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Abstract. In this paper, we propose a fast signature scheme which is de-
rived from three-pass identification scheme. Our signature scheme would
require a modular exponentiation as preprocessing. However, no multi-
plication is used in the actual (i.e. on-line) signature generation. This
means that the phase involves only a hashing operation, addition and
a modular reduction. So far, some fast signature schemes called on the
fly signatures were proposed. In those schemes the modular reduction
is eliminated in the on-line phase. Therefore, our approach to obtain
the fast on-line signature is different from theirs. This paper is the first
approach for the fast signature scheme without on-line modular multi-
plication.
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1 Introduction

Nowadays, a signature scheme is an important tool for secure communication.
Consequently, we are longing for more compact signature schemes to spread
public-key infrastructure (PKI) system. In this case, the compactness means
the efficiency of both computational work and transmitted data size. Such a
compactness gives users’ convenience, and is acceptable for various application
to capacity limited devices such as a smart card.

To consider the computational efficiency in signature schemes, let us focus on
the signer’s computational work in generic digital signature schemes'. In such a
signature scheme, there exist two kinds of computation for the signer: it consists
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! As well as in [17], in this paper, a generic (digital) signature scheme means a signature
scheme which can be derived from a three-pass identification scheme by using an
appropriate hash function.



of pre-computation and (actual) signature generation. The pre-computation can
compute values without a message to be signed, and execute during idle time
and completely independent of message to be signed. This means that such a
computational cost does not influence the real-time computing. We say that such
a computation is the off-line processing. On the other hand, the (actual) signa-
ture generation does directly influence the processing time because a message is
indispensable to compute. We say that such a computation is on-line processing.

To estimate the efficiency of a signature scheme, we should separately con-
sider the two types of computation. Needless to say, the fast on-line signature?
can make digital signatures much more practical in a variety of scenarios.

To realize the fast on-line signature generation, Girault [6] modified Schnorr’s
signature scheme [22] in which an RSA-modulus® is used instead of a prime
modulus. This modification leads to no modulo reduction in the on-line signature
generation. Therefore, in Girault’s scheme, faster processing of the signature
generation is possible than in Schnorr’s one. In 1998, Poupard and Stern [19]
investigated and gave provable security for Girault’s scheme, and named that
scheme GPS-scheme. Due to the description of [19], in this paper, we call a
generic signature scheme in which modulo reduction is not necessary in the on-
line signature generation, on the fly signature scheme.

In 1999, Poupard and Stern [20] proposed another on the fly signature scheme
(PS-scheme for short), whose security relies on the difficulty of integer factoring.
In 2001, Okamoto, Tada and Miyaji [15] proposed on th fly signature (OTM-
scheme for short) by improving PS-scheme in the computational work and trans-
mitted data size.

In this paper, we propose a fast signature scheme, which is derived from a
three pass identification scheme. Our idea to reduce the on-line computation,
completely differ from that of on the fly signatures. That is, the on-line mul-
tiplication is eliminated in our scheme, whereas the modular reduction is done
in on the fly signatures. Up to the present, some fast signature schemes which
have the property of on the fly signature, have been proposed. However, this pa-
per is the first approach for the fast signature scheme without on-line modular
multiplication.

To sum up, in the on-line computation, the modular reduction is used in our
schemes, and multiplication is used in on the fly schemes. Now let us compare the
computational efficiency between the multiplication and the modular reduction.
In the multiplication, a recursive algorithm due to [8] reduces the complexity of
the multiplying. On the other hand, in the modular reduction, we can use the
efficient technique such as [1,11].

Those methods are further advantageous than [8] because a single modulus
can be used in our schemes and many reductions are performed by using such a
modulus. That is, in our scheme the modulus s is fixed because s is a secret key.

2 In this paper, a fast on-line signature means the signature scheme which has the
on-line computational efficiency.

3 In this paper, we call a modulus to be a product of two distinct primes an RSA-
modulus.



This property lead to a good computational efficiency for modular reduction.
On the other hand, such an efficiency does not exist for the multiplication.

Consequently, the on-line modular reduction in our schemes is faster than
the on-line multiplication in on the fly signatures from implementation point of
view. For more detailed treatment of the above methods, see [9].

As for the security, our scheme is based on the integer factoring problem for
RSA modulus n and provably secure in the random oracle model. To satisfy the
security, our scheme uses a public key g with specific structure, called asymmetric
basis, and which is a variant of [16]. This property leads to the good efficiency
in terms of both size of data and amount of work.

