating
two identities, the attacker can risk only 100 ETH in the attack while keeping
the other 100 ETH safe, effectively shielding half of their stake from loss (see Fig-
ure [1). While the base proof-of-stake protocol is typically Sybil-resistant—since

* Authors in alphabetical order.
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Without Sybil splitting: With Sybil splitting:
Attacker stake = 200 ETH Attacker stake = 200 ETH
Attack requires = 100 ETH Split: 100 ETH (attack) +

100 ETH (safe)

-+ A1l 200 ETH committed -+ Only 100 ETH committed
-+ All 200 ETH slashed -+ At most 100 ETH slashed

Fig. 1: Illustration of how Sybil splitting can shield stake. By dividing into mul-
tiple identities, an attacker risks only a fraction of their total stake instead of
the full amount.

splitting does not change the probability of block selection—restaking changes
the incentive structure. Different services may impose partial slashing rules, and
rewards may depend on heterogeneous service outcomes. In such settings, split-
ting one’s stake across multiple identities can strictly improve an adversary’s
payoff.

1.1 Owur Contributions

In this work, we analyze the conditions under which restaking networks are Sybil-
proof. Our contributions are twofold. First, we study simple splitting attacks in
the presence of partial slashing rules. We identify two canonical attack types and
compare the effectiveness of marginal versus multiplicative slashing. We show
that the marginal rule prevents one type of split attack but not the other, whereas
the multiplicative rule blocks the latter but not necessarily the former. Second,
we extend the analysis to random network models. We show that in homogeneous
Erdés—Rényi graphs, splitting strictly decreases utility, while in heterogeneous
stochastic block models splitting may increase the chance of adversarial success.

A central finding of this paper is an impossibility theorem: no slashing mech-
anism can simultaneously prevent both types of attacks. This result identifies a
fundamental trade-off in the design of restaking protocols: mechanisms that de-
ter one class of attack inevitably leave the other exploitable. It complements our
positive results for marginal and multiplicative schemes and motivates the study
of network structure, where we show that heterogeneity itself can reintroduce
profitable Sybil strategies.

Together, these results can help to design slashing rules and to understand
how the structure of service networks influences Sybil-proofness. They highlight
trade-offs between fairness, efficiency, and security in the design of restaking
protocols.

Contributions Summary and Roadmap. Our main contributions are sum-
marized as follows:

— We formalize Sybil-proofness in restaking networks, distinguishing Type 1

(only one Sybil identity attacks) and Type IT (multiple Sybils attack) attacks.
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— We analyze marginal and multiplicative slashing mechanisms and derive con-
ditions under which each deters Sybil attacks.

— We prove an impossibility theorem: no slashing mechanism can simultane-
ously prevent both attack types.

— We study the role of network structure via random graph models. Erdés-
Rényi networks are Sybil-proof, whereas minimal heterogeneity in a two-
block SBM reintroduces profitable Sybil strategies.

Paper structure. Section [2] discusses related literature. Section [3] introduces the
model. Section [4] analyzes a marginal slashing mechanism, and Section [f| a mul-
tiplicative mechanism. In Section [f] we discuss an impossibility result. Section [7]
studies Sybil-proofness in random graph models. Section [§] concludes.

2 Related Literature

Restaking strengthens new services by borrowing economic security from a base
chain, but it also couples failure modes across services. Durvasula and Rough-
garden [7] study such cascading risks and show that overcollateralization can
make attacks unprofitable, even when failures propagate. Chitra and Pai [4] an-
alyze incentive designs that push operators to rebalance after shocks, limiting
spillovers without heavy collateral requirements.

These works focus on systemic robustness under shared security. Our focus
is complementary: strategic stake splitting (Sybil attacks). Splitting is largely
neutral in base PoS selection, but partial slashing and multi-service heterogene-
ity can change incentives. Bar-Zur and Eyal [3] propose elastic restaking where
stake can stretch after slashing. They show how controlled splitting can improve
Byzantine robustness of the base layer, but do not analyze when splitting cre-
ates an advantage for attackers under e.g. partial slashing across services. Our
optimization-based derivation connects to classical mechanism design with con-
vex penalties and minimal intervention principles: we minimize total slashing
subject to feasibility constraints, yielding KKT multipliers that act as service
“prices.” This ties to Sybil-proof design ideas where penalties are linear in used
stake and invariant to identity splits (cf. early work on Sybil-proofness and ra-
tional protocol design [215]) and to collusion-resistant mechanism design [6/1].

We contribute on this gap by (i) comparing marginal vs. multiplicative partial-
slashing rules for Sybil-proofness, and (ii) showing how network structure mat-
ters: in homogeneous settings splitting is worse, while in heterogeneous settings
it can be strictly beneficial.

3 Model

We follow the notation from [7l4]. There is a set of services S and a set of
operators V. An edge (s,v) € E C S x V if node operator v is restaking for
service s. 0 : V' — R, is a function that maps each node v € V' to the amount
of stake v has in the network. We use the notation o, := o(v). 7: S — R, is
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a function that maps each service s € S to the maximum profit from attacking
that can be realized for s. We use the notation m, := 7(s). o : S — [0,1] is a
function that maps each service s € S to the threshold percentage of stake that
needs to collude to attack the service s. For a node operator v, we define its
neighborhood (or boundary) as Ov = {s : (s,v) € E}. Similarly, for a service s,
we define its neighborhood as ds = {v : (s,v) € E}. For each service, we define
the total stake that is restaked for service s, oy, as

T9s = E Oy
v:(s,v)EE

For any set D C V or set A C S, we will slightly abuse notation and write

UDZE Oy 7TA:§ Ts

veD SEA

f is a function such that f(w, A) = 74, later we might allow for different func-
tions.

Definition 1 (f-attack) A restaking graph G has an f-attack at (A,B) C
S x V if it is profitable and feasibleﬁ

f(m, A) > Z o, =03 (Profitability) (1)
vEB
Vse A: Z Oy > Qg Z Oy = Q054 (Feasibility) (2)
vEBNOs vEDs

Previous Analysis [{]] Previous research has examined scenarios involving an f-
attack (A, B), where the total slashed amount is o 5. In such cases, attackers lose
their entire stake, even if only a portion of their stake would have been sufficient
to meet the feasibility threshold for the attack.

Definition 2 (Sybil) An operator node can divide itself into multiple smaller
nodes, called Sybils, and distribute its stake across these nodes.

Ezample 1 (Simple Ezample). Assume that that in a restaking graph there is a
service s; and a node vy and ({s;},{v;}) is an f-attack. That is, v; attacking s,
is profitable (m; > o0;) and feasible (o; > @ 07). Unless a; = 1, the stake of v is
strictly greater than is needed for feasibility. By maintaining the edges, v; could
split into two nodes restaking with s; with stakes oi = a0, and crf = (1—ay)oq,
respectively. Now, the attacker would only attack with the one node with stake
UL and would only be slashed O’%, while in the original attack, the total o; would
have been slashed. The immediate advantage in utility by creating a Sybil for
attacker v; is af. See Figure

* These conditions were originally identified in the EigenLayer whitepaper [§] for the
special case that f(m, A) = 74.



On Sybil-proofness in Restaking Networks 5

‘Without Sybils ‘With Sybils

Before attack: Before attack:

o1 =2/3

/G
@ 0?:1/3

7

=1 7® oy =11

m =11

After attack: After attack:

~

Fig.2: Sybil Attack Comparison with a; = 2/3: Left side shows the non-sybil
scenario where both the attacked service s; and attacker node v, are completely
removed after the attack. Right side demonstrates sybil resilience through node
splitting: (1) vy creates sybil identities v% and vf with split stakes O’i =2/3 and

ol =1 /3, (2) Only v] attacks and hence, only v] is slashed while v° survives,
(3) Service s, maintains edge through v% despite the attack.

Definition 3 (Sybil Attack) An attack is called a Sybil attack if it involves
an attacker who has created Sybils. We distinguish two canonical types.

1. Type I: only one Sybil identity of an attacker participates in the attack; the
others remain passive.
2. Type II: more than one Sybil identity participates in the attaclﬂ.

This captures the economic distinction we analyze below; when convenient we
refer to a k-split in examples, but the classification remains Type I vs Type II.

Definition 4 (Sybil-proofness) An attack is type K Sybil-proof, K € {I,II}
if no attacker improves utility by creating type K Sybils (for any number of splits
k>2).

Definition 5 (Stable attack) An attack (A, B) is stable if every attacker in
B contributes positive stake to all services in A that they are connected to, i.e.,
no attacker is redundant with respect to the feasibility constraints in .

> In practice, a service may have to first approve new nodes (cf. EigenLayer’s updated
slashing model), making some Type II attacks infeasible.
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Utility and profitability under partial slashing. In sections on partial slashing,
we evaluate profitability via attacker utilities: the total profit from the attacked
services f(m, A) is distributed proportionally to attackers’ used stake, and slash-
ing is computed by the chosen mechanism. An attack is profitable if the sum of
attackers’ utilities is positive under the mechanism.

4 Marginal slashing mechanism

In this section, we describe a marginal (partial) slashing mechanism. Let (A4, B)
be a stable attack, i.e. every attacker is contributing to the attack. Let 2 denote
the power set of A, excluding the empty set. For any S € 2A, denote by Bg all
attacking nodes that attack and only attack the services in S. We can write
Bs ={ve B|ANdv =S} That is, {Bs}g_,a is a disjoint partition of the
attacker set B. In particular, USGZA Bg = B and for any S, S" € 2 with S #* s’
we have that BgN By = (). (Note that some Bg might be empty.) Furthermore,
for all v € Bg, v attacks all services s € S and v does not attack any s’ € A\ S.
Let S € 2 and for all s € S define

S

CBg = (095 — E O—BS/ (3)
S'cA
S'+£8
ses’

and the maximum over services in S

cpg = rsneagccSBS. (4)

Slashed Amount. The slashed amount for the set By is
Vg, = 0B, — |Bsl(op, — CBS>]+ (5)
Each operator v € Bg is slashed
Yy = [UU—(UBS—CBS)]+ (6)

and note that ) By Yo = ¥, Note that the brackets [-]4 ensure non-negativity
and imply 0 < %, < 7,,. In the interior regime where cg, € (0,0p,], the brackets
are inactive and the algebra below applies unchanged.

Proposition 1 The following holds trueﬁ

(i) The marginal slashing mechanism in —@ is Type I Sybil-proof.
(ii) The marginal slashing mechanism in -@ is not Type II Sybil-proof.

% Proof in Appendix
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Special case. We look at the special case where all groups consist of at most
one operator, that is VS € 2’4, |Bg| < 1. For each non-empty Bg, the group
Bg (which consists of only one operator v) is slashed 5, = ¥, = cp, =
MaX,cg MgTps — ZS/@A\S:sEs/ 9B, using Equations (3)-(6).

Remark 1 In Proposition[I] we find that the simple slashing mechanism is not
Type II Sybil-proof. For Type II Sybil-proofness we study a different mechanism—
multiplicative mechanism, in the next section.

Ezample 2. Consider the restaking graph G = (S,V) in Figure [3| with S =
{81, 82} and V' = {vg, v1,vq,v3, v, }. Assume there is an attack (A4, B) with A =
{s1, 82} with 71, w5 (large enough) and oy = 2/3, a5 = 1/2, and B = {v;,v9,v3}
with 07 = 1,09 = 1.5,03 = 1. Furthermore, there are two non-attacking op-
erators vy, v, with stake 1 each. The neighborhoods are 9s; = {vg,v;,v5} and
0sy = {vy,v3,v4} and we have that By = {v1}, Bray = {vs}, B9y = {UQ}D
Next, note that the minimum stake required to attack s; is ayop,, =2/3-3.5 =
2.33 and for s, attackers need a0, =1/2-3.5 = 1.75. Then,

— For the attacking node v,:
. CSB1{1-2} =233-0p,, =233-0,=233-1=133
. cB"'{m} =1.75 —SO'B{Q} :5 1.75 - 03 =1.75-1=0.75
® B4y = max{cBl{m},ch{m}} =1.33
e Hence, 9, = CB(y .0y
— For the attacking node vy:
CBy = cSBl{l} =233-o0p,, =233-0,=233-15=1083 and hence

1/)1;1 = CB{I}'
— For the attacking node vs:
CBpyy = 0532{2} = 1.75 — OB = 1.75 — 09 = 1.75 — 1.5 = 0.25 and hence

’ll)'US = CB{Z} .

The slashing profile for attackers under the marginal slashing mechanism is
(Yo, s Yoy Yoy = (0.83,1.33,0.25) and there is no incentive to create Type I
Sybils.

Further examples are provided in in Appendix [B]
5 Multiplicative slashing mechanism
In this section, we analyze a multiplicative (partial) slashing design. The rule

charges each attacking player v € B the same fraction ¢ of its stake, i.e., a slash
of ¢ o,. For a single service s, we set

by = ay 205 (7)
OB

" We use shorthand notation and write Byyy instead of By, 3
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o, =2/3 7@ oy =1

ay =1/2 7@ og =1
@ oy =1

Fig. 3: Example of a restaking graph.

Equivalently, the rule retains a common fraction 1 — ¢, of each attacker’s stake.
Note that this design charges the threshold amount (proportional to «, oa,),
rather than only the excess over threshold. It is identity-invariant and yields
closed-form utilities. See Lemma [ for how this choice relates to the minimal-
slashing program (in the single-service case, the minimal program would slash
by A" =1—¢,). Thus ¢, € [0,1].

Proposition 2 The multiplicative slashing mechanism is Type II Sybil-proof for
any number of Sybils k > 2E|

We further assume that the value of the attacked service(s) is shared among
the attackers in a “fair” way, namely, proportionally to the (used) stake,

mo(0oy,) = ms - —. (8)

5.1 Principled derivation via minimal slashing

We motivate partial slashing as the least intervention needed to restore feasi-
bility. The protocol aims to deter deviations without over-penalizing honest or
minimally-contributing attackers. Formally, among all slashing vectors that re-
duce the post-slash used attacking stake on every attacked service to the target
level, we pick one that minimizes the total slashed stake. This ensures: (i) fea-
sibility restoration, (ii) no over-slashing beyond what is necessary, (iii) identity
invariance under splits (linearity in stake), and (iv) transparency via per-service
multipliers. Consider variables {#,},cp and the program

min v
{¥,}>0 Z v

veEB

st Y (0,—1,) < a,05,  (Vs€A).

vEBNOs

® Proof in Appendix
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At any optimum with a successful pre-slash attack (i.e., when ) _pr5 0, >
a0, ), the inequalities bind as equalities. Let A, > 0 be Lagrange multipliers for
the (binding) constraints. The KKT conditions imply that any optimal solution
satisfies

Y, = ( max A ) 0,, with A; > 0 only on binding services.
s€e ANdv

Thus, each attacker’s slashing factor equals the maximum multiplier of the ser-
vices they attack, i.e., the max-scheme. This rules out additive (sum) schemes
as non-minimal (they double count across overlapping services). The program
is convex, admits optimal solutions, and its KKT conditions certify optimality
and uniqueness of the multipliers under mild regularity.

Lemma 1 (Single-service multiplier and relation to multiplicative fac-
tor). Consider a single attacked service A = {s} with aggregate attacking stake
op and total restaked stake op = og,. If o > o407, the minimal-slashing
program above slashes each attacker by the same fraction

Qg O

A= 1-

0B

Equivalently, it retains a common fraction 1 — \* = O‘UJT of every attacker’s
stake. If the multzplzcatwe design is defined to slash a common fraction ¢4 :=
oF UT —

,then N =1 — ¢,.

Proposition 3 (Max-of-factors is componentwise minimal among factorized rules)
Fiz an attack (A, B) and suppose a slashing rule is identity-invariant and fac-

torized, i.e., there exist nonnegative per-service factors {\;}seca such that each

attacker v € B is charged

Uy = (g({/\s}SEAﬂé)v)) Ty

for some aggregation function g that is monotone in each argument. Among such
rules that restore feasibility (i.e., drive post-slash used stake to the thresholds),
the choice
A ) = A

g({As}) = max A,
is componentwise minimal: for any other admissible factorized rule with aggre-
gation § # max, its slashing vector w satisfies 1/)1, >, for all v € B, with strict
inequality on some instances.

5.2 Single service

Consider an attack (A, B) with single service A = {s}, and let us consider an
arbitrary operator v € B and its Sybil strategy with stake z € [0,0,] in the
attack and o, — x not in the attack, i.e. Type I Sybil. Let further denote by
0y = o — 0, the remaining stake in the attack and by op = 0y, the total
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stake restaked with s. Then, we can express the fraction ¢ of partial slashing as
a function of z,

— 9T
o) = ©)

The mechanism slashes every v' € B’ an amount o, = ¢(x)- 0, . Assuming the
value 7, is shared among the attackers proportionally to the (used) stake (8],
we can write the utility of v as a function of her Sybil stake x as follows:

G S E R .

uv(x):ﬂ-s I+ 0w
B

.T‘"O'B/ x+JB/

—( ) _r
=(my — a4 0p ity )

Proposition 4 For a single service, the multiplicative partial slashing mecha-
nism is Type I Sybil-proof. That is, for any profitable attack (according to this
partial slashing scheme), no attacker improves her utility by using Sybils, under
the proportional value redistribution in .