Concrete to say, compared with OTM-scheme, the size of a signature in
our signature can be reduced by at least 21%, and computational cost in our
scheme for verification can be reduced by 32%, respectively. In the same way,
compared with PS-scheme, the size of a secret key and a signature can be reduced
by at least 68% and 58%, respectively. Furthermore, the computational cost
for pre-computation and verification can be reduced by at least 83% and 78%,
respectively.

This paper is organized as follows. In Section 2, we will review on the fly
schemes. In Section 3, we will introduce our proposed identification scheme,
and will give provable security for ours. In Section 4, we will introduce our
signature scheme derived from our identification, and will discuss the security
consideration. In Section 5, we will suggest practical values of our identification
and the resulting signature scheme and will describe the implementation notes.
In Section 6, we will introduce an efficient signature scheme which is optimized
in terms of data size, and will evaluate the performance of our signature scheme
by comparing with existing on the fly signatures: OTM-scheme, PS-scheme and
GPS-scheme. The conclusion will be given in Section 7.

2 Previous Work

In this section, we briefly survey the previous works.

We first introduce some notations. The symbol ¢(-) denotes Euler totient
function, that is, p(n) is the number of the natural numbers less than n and
coprime to n. The symbol A(-) denotes so-called Carmichael function, that is,
A(n) is the greatest number among the possible orders of elements in Z%*. The
order of an element g € Z is represented as Ord,(g). We denote by |z|, the
binary length for a positive integer 2. We say that p is a strong prime if p = 2p'+1
and both p and p’ are primes.

Now let us recall the on the fly schemes (identification version).

GPS-scheme [19]: The public key is (n,g,v), where n is an RSA modulus,
g € Z} is an element with high order, and v = ¢~ mod n, where s € Zqx is
picked up at random. The secret key is s.

In identification step, the commitment is £ = ¢" mod n, where r € Z 4 is
picked up at random, the random challenge is e € Zp, and the answer is



y =1+ se (in Z). A verifier finally checks whether # = g¥v° mod n holds or not.
Here each parameter (A, B, k) satisfies B < 2% < A.

It is known that if one sets up the parameters in GPS-scheme such that the
scheme is as secure as the discrete logarithm problem for modulus n under the
one key attack scenario [20], the scheme leads to the inefficiency for both the
amount of work and transmitted data size. For more details, we refer to [16].

PS-scheme [20]: The public key is (n,g), where n is a product of strong
primes p and ¢, and g € Z% is an element such that Ord,(g) € {A(n),A(n)/2}.
The secret key is s = n — ¢(n) (=p + ¢ + 1), where |s| = k.

In identification step, the commitment is £ = ¢" mod n, where r € Z4 is
picked up at random, the random challenge is e €g Z g, and the answer is y =
r+se (in Z). A verifier finally checks whether both y < A and z = g¥~™° mod n
hold or not. Here each parameter (A, B, k) satisfies B < 2F < A.

PS-scheme has some drawbacks: As you see, a secret key in PS-scheme is
s =n — p(n) and the size of s is very large, i.e. about |n|/2. This feature lead
to inefficiency in view of the amount of work and transmitted data size.

The following OTM-scheme solves the above drawback.

OTM-scheme [15]: The public key is (n, g, z), where n = H::ﬁ’i for an integer
t > 2, g € Z% is an element such that ¢ = Ord,(g) and z € Zs. is picked up at
random. The secret key is s = z mod ¢, where |s| = k.

In identification step, the commitment is £ = ¢" mod n, where r € Zsa
is picked up at random, the random challenge is e € Zss, and the answer
is y = r + se (in Z). A verifier finally checks whether both y < 22t! and
r = g¥~** mod n hold or not. Here each parameter (a,b,c,k) satisfies 2° <«
2k « 20 « 2.

The discussion for the above on the fly signatures and our proposed scheme,
is given in Section 6.2.

3 Identification Scheme

In this section, we introduce our identification scheme. The security consideration
is also discussed.

3.1 Protocol

Our identification scheme uses the parameters k,s,a and b with 2¥71 < s <
2% « 2% <« 2% and also uses slightly generalized asymmetric basis [16], which is
defined as follows.
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Fig. 1. Proposed identification scheme

Definition 1 (Asymmetric basis) Let n be an RSA modulus such that n =
pq. Then we say that g is an asymmetric basis in Z} if the multiplicity of 2 in
Ord,(g) is not equal to that of 2 in Ord,(g). O

We now give our identification protocol.

Key generation step: The following steps are executed:
Stepl Pick up two same-size primes p and ¢, and compute n = pq.
Step2 Choose an element g € Z which is an asymmetric basis in Z};, where
s = Ord,(g)-

Public-key/Secret-key: The public-key is (n, g) and the corresponding secret-
key is s.

Identification step: A prover and a verifier execute the following steps:
Stepl The prover picks up a random number r € Zsa, computes the com-
mitment x = g"” mod n and sends x to the verifier.
Step2 The verifier picks up a random challenge e € Zy» and sends e to the
prover.
Step3 The prover computes z = e mod s and an answer y = r + z in Z, and
sends y to the verifier.



Step4 The verifier checks whether both y < 2*+2F and = ¢¥~° mod n hold
or not. If both equations hold, the verifier accepts. Otherwise she rejects.

In Step3, the on-line multiplication for the prover is eliminated. This is the
main idea of our scheme.

Note that, in the conventional identification schemes such as Schnorr [22]
or Guillou-Quisquater [7], the challenge e can be a fixed constant. In this case,
such schemes whould have some rounds. However, in our identification, e has
the condition such that 2* <« e. Therefore, the round of our identification is
constant and fixed as one. We can say such a property indeed characterizes our
schemes.

3.2 Security analysis

We show that our proposed scheme is a three-pass honest-verifier statically zero-
knowledge identification protocol. As a strategy, we would like to indicate that
our scheme provides completeness, soundness and the statistical zero-knowledge
property, respectively. To estimate the rigorous security, we follow the approach
of Feige, Fiat and Shamir in [5].

We say that a positive function f(k) : N — R is said to be negligible, if for
any ¢, there exists a k. such that f(k) < k=¢ for any k > k.. Otherwise f is said
to be non-negligible. ||z|| denotes the absolute value of x.

Lemma 2 Let n be an RSA modulus and ¢ be an asymmetric basis in Z}.
Assume that we find L > 0 such that ¢* = 1 mod n. Then we can construct
a Turing machine M which on input n,g and L outputs a factor of n in time
O(|L[n[?)

Proof. This lemma is basically due to [16]. Hereafter, we describe how to con-
struct M.

At first, M extract the odd part b of L, such that L = 2%b. Since g is an
asymmetric basis in ZZ, it holds ¢?* = 1 mod p and ¢?®* = 1 mod ¢, and also
holds ¢®* = 1 mod p and ¢g* = —1 mod ¢q. Then we have the following results:
p| gt —1and n{g®— 1. Consequently, M can find a factor of n by computing
ged(g® — 1 mod n,n).

Note that the modular exponentiation algorithm and the extended Euclidean
algorithm have a running time of O(|L||n|?) and O(|n|?), respectively. Hence M

can execute the above steps in time O(|L||n|?). O

Theorem 3 (Completeness) In the proposed identification scheme, the prover
who has a secret-key, and who follows the scheme, is always successfully accepted.

Proof. The answer y correctly computed by the prover, is r + z, where z =
emod s. Since r < 2% and z < s < 2F, those conditions satisfy y < 2% + 2.
Furthermore, from the following equations:

gyfe — g(rJrz)fe — ngr(emods)fe — gr =z mod n,

a correctly generated answer y always passes the verification. O



Theorem 4 (Soundness) If there exists a polynomial-time adversary P which
is accepted by honest verifiers with probability > 1/2° + ¢, > 0, where the
average running time is 7'. Then, by using P, we can construct a polynomial-time
machine M, which can figure out the factorization of public-key n, in expected
time O(T'/e + |n|°W).

Proof. Hereafter, we illustrate how to construct M. First M input (n,g) to P.
Here we denote by ST, the current P’s state at this stage. Ver is a verification
function, on input (z,e,y), outputs OK if those parameters are valid. Otherwise
it outputs NG.

M executes the following algorithm and tries to obtain forged parameters.

% Algorithm 1

input result := NG, counter := 0

while (result = NG O counter < |n|/e) do
pick up a random tape w at random

z := P(w)
pick up a random number e € Zqs at random
y = Ple)

result := Ver(z,e,y)
counter := counter + 1
end while

output (w,z,e,y)

end

If the forgery of Algorithm 1 is successful, M executes the next steps. Oth-
erwise it stops (this time the attempt is failure). The probability with which M
can obtain the forged parameters is estimated as:

1-(1-¢) >1- <E> ,
where € is the natural logarithm.