The feasibility requires x such that ¢(z) < 1, meaning that with such an x
the attack is feasible (we do not need more stake from the others than what they
actually have). Assuming the attack is feasible (for the original definition), that
is, ¢(o,) < 1, then profitability implies that the optimal z is the feasible z = o,,.

5.3 Two Services

We consider a setting of two services that are being attacked, that is, let (A, B)
be an attack with A = {s1,s,} and B = By} U By,,y U By, 4,1 the disjoint
union of attackers. In particular, B¢ = {v € B | Andv = S} for § € 2. A
player v € By, ,,) may follow a Type I Sybil strategy. In particular, v can split
his stake into z and o, — x, where the latter is not participating in the attack,
x stake contributes to attacking s; and s5. Then,

O'T1 O'T2

$1(2) =g ———, P2(7) = ag——=—, (10)

m—l—aB; x—f—oB;

where the total stake attacking s; is x+0 5 and o7, = 04, fori € {1,2}. We next
consider how to compute the combined partial slashing for a player attacking
both services. The minimal-slashing derivation above yields the max-scheme:

Pvotn () = max(¢y (), po(z)). (max-scheme)

o 1f q(0) > 0 due to background randomness, the Jensen step in Proposition [7] is
replaced by ¢q(z/k) < q(z) 1%’(0) + ¢(0), which suffices for the same qualitative
conclusion for fixed ¢(0) < 1 and k > 2.
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The utility of player v is given as sum of the profits of both attacked services
net the slashed stake,

x x
Uy(x) =T ———— + Tg————— — & - Ppoen(T). 11
) =M+ T o o) (1)

We have the following result.

Proposition 5 For m; and w5 large enough, the multiplicative partial slashing

mechanism with (max-scheme)) is Type I Sybil-proof. That is, an attacker will
attack with her full stake and not create a Type I Sybil.

Remark 2 Slashing the “maximum” between the two slashed stakes as in
for the attackers in the intersection, means that the attackers in one service only

will be charged either the same proportion (in one service) or a smaller propor-

tion (for the other service). This is the unique minimal (componentwise) solution
among factorized, identity-invariant slashing rules that restore feasibility.

Corollary 1 (n-service extension). Let A = {s,...,s,} and suppose v
attacks every service in A with stake choice x € [0,0,] engaged at all ser-
vices. Under the maz-scheme and proportional sharing, if (m; — ayop,) > 0
for alli € {1,...,n}, then any best response is x, = o, (no Type I Sybil). If
(mi —ayor,) <0 for all i, then any best response is x,, = 0.

We illustrate the multiplicative slashing scheme in Example[d]in Appendix[B]

For completeness, we also examined an additive partial-slashing scheme as
an alternative to the max-scheme. The qualitative takeaway is that, when profits
are large enough, it is also Type I Sybil-proof (attackers optimally use their full
stake). Full derivations are provided in Appendix

Sharing-rule sensitivity. The single-service Type I result (full participation when
g > a,07) hinges on proportional sharing at the attacked service. Two illustra-
tive alternatives:

— Winner-take-all per service. Rewards m, accrue entirely to the smallest coali-
tion that clears the threshold. Under the max-scheme, this can create non-
monotone best responses and reintroduce Type I incentives even when m, >
Q0.

— Pooled profits across services. If rewards across attacked services are pooled
before splitting proportionally, the two-service best-response derivative re-
places (m; — a;or,) by (Z] m; — a;or,), expanding the region where full
participation is optimal and shrinking withholding incentives.

Thus, proportional per-service sharing is sufficient (not necessary) for the stated
Type I results; pooling strengthens them, winner-take-all weakens them. More
details in Appendix[D] A full taxonomy is left to future work.
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6 Limits of Slashing Rules: An Impossibility Result

This section motivates and formalizes a limitation of partial-slashing designs:
under mild axioms, no single rule can simultaneously eliminate incentives for
both Type I and Type II Sybil strategies across all environments. We first explain
why such a limitation is natural, then state the properties one may reasonably
require of slashing rules, define them precisely, and prove the impossibility.

6.1 Why a trade-off may be inevitable

Type II strategies (multiple identities all participating) exploit per-identity arti-
facts. A sound defense is to make slashing identity-invariant, i.e., depend linearly
on stake regardless of how it is split. However, in heterogeneous multi-service
settings, a Type I strategy (withholding some identities) can shift exposure away
from tighter constraints while preserving exposure to looser ones, potentially im-
proving utility whenever profits are uneven. This suggests a fundamental tension:
removing Type II incentives via identity invariance can open profitable Type I
options in heterogeneous environments.

6.2 Three desiderata for slashing rules

We identify three properties that are both conceptually natural and practically
desirable.

— Identity invariance: Splitting a stake into multiple identities that behave
identically must not change total slashing for that stake.

— Feasibility restoration: After slashing, the retained (used) attacking stake
must restore (or preserve) feasibility constraints on every attacked service.

— Non-exploitative: No attacker is slashed a negative amount nor more than
its own stake.

6.3 Mathematical definitions

Fix an attack (A, B) with per-attacker stakes (0,),cp and service constraints
indexed by s € A. A slashing rule is a mapping R producing nonnegative slashes

= (d%)veB-

Definition 6 (Identity invariance) For any attacker v and any split of o,
into k > 2 parts {a,(f)}f:l with ), UQ(,Z) = o,, and any attack profile in which the
k identities behave identically (same edges and choices), the rule satisfies

Z (NO (R) =4, (R).
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Definition 7 (Feasibility restoration) Let the post-slash used stake be x, :=
0y —,. For every attacked service s € A, the retained attacking stake meets the

threshold
Z Ty < A5 Tpg-
vEBNOs

In instances where the pre-slash attack is successful (i.e., the pre-slash used stake
exceeds the threshold), minimal slashing drives the post-slash used stake to the
threshold, so the inequality binds at the optimum.

Definition 8 (Non-exploitative) For every attacker v € B, the slash satisfies
bounds
0 < vy, < o,

6.4 Impossibility theorem

Proposition 6 (No universal rule eliminates both Sybil types) No slash-
ing rule that satisfies identity invariance, feasibility restoration, and non-exploitative
bounds can, for all attack instances and parameters, simultaneously eliminate in-
centives for both Type I and Type II Sybil stmtegiesm

The takeaway is design-theoretic: rules that are split-proof against Type II
(identity-invariant) face inherent tension with Type I in heterogeneous, multi-
service environments. Mitigations include aligning reward-sharing and partici-
pation policies (e.g., pooled profits across services, service-level gating /approval,
or dynamic penalties) to shrink the profitable withholding region.

Admission control (whitelisting) and caps. Suppose a service s approves new
nodes from a whitelist. Then a Type II attacker cannot freely increase the num-
ber of participating identities on s. In our framework, this truncates the feasible
split set and weakens the Type II threat but does not remove the need for iden-
tity invariance in general multi-service attacks: an attacker can still split across
other approved services. Proposition [f] continues to hold under whitelisting, as
the proof constructs environments with pre-approved identities and relies on
heterogeneous multipliers (\,), not on unbounded k. Slashing caps (per-service
maximum fractions) can reintroduce non-minimality and reduce Type II deter-
rence by saturating at the cap; the max-scheme remains componentwise minimal
subject to caps, but strict Type II proofness can fail if the binding cap is below
the KKT multiplier.

7 Sybil-proofness in the Stochastic Block Model (SBM)

Sybil profitability is not only a property of the slashing rule, but also of the
network topology. To capture this, we study Sybil-proofness in random graph

9 Proof in Appendix
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models. Our approach uses a mean-field abstraction (full details in Appendix
that allows us to replace intractable graph dependencies with probabilistic ex-
pectations.

We first show that in homogeneous Erdds—Rényi networks, splitting is strictly
worse than using one identity (Proposition . In contrast, introducing mini-
mal heterogeneity via a two-block stochastic block model creates distinct “high-
threshold” and “low-threshold” service environments. This asymmetry allows at-
tackers to arbitrage across blocks, and Sybil splitting can strictly increase their
probability of success (Proposition .

The formal definitions of the SBM, clearance functions, and detailed deriva-
tions are deferred to the appendix; here we highlight the main results and their
implications.

7.1 Stochastic Block Model (SBM) for restaking networks

Validators and services are partitioned into blocks, and the probability of an
edge depends on the respective blocks. This allows us to interpolate between
homogeneous Erdgs—Rényi graphs (one block) and heterogeneous networks with
distinct service communities.

To evaluate attack feasibility we define the clearance function: for a service
in block b,

qp(y) = Pr[y clears the feasibility threshold of s € Sy ], (12)

which gives the probability that an attacker with stake y can successfully attack.
Derivations using the mean-field approximation are given in Appendix [G}
An attacker committing stake x then has success probability

p(z) = Zwb (), (13)
b

while if the stake is split into k Sybils of size x/k, the probability that at least
one succeeds is

Plak) = 1- (1-pe(@)’,  ple) =D wya(a/k). (14)
b

This framework lets us compare single-identity and Sybil strategies in both
homogeneous and heterogeneous networks.

7.2 Sybil-proofness in the Erdés-Rényi random graph

Nash best responses. See Appendix [F] for full statements and proofs of best re-
sponses and existence (single-service closed form; two-service monotonicity and
existence conditions) under the max-scheme and proportional sharing. A homo-
geneous network is one where all nodes are statistically equivalent and there are
no coalition structures. In the context of our SBM framework, this corresponds
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to the simplest case where there is only one block for operators and one block
for services (R = 1). Here every validator-service edge appears independently
with probability p, and all services are statistically identical.

In this setting, the clearance function ¢(y) is strictly concave for sufficiently
large networks (more details in Appendix. Consequently, splitting stake strictly
reduces the success probability:

P (z;k) < p(x) forallz>0,k> 1. (15)

Proposition 7 In Erdds—Rényi networks, Sybil splitting is strictly dominated by
a single-identity strategy. That is, Sybil attacks never improve success probability.

The intuition is that, since every service has identical difficulty, dividing stake
only weakens each individual attempt, and the combinatorial advantage of mul-
tiple Sybils cannot compensate. This creates an illusion of security, however, the
moment homogeneity is broken, this security guarantee can vanish. The follow-
ing section will demonstrate this breakdown by introducing just one layer of
heterogeneity via a two-block SBM.

Expected PNL under the max-scheme (ER). An expression for the expected PNL
is deferred to Appendix [G]

7.3 Sybil-proofness in a Two-Block SBM

The homogeneity of the Erdés-Rényi model is the source of its Sybil-proofness.
To find a vulnerability, we break this symmetry by constructing a two-block
stochastic block model (SBM). This creates two distinct service environments:
a “high-threshold” block with large expected total stake, and a “low-threshold”
block with smaller expected total stake. An attacker connected to both faces a
dilemma. A single identity must either commit a large stake (sufficient for the
high-threshold block but excessive for the low-threshold block), or a small stake
(well-suited for the low-threshold block but insufficient for the high-threshold
block). By splitting, the attacker can present different stake profiles to each
block, thereby arbitraging across them.

Proposition 8 In a two-block SBM with heterogeneous thresholds, Sybil split-
ting can strictly increase the probability of success. Formally, there exist param-
eters for which p'(z; k) > p(z) for some k > 2.

This shows that minimal heterogeneity is sufficient to reintroduce a Sybil
advantage. The formal proof and results on the expected PNL and on the optimal
number of Sybils are given in Appendix [G]

Discussion. The random graph analysis reinforces the impossibility result of
Section [6} no slashing mechanism can rule out Sybil attacks once heterogeneity
is introduced. In homogeneous ER networks, concavity ensures Sybil-proofness,
but even minimal structure in the interaction graph (as in the two-block SBM)
suffices to reintroduce profitable Sybil strategies. This highlights that the limits
identified in Section [6] are not only a feature of the mechanism, but also an
inherent property of realistic network topologies.
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8 Conclusion

We studied Sybil-proofness in restaking protocols. Our analysis distinguished
Type I and Type II attacks, and characterized the conditions under which
marginal and multiplicative slashing schemes deter each type. A central result
is an impossibility theorem showing that no mechanism can simultaneously pre-
vent both attack types, establishing an inherent trade-off in restaking design.
This motivates our analysis of random graph models: while homogeneous Erdgs—
Rényi networks are Sybil-proof, even minimal heterogeneity in a two-block SBM
suffices to reintroduce profitable Sybil strategies.

Taken together, these results demonstrate both the power and the limitations
of mechanism design for restaking. They highlight that ensuring Sybil resistance
requires not only careful choice of slashing rules, but also attention to the struc-
tural properties of the validator-service interaction network.

A natural direction for future work is to incorporate dynamic aspects such
as repeated interactions, long-term rewards, and operator reputation. Another
is to extend the analysis to more general network models and slashing schemes.
Together, these directions can help clarify the security—efficiency trade-offs in
designing robust restaking protocols.
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reducing its stake down to 7, > v, keeps feasibility and the individual slash
remains 1/~1v = 1, while its profit share weakly decreases, hence no incentive to
Type I. For (ii): splitting o, into 0'71}, 03 yields 772111, + 1/)?, =0, —2(0op, —cp,) <
o, — (0Bg — cBg) = 1y, thus Type II reduces total slashing.

Proof of Proposition [4 For Type II: An operator v with stake o, is slashed
¢ 0,; splitting into k identities with stakes summing to o, leaves total slashing

> (baf,i) = ¢ o, unchanged. For Type I in one service: the derivative @7

75’ 7, hence full participation if 7, > a o7 and

. . ’ o _ 5
implies u,(x) = (7, — azo7) v

zero otherwise.

Proof sketch of Lemmal[], By symmetry and linearity, any optimal solution must
satisfy 1, = Ao,. The binding constraint ) _5(0, —9,) = a;op pins A via
Aog = op — a4 o7, yielding the expression above.

Proof sketch of Proposition[3 Feasibility constraints are linear and separate by
service. The Lagrangian dual uses one multiplier per service, and KKT com-
plementary slackness implies ¥, = (maxsE ANdv /\S)O'U at any minimum. Any
other monotone aggregation § that maintains feasibility must satisfy ¢ > max
pointwise on instances where multiple service constraints bind; otherwise fea-
sibility would be violated along some coordinate, establishing minimality and
uniqueness within the factorized class.

Proof of Proposition[j Observe that
Ju, oy

=(my—ay-0 — Db
ax ( T) ($—|—O'B/)2

; (16)

thus implying that the optimal strategy for v is either to use no Sybil (x = o, if
g > Qg+ 07 ), or to not take part of the attack (x = 0 if 7, < - o). Note that
the latter condition corresponds to the case the attack is not profitable (even)
under the partial slashing mechanism,

71—s_O[s'O'T:7-‘—5_<b(x)'(‘(E—i_aB/) (17)

as by definition =+ 0 5 is the overall stake in the attack, given the Sybil strategy
x of player v. We have thus shown the following.

Proof of Proposition[J Let v € By, 1 be attacking both s; and s,. As we are
using the scheme in (max-schemel), the utility becomes

Uy () = 7 ——— 4 Ty ———— — & max(¢y (x), o (x)) (18)

erO—Bi $+(TB;

x T

1 19
v vy +W2x+03é> {(h@26,@n T (19)

= <(7T1 - 0410T1)

£ T
(Wlw e 0‘2%)%) Yooy - (20)
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a20T2 UB& —aloTl UB/2

0 X107, —A20T, Ty
| | |
| | | z
é
my large enough -

m; large enough

Fig. 4: We have two regimes for smaller x and for larger x. The optimal choice
of z given that it is small and 7y large enough, is the rightmost point in the
left regime. In the right regime, the rightmost point o, is optimal for 7 large
enough.

The condition in the indicator function ¢, (x) > ¢(x) is equivalent to

OéQO'T2O'B1 — OélO'TIO'B;

x> (21)

a0, — 0T,

The derivative of the utility function with respect to z is

ou o (o

== | (1 — o) : + 7o ? L, (@)>s(x)}+ (22)
ox ( 1 (1‘ + 0_31)2 (l‘ N UB;)Q {#1(z)>¢2(x)}

op op

M5 T (M —aor,) ——— | Lis ) <pu(@}  (23)
(x—|—031) (x+03;)

0‘2‘7T2 O-Bi —(XIUTI O’Bé

Assume the attacker chooses x > . Then, if (7 —ayop,) >

Q1o —Qa0T,
0, the derivative is positive, meaning that x = o, maximizes the utility of the
attacker v. That is, no Sybil and attacking with the full stake is the optimal
strategy. If, however (m; — a0, ) < 0, there may be an incentive to do Sybils.

In particular, the first order condition gives,

O, — 9B, A oo, —m Op)
— o JBé
Q07,0 1 =007 O

By
Q107 —Q20T,
when profits are large enough.