Next, M initializes the P ’s condition: set as ST. By using the same (w, )
obtained by Algorithm 1, M tries to obtain forged parameters (x,e’,y"). In this
case, we denote by &’ the probability to obtain those parameters by one iteration.

M executes the following algorithm.

% Algorithm 2

input w, result := NG, counter := 0

z = A(w)

while (result = NG O counter < |n|/e’) do
pick up a random number €' € Z4» at random
y = P(e)

result := Ver(z,e',y")

counter := counter + 1

end while

output (e, y')

end



It can be formally proved that ¢ > &/2. For more details, see Splitting
Lemma in [17]. In the same way as before, the probability with which M can

obtain the forged parameters is > 1 — (%) Inl,
As a consequence, the running time by executing Algorithm 1 and Algorithm
21is O(|n|t/e) and the probability with which M can obtain (z,e,y) and (z,€e’,y")

2
is estimated as > % (1 - (%)‘nl) .
Finally, M computes L = ||(y —y') — (e — €')||. Here L > 1 is a multiple of
Ord,(g), that is, g = 1 mod n, and g is an asymmetric basis. Therefore, as
in the consequence of Theorem 2, M can obtain the factorization of public in

expected time O(kT /e + |[n|OM). O

Theorem 5 (Zero-knowledge property) The proposed identification scheme
provides honest-verifier statistical zero-knowledge property, if 2s/2% is negligible.

Proof. We prove the above theorem along the line of Theorem 6 in [19]. To
prove the theorem, we show that we can construct a polynomial-time machine
(simulator) M which simulates the communication between the honest prover
and a honest verifier.

In this case, M executes the following steps:

Stepl Pick up two random numbers: e’ € Zy and y' € Zsa.
Step2 Compute 2’ = g¥ ~° mod n.
Step3 Output (z',€',y’).

We denote by w, the probability in the communication between a honest
prover and a honest verifier, that is, 7 = Pr[(z,e,y) = («, 3,7)]. Then we have
the following:

!
a=g¢"" modn,

g X | B=e

ogr<aa r=vy—{
0<e<2b

{azg”‘f@ mod n,]
= — " Pr 0< B <2,
[0§7—Q’<2“J
= Jart x(a = ¢"7F mod n)
X(0< B <2%) - x(2' <y <2t + 02,

where (e mod ¢) and (8 mod ¢) are denoted by (2 and 2, respectively. For a
predicate @), x(@) means the characteristic function of @), that is, if @ is true,
then x(Q) = 1, otherwise x(Q) = 0.



In the same way as above, the probability by M, that is, Pr [(z',¢',y") = (a, 5,7)]
is denoted by 7’. In this case, we have the following:
{a = gy’*el mod n,-l
7' =Pr [ B=¢, J

y=y
1 a = g" P mod n,
— — !
=i Z Pr 8= el,
0<r<2a Y=y
1 0<e<2b

= -x(a=g"? mod n)
X0 < B <2 x(0<y <29,

We whould like to estimate the distance between actual system and M. We
define A=3 5 |l —'||. From the results of 7 and 7', we obtain

A= Z '+ Z ||m —='|| + Z TT.
]

a=g7—B modn g

0<p<2d 0/<y<z2e 20<y<20 40/
0<y< !
Since
Q/
E T, E T <—< g
- 2@ 2a
o, B o, B
0<y<n! 2a <y <2040/
and
!
> lr—='II=0,
@ B
2/'<y<29
we can conclude A < 2¢/2*. This proves the theorem. O

4 Signature Scheme

We introduce our signature scheme which is derived from the identification
scheme proposed in Section 3.

4.1 Protocol

As well as conventional identification schemes such as Schnorr [22] or Guillou-
Quisquater [7], our identification scheme in Section 3 can be turned into a signa-
ture scheme by using the technique in [4]. Then the challenge in the identification
is replaced with an appropriate hash function. Let H : {0,1}" — {0, l}b be a
hash function.

Key generation step: This is the same as our identification scheme.



Public-key/Secret-key: This is the same as our identification scheme.

Signature generation step: Suppose a signer which has a public-key and the
corresponding secret-key, generates the signature of her message m € {0,1}".
Then she executes the following steps:

Stepl Pick up a random number r € Zs. and compute z = g” mod n.
Step2 Compute e = H(z,m).
Step3 Compute z =emod s and y =r + z in Z.

Signature: The signature for a message m is (z,e,y).

Verification step: Suppose a verifier which has the signer’s public-key and the
corresponding message, checks the validity of the signature for m. Then she
executes the following steps:

Stepl Check whether y < 2%+ 2* holds or not. If the equation does not hold,
then reject the signature and stop this protocol.