Similar for the case x <

52 See Figure [4] for optimal choices

Proof sketch of Corollary[1l The derivative of utility generalizes piecewise with
Opoth (T) = max; ¢;(z) and is a sum of nonnegative terms whenever every (m; —
a;or,) > 0, implying monotonicity and the boundary optimum at x = o,. If all
margins are negative, the derivative is nonpositive on each regime and = = 0
maximizes utility.
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B Examples

Ezample 3. Recall Example We replace v, by three operators By oy = {v;, v%, vg’}
with stakes 0.5, 0.75 and 0.25, respectively. Then, the slashing profile for these
three nodes is (wv; , wvg, wvg) = (0.33,0.58,0.08) while the slashing amounts for
the other attackers stay as in the previous example. Note that the total slashed
amount for the attackers attacking both services is 0.99, compared to the 1.33
when there is a single attacker attacking both services. If the three attackers are
Sybils originating from v, then, v, saved 0.34 in slashing by creating Type 11
Sybils. This example illustrates how the marginal slashing mechanism prone to
Type II Sybils.

Ezample 4. Recall Example [2| with Figure 3l Assume there is an attack (A, B)
with A = {sq, s9} with 7y, 7y and @y = 2/3, a5 = 1/2, and B = {v;,vy,v3} with
01 = 1,09 = 1.5,03 = 1. Furthermore, there are two non-attacking operators
Vg, V4 With stake 1 each.

The neighborhoods are as follows:

— 0sy = {vg, v1,v2}
— O0sg = {vg, v3,04}
— vy is attacking both, v; only s; and v only sq

Next, note that the minimum required stake to attack s; is ayo5,, =2/3-3.5 =
2.33 and for s, attackers need a0, =1/2-3.5 = 1.75.

— No Sybil: With the multiplicative scheme (with full stakes), we have that
o1 = fﬁ% = 0.932 and ¢, = 1%53—51 = 0.7. Hence, the maximum of both is
¢1, and the attacker attacking both services vy is slashed ¢ - 1.5 = 1.398. v,
is slashed the remainder to make the attack feasible: 2.33 — 1.398 = 0.932.
Same for vs, it is slashed 1.75 — 1.398 = 0.352. So the slashing profile for
(v1,v9,v3) is (0.932,1.398,0.352).

— Type I Sybil: However now, if v, would create a Sybil (1.4,0.1) and attack
only with 1.4, then ¢; = {235 = 0.97, and therefore vy is slashed ¢; - 1.4 =
1.36 and v, is slashed 0.97, and v is slashed 0.39. Hence, by creating a Sybil,
vy was slashed less and the other attackers more. So the slashing profile for

(v1,v9,v3) is (0.97,1.36,0.39).

Total slashing without Sybil is 0.932+41.3984-0.352 = 2.682; with the Type I split
it is 0.97+1.36 +0.39 = 2.72. This aligns with the max-scheme’s componentwise
minimality (Proposition : moving away from the max aggregation increases
some components and can raise the total.



20 Tarun Chitra, Paolo Penna, and Manvir Schneider

C Alternative additive scheme (sketch)

For completeness, one can consider an additive scheme; we only sketch the main
expressions and focus on the principled max-scheme.

(@) = | ( )—— +( )——— |1 +
U, \T) = T — O _— To — (o0 -
v 1 1¥7 x_;'_a-Bi 2 29T, x+0_B; {1 (x)+d2(x)<1}
(25)
T X
—zl1 . 26
<W1x+03, +7T2x+UB, I) {¢1(2)+2(2)>1} (26)
1 2

The derivative is

3uv O—Bi Op!
=|(m —ajop ) ——5 4+ (mg —agop,)—2— | Lip (2 Y +
o (( 1 TI)@HUBQQ (my — ay T2)(x+03;)2 {61 (2)+92(2)<1)
(27)
UB/ O’B/
(m (erJl )? e (z+; )2 1) Lig1 @)+6a@)>1}- (28)
By B>

Assume that the attacker chooses x such that ¢,(z) + ¢5(x) < 1. Then, if, for
example, (my — ayoq,) > 0 and (79 — apor,) > 0, the derivative is positive,
meaning that x = o, maximizes the utility of the attacker v. That is, no is Sybil
and attacking with the full stake is the optimal strategy. In the other case, we

g _/ o _7

need 7 %L +71y—22 5 > 1 to ensure that no Sybils. This is again true if
(I'HTB;) (7”""73;)

m, and 7o are large enough. We have shown the following.

Proposition 9 Form; and my large enough, the additive partial-slashing scheme
described above is Type I Sybil-proof: an attacker’s best response is to use full
stake (mo Type I Sybil).

D Alternative utility function

Consider Example [4] and consider the utility functions instead of only slashed
stake. We observe that attacking with more stake is beneficial for the attacker
v as she receives a larger share of the profit. For example, let m; = my = 2. By
the definition of profitability the sum of profits (7, + m,) is equal to 4, while
the sum of the slashed amounts will be below 3.5 (=0, + 05 + 03).

— Without Sybil (z = 03):

x x
uy(r) = T toy + T2 Yo, —z - max(¢y(z), g2(x)) (29)
1 2
1.5 1.5
=2— +2——1.5-0.932 30
2.5 + 2.5 ( )

= 1.002 (31)
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— With Type I Sybil (z < 05):

T T

ty(r) = m Tty + ey o — - max(¢; (), p2(x)) (32)

9 x I T 2.33
= — X
r+1 r+1 r+1

(33)

and tg(x) > uy(x) <= x > 1.5, which means that from a utility perspec-
tive there is no incentive for a Type I Sybil.

— More generally, for any m and m = 2.33 — 7y, any =z < 1.5 will lead to
Uy(x) > ug(x), however, m + my = 2.33 way less than the total slashed
amount.

Note that for node v; it may not be even worth attacking with this type of utility
function. In particular for an attack with full stakes,

01

1
ui(oy) =m —o01¢1(0y) = 22— —0.932 = -0.132 (34)

01 +0’2 5

In fact, ui(z) is decreasing in z and would be maximized at x = 0, i.e. not
attacking.

How to go about the issue with negative utilities in Equation ? Let (A, B)
be an attack. The utility of a player v € B is

uy(z) = f(m, A) — ¢, (x) (35)

.%'-I—O’B/

where B’ = B\ {v}.
In the case of two services, ¢,(x) = Ppoin (). The utility of node v; from
Example [4] is positive. Indeed,

1
uy(0) = 4=~ 10932~ 0.21. (36)

E Proof for Impossibility Proposition

Under identity invariance, total slashing for a given aggregate stake is inde-
pendent of the number of identities. Consider two services with multipliers
A1 > Ay > 0 and proportional sharing. For an attacker v engaging x at both ser-

vices, U, (z) = 7 —%— + 1y —%— — A\ 2. For \; large enough and 7, sufficiently
:EJrD'Bl :E+0'Bz

large (and with slack at s; maintained by others), u;(:c) < 0 at the current x, so
withholding a small amount (Type I) strictly improves utility while feasibility
and bounds remain satisfied. Thus no rule satisfying the three properties can
eliminate both types in all environments.
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Proof of Proposition @ Step 1 (Type II pressure forces identity invariance).
Any rule with per-identity thresholds or nonlinear aggregation can be gamed by
splitting into sufficiently many identical identities that all participate, strictly
reducing total slashing for fixed aggregate stake. Hence, to preclude Type II
gains universally, identity invariance is necessary: total slashing must depend
only on aggregate stake and not on the number of identities when behavior is
identical.

Step 2 (With identity invariance, heterogeneous services induce Type I in-
centives). Consider two attacked services si, s, with proportional sharing of
profits and feasibility-binding multipliers A\; > Ay > 0 (as in the KKT char-
acterization of minimal slashing). Identity invariance implies that an attacker
v connected to both services is charged a factor equal to max(Aq, Ay) = A; on
the stake it commits to the intersection. Let 7,75 > 0 denote service profits
allocated proportionally to used stake. If v splits into two identities and with-
holds one identity on s; (Type I), it reduces its slashed amount by A; times
the withheld stake, while losing only proportional profit on s; and preserving
its exposure and profit share on s,. Choosing parameters with my sufficiently
large and the background slack at s; sufficiently small (so that A; remains bind-
ing via other attackers), the marginal reduction in slashing strictly dominates
the marginal loss in profit, hence Type I yields higher utility. Formally, write

Uy(z) = m sz‘/ + ﬂgﬁ — Mz for x stake engaged at both services (others
1 2
fixed). For A\; > Wl(zfizl;f and 7T2(1+2722;)‘2 large enough, %Zv < 0 at the original

x, showing a profitable reduction in z (withholding) exists.

Step 3 (Non-exploitative bounds and feasibility are preserved). The withhold-
ing move reduces x but, by construction, keeps feasibility satisfied thanks to other
attackers’ slack (feasibility restoration holds), and slashing remains in [0, 0]
(non-exploitative). Thus, any identity-invariant rule admits environments where
Type I is profitable.

Combining Steps 1-3, no slashing rule can satisfy the three properties and
also eliminate both Sybil types uniformly across all environments.

F Nash Best Responses under the Max-Scheme

In this appendix we characterize best responses and existence of equilibria under
the multiplicative max-scheme with proportional sharing.

F.1 Single service: best response and existence

Consider a single service s with total restaked stake o = 0p, and threshold
a, € (0,1]. Let B denote the set of attackers and o = > _50,. Under the
max-scheme, the slashing factor is

vEB

or
¢(m):asm+0_ I Op' = 0B — Oy,
B
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for a player v choosing Sybil stake x € [0, 0,]. With proportional sharing, the
utility of v is

u, () =7, %‘713’ —z¢(x) = (7, —a,or) %‘73”
which is strictly increasing in x if 7, > ayor, strictly decreasing if 7, < a o7,
and flat at the boundary in the knife-edge case. Hence:

Proposition 10 If 7, > a,or, any best response is x,, = o, (full participation,).
If T, < agop, any best response is x,, = 0 (no participation). If equality holds,
any z € [0,0,] is optimal.

Existence of a pure-strategy Nash equilibrium follows immediately: at a prof-
itable service, the unique best response profile is full participation for each at-
tacker; otherwise all attackers optimally choose zero.

F.2 Two services: monotonicity and existence
Let A = {s1, 85} and suppose v attacks both services with stake choice z € [0, 7]
(engaged at both). Denote o, the aggregate stake of the other attackers at
service s; and op, = 0y, . The service-wise factors are

¢i(x) = a

or, .
7 . ) € 1727
e e

and the max-scheme charges ¢y, () = max{¢,(z), $o(z)}. With proportional
sharing, utility is
x x

uv(x) =T x+0'Bi +7T2 I+O’B; _x¢both(‘r)'

The derivative is piecewise given by

g _1

(m —ajop) —2— + 7 ( - #1(7) > ¢o(2),

(w0, ) z+a'B/2)2 ’
¢1(z) < Po(x).

ou,

’ g _1
Oz T1ﬁ+(”2—&20’n)ﬁ,
1 2
Therefore the best response is monotone in the per-service net margins (m; —
a;or,): if both are positive, the derivative is positive on each regime and T, = 0y;
if one is negative, the first-order condition yields an interior solution given by
(24) (when feasible); if both are negative, x, = 0.

Proposition 11 Suppose (11 — ayor,) > 0 and (73 — azor,) > 0. Then any
best response is x, = o,. If (7, — ajop,) < 0 and (73 — agorq,) < 0, any best
response is x, = 0. In the mized-sign case, if lies in [0,0,] and respects
the regime condition , it gives the unique interior maximizer; otherwise the
mazximizer is at the feasible boundary.

Existence of a pure-strategy equilibrium follows from continuity of payoffs, com-
pactness of strategy sets, and that each player’s best-response correspondence is
nonempty and upper hemicontinuous (piecewise-smooth with boundary cases),
so Kakutani applies.
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G Sybil-proofness in the Stochastic Block Model (SBM)

This section finds that Sybil profitability is not an intrinsic feature of a given
slashing mechanism alone, but is rather an emergent property that arises from
the topology of the validator-service interaction graph. The security of a restaking
protocol is linked to the structure of the network it governs. When the network
exhibits community structures, with dense clusters of interaction between certain
groups of validators and services, arbitrage opportunities emerge which can be
exploited by attackers.

This section studies the stochastic block model (SBM), a more expressive
random graph model capable of representing community structures. Within the
SBM framework, validators and services are partitioned into distinct blocks, and
the probability of a connection (a restaking relationship) depends on the blocks
to which the validator and service belong. This allows for the modeling of scenar-
ios where, for instance, a "clique" of high-value services attracts a dense network
of validators, while other services exist in sparser, less-connected regions of the
graph. It is precisely this structural heterogeneity that a sophisticated Sybil at-
tacker can leverage to their advantage, turning a seemingly secure protocol into
a profitable target.

PNL Maximization. An attacker is modeled as a rational agent seeking to max-
imize their expected utility. The profit-and-loss (PNL) for an attacker v with
attacking stake x, targeting a set of services A is given by the total rewards
gained minus the total stake slashed:

x
PNLU(xva T _y, A) = 77571] — T, max (Z) /(xvvva) (37)
56;31; 7B, (x‘” x—v) seovna °

Here, 7, is the profit from successfully attacking service s, op_ is the total stake
of all colluding attackers on service s, and ¢ is the fraction of stake slashed,
determined by the protocol’s rules. The attacker’s decision to attack, and how to
structure that attack (i.e., as a single identity or as multiple Sybils), is governed
by the maximization of this PNL function.

Mean-Field Abstraction. Directly solving this optimization problem on a large,
arbitrary graph is intractable because of complex dependencies of op_and ¢ on
the specific actions of all other validators in the network and the precise graph
topology. To overcome this intractability, the analysis focuses on the strategic
decisions of a single attacker and adopts a mean-field abstraction, that becomes
highly accurate in the limit of large networks. This approach replaces the com-
plex, deterministic graph-dependent quantities with their probabilistic expec-
tations, conditioned on the block-level properties of the SBM. Specifically, the
binary outcome of whether an attack is successful (i.e., feasible and profitable)
is modeled by a continuous, probabilistic “clearance function,” which gives the
probability of success as a function of the attacker’s committed stake. This ab-
straction transforms the intractable combinatorial problem into a tractable ana-
lytical one. The objective of this section is to leverage this formal framework to



On Sybil-proofness in Restaking Networks 25

construct a precise, provable result: to demonstrate how network heterogeneity,
modeled by the SBM, creates conditions under which Sybil attacks are not only
possible but demonstrably more profitable than single-identity attacks.

G.1 Stochastic Block Model (SBM) for Restaking Networks

As before, we have a bipartite graph G = (V U S, E), with validators V', services
S and edges E. Next, we formally define the SBM as follows:

1. Node Partitioning: The set of n = |V| operators is partitioned into R
disjoint blocks, V' =V, UV, U - --U Vg. Similarly, the set of m = |S| services
is partitioned into R disjoint blocks, S = S; U S, U---U Sg.

2. Connection Probability Matrix: The formation of edges is governed by
an R x R matrix of connection probabilities, P = [p,]. For any operator
v € V, and any service s € S, an edge (v, s) is included in the graph FE
independently with probability p,y.

3. Stake Distribution: Each operator w € V has stake o,,. For the purposes
of this analysis, we consider the case of a single strategic attacker, v{ | The
stakes of all other operators, {oy, } ., are considered the "background stake
distribution." To isolate the effects of network topology, we assume this
background distribution is near-uniform, where each non-attacking operator
w has a stake o, &~ & for some constant average stake &. This ensures
that any observed advantage for the Sybil attacker arises from the network’s
block structure rather than from extreme disparities in the underlying stake
distribution.

By setting the matrix P, one can model a wide variety of network topologies.
For example, a high diagonal value p,, relative to off-diagonal values p,; models
a network with strong community structure, where operators in a given block
preferentially connect to services in the corresponding block. An Erdgs-Rényi
random graph, which represents a completely homogeneous network, is simply
the special case of the SBM where R = 1.

Clearance Function. Recall that the profitability of an attack on a service s is
contingent on meeting a feasibility threshold, see Equation .

In our SBM setting, the total stake securing a given service, X, = oy, =
Y wev 0w - 1((w,s) € E), is a random variable. Its value is the sum of the
stakes of all operators that happen to be connected to s, where the connections
themselves are random events. For a service s in a particular block S, X is a sum

" While the general model of an attack formally considers a set of colluding operators
B, the subsequent analysis of Sybil profitability deliberately focuses on the strategic
incentives of a single, representative attacker v from within that set. This approach
replaces the specific contributions of other attackers with their probabilistic expecta-
tions, effectively modeling the rest of the network as a statistical environment. This
simplification allows us to isolate and analyze the core strategic question: whether an
individual operator, has a rational incentive to split their stake into Sybil identities.
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of a large number of independent (or weakly correlated) random variables. By
the central limit theorem, for a sufficiently large network, the distribution of X
can be accurately approximated by a Gaussian distribution (with CDF @), after

excluding the attacker’s coalition from the sum. Writing EEESt = ZwEV\ BOw"
rest

1((w,s) € E) for the background total stake, we have X
good approximation.