Step2 Compute ¢/ = H(z,m) and ' = g¥~° mod n.

Step3 Check whether both e = ¢’ and z = 2’ hold or not. If both equations
hold, accept the signature. Otherwise reject it.

4.2 Security analysis

In Section 3.2, we have proved that our identification scheme is three-pass honest-
verifier statistically zero-knowledge identification protocol. This result includes
all the properties to apply the technique of the forking lemma in [17]. Therefore,
we can say that, in the random oracle model [2,17], our signature scheme is
existentially unforgeable under the adaptive chosen message attack

Theorem 6 Let () be the number of queries which a polynomial-time adversary
A executing the adaptive chosen-message attack, can ask to the random oracle,
and let R be the number of queries which A can ask to the actual signer. Assume
that 2s/2% is negligible. Also assume that, .4 can forge a signature with non-
negligible probability ¢ > 10(R+1)(R+q)/2°, where the average running time of
A is T. Then we can construct a polynomial-time machine M which can factor
n with non-negligible probability in expected time O(QT /e + |n|°M).

Proof. By the result of Theorem 5, the signature oracle in our signature scheme
can be statistically simulated by a probabilistic polynomial-time machine M
which works according to the protocol like [17].

When M uses A, she can obtain two distinct signatures (z, e, y) and (', ¢e’,y')
such that z = ', but e # €’. Then, we can get a multiple of Ord,(g) such that
L > 1 and g* = 1 mod n. Here g is an asymmetric basis in Z*, therefore by the

result of Lemma 2 we can find a factor of n in expected time O(QT /e + |n|®M).
a



5 Parameter Generation

In this section, we describe the conditions of the parameters to keep the security
in our identification and the corresponding signature scheme. We also show that
how to implement the parameters.

5.1 Choice of parameters

Parameters a and b: For the security reason, the values of a and b shall satisfy:
a =k+ k1 and b = a + ko, where k is a security parameter satisfying |s| = k
with Ord, (g) = s, and where both x; and ks are information leak parameters.

Parameters k1 and ko: By Theorem 5, we must set such that 1/2" is in-
tractable. As for k2, let us first consider the following problem: given (n, g, a, k2),
find 3 such that g® = ¢g” mod n, where |3| is at least ko-bits smaller than |a].
In our schemes, we must set ks on the condition that the problem is hard to
solve for the security parameter k. For implementation, we should take x; and
Ko greater than 64 and 24 bits, respectively.

Parameter s: Let us consider the attack which an adversary computes s only
from the information of the public-key (n,g). We can see the algorithms to
extract s, such as Pollard lambda method in [18] and the baby-step giant-step
method in [10]. One may say that the former is better than the latter since
it has same computational complexity (exponential-time: O(y/s)) but does not
need large memory. The size of s shall be set up such that the above algorithms
cannot apply for the security parameter k. For implementation, we should take
|s| = k greater than 160 bits for the security reason.

5.2 Implementation notes

We first describe how to find p, ¢ and an asymmetric basis g in Z7,.

Stepl Pick up two primes p = 2p'p” + 1 and ¢ = 2¢'¢"" + 1 such that p' and
¢' are also primes, and p” and ¢ are odd numbers.

Step2 Choose a, € Z satisfying g, = az(,p_l)/p’ # 1mod p. In the same

way, choose o, € Zj satisfying a; # ¢ — 1 mod g, agqfl)ﬂ # 1 mod ¢ and

gg = agq_l)mq’ # 1 mod gq.

Step3 Compute n = pg and g = q(¢ !

1

mod p)g, + p(p~* mod ¢)g, mod n.

In Step3, g is computed by using the technique of Chinese Reminder Theo-
rem (CRT). Note that Ord,(g) = p’ and Ordy(g) = 2¢'. Therefore Ord,(g9) =
lem(p',2¢') = 2p'q".

Next, we discuss secure hash algorithm which we should adopt. If H were an
ideal hash function, then the proposed signature scheme would be secure under
the meaning of the description in Section 4.2. Since such a random function does



not exist in the real world, in implementation, we are recommended to adopt
MD5 by [21] or SHA-1 by [13], each of which is designed so that the algorithm
can be a collision intractable hash function [3].

6 Efficiency for Signature Schemes

In this section, we first introduce the optimized signature scheme. We next eval-
uate the performance.