The mean p; and variance Ulz, of this distribution are determined by the SBM
parameters. For a service s € .S, the expected total background stake is the sum
of expected contributions from each operator block:

R R
m=E=3" 3 Eo, L(ws)eB]=ps 3 0w (38

c=1lweV,\B weV \B

~ Ny, 0%) as a

Assuming a near-uniform background stake & and letting |V, \ B| = n,, this
simplifies to u; =~ Zil n.pep0. Similarly, the variance is given by:

R R
o = Var = Z Z Var[o,, - 1((w, s) € E)] = chpcb(l —pa)ao. (39)

c=1weV A\B

Definition 9 (Clearance Function) The clearance function, q,(y), which rep-
resents the probability that an attacker committing a stake of y can successfully
meet the feasibility threshold for a service in block b is defined as follows:

1—qy
res res 1- o YT My
a(y) = P(y > oy (y + X5 t)) = P(Zs b < O‘by> _@<%> .

Qp Op
(40)

G.2 Single-Identity vs. Sybil Success Probability

With the clearance function defined, we can now formalize the success probabil-
ities for both single-identity and Sybil attacks.

Let us consider an attacker in operator block V,, who chooses a total stake =
to commit to an attack. The attacker samples a single service to attack, with the
probability of choosing a service from block S, being proportional to their con-
nectivity, pgp. Writing wy, := pap/ (Zle Dae) for the corresponding normalized
weights, we have:

1. Single-Identity Success Probability, p(x):
R
p(z) = Zwb (). (41)
b=1
2. k-Sybil Per-Identity Success Probability, p,(z):

R
pr(z) = Z wy, qp(x/k). (42)
b=1
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3. k-Sybil "At-Least-One-Wins" Success Probability, p’(z; k): Assuming
each Sybil’s attack can be treated as an independent trial (a reasonable
approximation in a large network when distinct services are targeted), the
probability of at least one success is:

plak) =1—(1—py(2)". (43)

G.3 Sybil-proofness in the Erdés-Rényi random graph

Nash best responses. See Appendix [F] for full statements and proofs of best re-
sponses and existence (single-service closed form; two-service monotonicity and
existence conditions) under the max-scheme and proportional sharing. A homo-
geneous network is one where all nodes are statistically equivalent and there are
no coalition structures. In the context of our SBM framework, this corresponds
to the simplest case where there is only one block for operators and one block
for services (R = 1).

The connection probability matrix P collapses to a single scalar, p;; = p. The
probability of an edge between any validator and any service is uniformly p. This
is exactly the definition of a bipartite Erdés-Rényi random graph. Consequently,
there is only one type of service, and thus only one clearance function, ¢(y), and
one success probability for a single-identity attack with stake x, which is simply
p(z) = q(x). This simplified model provides a clean setting to demonstrate why,
Sybil attacks are not proﬁtableH

Lemma 2 (Concavity of the clearance function). Let q(y) as in Equa-
tion ([A0). Write T := 2. Then q"(y) has the sign of —(@y — &), hence

oo
q is convex on [0,T) and concave on (T,00). In particular, Jensen’s inequality

applies on any interval contained in the concave region (T, 00).

Next, we state the main result of this section.
Proposition [7] (restated). In a homogeneous network modeled as a large
Erdds-Rényi_graph, where the attack success is described by a strictly increasing
and concav clearance function q(y), for any attacker stake x > 0 and any
number of Sybils k > 1, the success probability of a Sybil attack is strictly less
than that of a single-identity attack. That is, p/(x; k) < p(x) and the Erdds-Rényi
graph is Sybil-proof.

Proof. We compare p(z) = q(x) and p'(z;k) = 1 — (1 — q(m/k))k Assume z > T
so that ¢ is concave on [z/k, 2] and Jensen applies; also ¢(0) € [0,1) with ¢(0) =0
in the idealized limit of no background stake. Then Jensen’s inequality gives
q(z/k) < q(z)/k. Let u := q(z) € (0,1]. Then

’L[/ k
prk)<1-— (1 - 7) .
k
2 In expectation, with and without Sybils, the attacker is getting slashed the same.
The only way to be more profitable is to increase the success probability.
3 This applies on the concave regime, see Lemma
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Define h(u) :=1— (1 — u/kz)k — u. Using the binomial expansion,

k . j
(1_;>k_1_u+;<’;><—1w(z) |
hence

k .

k j J

hu) ==Y ( ) (~1)° (%) <0

— \J
J

for all u € (0,1] (the series is alternating with decreasing magnitude; the j = 2

term is negative and dominates). Therefore 1 — (1 — u/k:)k < u,ie., p(r;k) <
q(x) = p(x), strictly whenever u € (0,1).

Proposition [7] provides a (potentially misleading) baseline for security analy-
sis. It demonstrates that in a perfectly homogeneous system, where every service
presents a statistically identical challenge to an attacker, the act of splitting stake
wastes resources. Each Sybil, having a smaller stake, is less likely to succeed than
the original, full-stake identity. The combinatorial advantage of having multiple
chances is insufficient to overcome this fundamental weakening of each individual
attempt.

This creates an illusion of security, however, the moment homogeneity is bro-
ken, this security guarantee can vanish. The following section will demonstrate
this breakdown by introducing just one layer of heterogeneity via a two-block
SBM.

Expected PNL under the maz-scheme (ER). Specializing Equation and the
max-scheme, the attacker’s per-attack profit (conditional on clearing the thresh-
old) with stake z is m —Z— and the slash is z¢(z) = z —Z1__ with X =

] x+X -+

x4+ X', Hence the conditional PNL simplifies to (7 — o 2) ﬁ = (m—
x

aXr) ZLT Taking expectation over the ER background (where X & 1 concen-

trates for large networks), a mean-field approximation yields
x
E[PNL(z)] = (7 —ap) m q(x),

which is strictly increasing in z in the profitable regime (7 > « ) and mirrors
Propositionlﬂ in ER, splitting reduces both success probability ¢(z) by concavity
and the profit factor linearly, so E[PNL(z; k)] < E[PNL(x;1)] for any k > 1.

G.4 Sybil-proofness in a Two-Block SBM

The homogeneity of the Erdés-Rényi model is the source of its Sybil-proofness.
To find a vulnerability, we must break this symmetry. We achieve this by con-
structing a specific, heterogeneous network using a two-block SBM (R = 2). The
goal is to create a landscape with differentiated risk profiles that a Sybil attacker
can arbitrage.
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Model Setup: We design a two-block SBM with the following characteristics:

1. Block Structure: The set of services S is partitioned into two blocks of equal
size, S; and Sy. The set of operators V' is partitioned into two blocks, V,
(containing only the attacker, v) and V., (containing all other operators).

2. Differentiated Connectivity: For the connection probability matrix P = [p,]
we create two statistically distinct service environments from the attacker’s
perspective.

— “High-Threshold" Block (S;): We configure the SBM such that the ex-
pected total stake on services in this block, p, is high. This can be
achieved by setting the connection probabilities from the large block of
background operators, p,¢per1, to be relatively high. This block repre-
sents a set of well-secured, popular services that are difficult to attack.

— “Low-Threshold" Block (Sy): Conversely, we set the connectivity for this
block, poiner,2, to be lower. This results in a lower expected total stake,
1o, making services in this block easier to attack. We assume the attacker
has non-zero connectivity to both blocks, i.e., p,; > 0 and p,5 > 0.

3. Clearance Functions: The above translates into two distinct clearance func-
tions, ¢;(y) and ¢y(y). Due to the difference in the mean total stake (u; >
o), the clearance function for S; will be shifted far to the right compared
to that of S,. An attack stake y that has a high probability of clearing the
threshold in Sy (g2(y) = 1) may have a negligible probability of clearing the
threshold in S} (¢;(y) =~ 0).

This setting creates the arbitrage opportunity. A single-identity attacker must
choose a single stake x. If they choose a large x sufficient to attack S;, they are
over-staking for Sy, wasting capital. If they choose a smaller x optimized for S5,
they forgo any chance of attacking S;. The Sybil strategy offers a way to escape
this dilemma by effectively presenting different stake profiles to the network
simultaneously, exploiting the non-linearities in the success probabilities.

Ezxpected PNL under the maz-scheme (SBM). With block weights w;, and clear-
ance ¢,(-), and using the mean-field replacement X7, = p;, the expected PNL
for a single identity staking z is

R

E[PNL(z;1)] & > wy (m, — o 1) — g5(2).
b—1 My

For k Sybils of size x/k targeting distinct services (independent attempts), a
lower bound is

R R

EPNL(z: k)] 2 kS wy (mp—a ) L5 a(e/k) = 3w (my—oip 1) - aule /).
b—1 1223 b—1 Hp

When blocks are sufficiently separated so that ¢;(z) ~ 0 and g¢y(x) = 1 but
¢ (z/k) remains large while ¢, (z/k) becomes non-negligible, the sum can strictly
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increase with k, yielding an expected-profit analogue of the success-probability
advantage. This aligns the SBM section with the earlier utility formalism.

Propostion 8| (restated) In a two-block SBM configured as described above,
with sufficiently differentiated clearance functions q,(y) and q(y) such that their
underlying mean thresholds satisfy p, > po, and for an attacker in block V,
with non-zero connectivity to both service blocks (pg1 > 0,pqe > 0), there exists
a non-empty set of attacker stakes x and a minimum integer number of Sybils
k™ > 1 such that the "at-least-one-wins" success probability of the Sybil attack is
strictly greater than the success probability of the single-identity attack. That is,
p/(ac; k™) > p(x) and the two-block SBM network is not Sybil-proof.

Proof. Write the attacker’s block-sampling weights as wy, = pup/(>°. Pac) and
1—ay
Tby—ﬂb

o ), which are contin-

recall the blockwise clearance functions g, (y) = &
uous, strictly increasing in y, and satisfy ¢,(0) = &(—py/0,) € (0,1) for any
nontrivial background (u; > 0 whenever some p., > 0 and |V, \ B| > 0).

Step 1 (choose x with separated block behavior). By the hypothesis u; > po
(equivalently T} = —=2—py > Ty = 1332 o) and continuity /monotonicity of gy,

11—«
there exists ¢ > 0 and a stake z with

T2<'I<T17 ql('r)égv Q2(’r)21_5
Therefore the single-identity success probability satisﬁeﬂ
p(z) = w1q1 (%) + waga(z) Swy +e < 1. (44)

Step 2 (distinct targets = independence). We assume that Sybils target distinct
services. This isolates background randomness across attempts and is satisfiable
w.h.p. by Chernoff bounds (see Step 5).

Hence, if the k Sybils select k distinct services sq, ..., S, then by indepen-
dence of edges across service indices in the SBM, the background sums E;fSt
depend on disjoint families of Bernoulli edges and are therefore mutually inde-
pendent. Since clearance events are increasing functions of these sums, the suc-

cess/failure indicators across sq,..., sy are independent as well. Consequently,
k
p'(x; k)=1- (1 - p/c(l")) ) () == wiqy (z/k) + waga(x/k). (45)

Step 3 (uniform positive lower bound for per-identity success). Because each g,
is increasing and x/k > 0,

pr(x) = w1q1(x/k) + waqa(x/k) =2 w1q1(0) 4 w2q2(0) =: 7. (46)
Here v = >, wyq,(0) € (0,1) since wy, > 0 and ¢,(0) € (0,1).

4 Note that in the last inequality we are using that, by choosing x close to T5, we can
satisfy the conditions above with arbitrarily small €.
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Step 4 (existence of k with p'(x; k) > p(x)). From (2)-(3),

plak)=1-(1—pe(2)" >1-(1-7)"

The function k — 1 — (1 — ’y)k is strictly increasing in k and tends to 1. Since
p(z) <1 by (1), there exists a finite

- [

such that 1 — (1 — 'y)ko > p(x). For any k > k,
k
p(zik) > 1—(1—7)" > p(x).
Therefore the set {k € Nx, : p'(2;k) > p(z)} is nonempty, and its minimum
k"= min{k > 2:p'(z;k) > p(z)}

is a well-defined integer with k™ > 1.

Step 5 (feasibility of selecting k distinct targets). Let Dy denote the attacker’s
number of neighbors in block Sy. Then D, ~ Bin(my, py,) with mean myp,,;,. By
a Chernoff bound, for each b,

Pr(Db > %mbpab) >1- eXp( - émbpab)-

Hence, with probability at least 1 —5", exp(—%mbpab), the attacker has at least
%mbpab neighbors in each block. In particular, for any k satisfying

1
k < b Zmbpaba
b

the attacker can choose k distinct neighboring services, and the independence
conclusion of Step 2 applies. Since kg is finite and the block sizes (my) can
be taken large (the mean-field regime), we can ensure k* < k, < %Zb MpPabs
making the distinct-target selection feasible with high probability.

Combining Steps 1-5 establishes that there exists a nonempty set of stakes x
(those in (T3, T}) with ¢;(x) < ¢, g3(z) > 1 — ¢) and a minimum integer k™ > 1
such that p/(x; k") > p(x), as claimed.

Remark 3 If two Sybils attack the same service, the independence argument
weakens in Step 2 of the proof. However, for k < Y, myp,y, the collision prob-
ability is o(1) by a birthday bound.

Proposition 12 (Expected-profit advantage under block separation) Assume
two blocks with parameters as above and choose x € (Ty,T) such that ¢;(z) < €

and qo(x) > 1 — ¢ for some small e € (0,1/2). Under the mean-field approzima-

tion Xy, = py, there exists a finite k > 1 with

E[PNL(z; k)] > E[PNL(z;1)].
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In(1—n)
In(1—n;)
on p(x) and n = Y, wyqy(0), as in the success-probability bound, provided
(9 — aglio) > 0 is large enough relative to (m; — ayuq) < 0.

In particular, any k > kg := { ] suffices for some n € (0,1) depending

Proof (sketch). From the mean-field expressions,
x x
E[PNL(z;1)] ~ Zwb(ﬁb*abﬂb) i ap(z), E[PNL(z;k)] 2 Zwb(ﬂb*abﬂb) ™ ap(z/k).
b b

By the separation conditions, the b = 2 term dominates and is only mildly
reduced when replacing = by x/k, while the b = 1 term goes from near-zero at
x to a positive value at x/k. For sufficiently small £ and k above an absolute
constant, the sum increases.

Minimum Profitable Sybil Count (k™) The condition for the Sybil attack
to be strictly advantageous is:

P (z;k) > p(z).

Substituting the definitions of p/(x; k), p(x), and py(z):

1— (1= p(@)* > p(a).
Since both sides lie in (0, 1), taking natural logs yields
In(1 = p(z)) > k-In (1 — py(z)).
Because In(1 — py(x)) < 0, this is equivalent to

oo = p(@)

In (1 — pk(x)) ' (47)

Therefore, the minimum integer number of Sybils k£* is the least integer k > 2
satisfying . (Note that py(z) itself depends on k through the z/k argument;
hence is an implicit threshold that can be evaluated for each candidate k.)

Sufficient computable bound. A convenient sufficient condition is obtained by
lower bounding py(z) by pumin = Y, wpq,(0) > 0, which yields

p(@;k) > 1= (1= prin)®

Thus any

> [ =ate))

- ln(l - pmin)

ensures p' (z; k) > p(z).
Next, we provide a numerical example.
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G.5 Numerical Example for a Two-Block SBM

We consider two service blocks S; (“high-security”) and Sy (“low-security”). There
are Noiner = 60 background operators, each with stake & = 1. Thresholds are

wln
N

a; = 3, Qg =

Connectivity probabilities:

Pother,1 = 0.30, Pother,2 = 0.02.

Attacker connectivity is symmetric, so the block weights are w; = wy = % Let
x denote the attacker’s total stake.

Writing p, and o, for the mean and standard deviation of total background
stake reaching block b under the SBM,

b = Nother Pother,b o, Op = \/nother DPother,b (1 - pother,b)'
Numerically,

p =18.0, oy ~3.54965;  pp =12, o, ~ 1.08444.

No Sybil with = 3. Using =2

1 — L gng =22 g
%% 2 [e %

)

_ (05-3-18\ ~ 6
q1(3)—q5( SR >_q5( 4.648) ~ 1.673 x 10 °,

3—1.2

Hence
P(3) =3 q1(3) + 5 ¢2(3) ~ 0.47576,

which is the single-identity success probability.

Split into two Sybils (k = 2). Each identity has ©/2 = 1.5:

_ (05-15-18\ 5 .
1.5—-1.2
1.5) = ———— | = o(0.2 ~ 0. .
g2(1.5) (1'08444> (0.277) ~ 0.60897

Thus
pa(3) =L qi(L.5)+1 go(1.5) = 0.30449,  p'(3;2) = 1—(1—0.30449)2 ~ 0.51626.

which is the success probability with two Sybils and strictly larger than the
success probability without Sybils.
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