6.1 Optimized scheme of data size

With respect to the signature scheme in Section 4, we can diminish the size of
the signature. Consequently, communication lord is more efficient than before.
We now focus on the following two parts:

Elimination of x: When we have two parameters e and y, the parameter x
can be generated by computing x = g¥~° mod n. Therefore, the signature z is
eliminated like conventional generic signature schemes such as Schnorr [22] or
Guillou-Quisquater [7]. In this case, the signature for m consists of (e, y).

Using a short-size e: As for the signature scheme in Section 4, signature e is,
in a certain sense, verbose. In our signature scheme, large-size e such as 2° < e
is actually needed in verification. Hence, we can use the following technique: we
regard short-size e satisfying 2F < e <« 2° as signature, and in verification, we
extend the size of e by using appropriate hash function.

We use two hash functions F : {0,1}* — {0,1}° and G : {0,1}° — {0,1}",
where c has the condition 2¢ <« 2°. The optimized signature scheme, which apply
the above techniques, are as follows:

Key generation step: This is the same as our identification scheme.
Public-key/Secret-key This is the same as our identification scheme.

Signature generation step: A singer executes the following steps:
Stepl Pick up a random number r € Zs. and compute z = g” mod n.
Step2 Compute e = F(z, m).

Step3 Compute € = G(e), z=€emod s and y =r + z in Z.

Signature: The signature for a message m is (e, y).

Verification step: A verifier executes the following steps:
Stepl Check whether y < 2%+ 2* holds or not. If the equation does not hold,
then reject the signature and stop this protocol.
Step2 Compute ¢ = G(e) and e’ = F(g¥~¢ mod n,m).
Step4 Check whether ¢/ = e holds or not. If the equation holds, accept the
signature. Otherwise reject it.

As for the hash function G, we should take ¢ greater than 160 bits for imple-
mentation.



Table 1. Performance of signature schemes

CPC CVF SPK | SSK | SSig
Scheme P (xM) cse (x M) | (bits) | (bits) | (bits)
Integer
Our scheme factoring 61 |248 mod 160| 372 | 2048 | 160 | 304
with g
Integer
OTM-scheme factoring 61 80 x 160 552 | 2048 | 160 | 384
with g
PS-scheme Infeger | 301 | 80x 512 | 1656 | 1024 | 513 | 736
factoring
Discrete log.
GPS-scheme 381 | 80 x 1024 | 1796 | 3072 | 1024 | 1264
for modulo n
Abbreviation:
e UMP means the underlying mathematical problem that the signature

scheme relies on for its security.

CPC, CSG and CVF mean the computational cost for pre-computation, sig-
nature generation and verification, respectively

SPK, SSK and SSig means the size of a public-key, a secret-key and a
signature, respectively.

M represents the computational cost for one multiplication under a 1024-
bit modulus.

« mod (3 represents the computational cost for modular reduction of an
a-bit number and a #-bit number modulus.

v X ¢ represents the computational cost for multiplication of an ~-bit
number and a d-bit number on Z.

Notes:

For all schemes in the table, we set up the parameter under the line of the
one-key attack scenario [20].

For respective computational cost, a primitive arithmetic of binary meth-
ods [9] are used, e.g. amount of work for g mod n is 2|a|M if |n| = 1024.
Of course there exist more sophisticated techniques which reduce the
amount of computational work. However we think they estimate the con-
crete performance without loss of generosity.

In UMP, integer factoring with g means that it is a variant of integer factor-
ing problem on input RSA modulus n and the asymmetric basis g, outputs
the factor of n.

In CPC, the signer uses the technique of CRT. In this case, the signer must
secretly have the factors of n, p and q.




6.2 Performance

We evaluate the efficiency of our signature scheme by comparing existing on
the fly signatures. Table 1 gives the performance of various schemes, such as
OTM-scheme, PS-scheme and GPS-scheme, including ours.

The parameters in the schemes are set up as follows.

— Our scheme has a = 224 and b = 248 by taking k& = 160, k; = 64 and
Ko = 24. Our scheme also use the technique of Section 6.1.

— OTM-scheme has a = 104, b = 80 and ¢ = 288 by taking & = 160. To
keep the same security as our scheme, in OTM scheme, n is a RSA modulus
and g is an asymmetric basis in Z. Furthermore, the size of public-key is
optimized as follows. We regard actual public-key as (n, g), and z is computed
by z = H'(n, g), where H' is a hash function H' : {0,1}" — {0,1}".

— PS-scheme has |A| = 656 and |B| = 80 by taking k = 513.

— GPS-scheme has |A| = 1184 and |B| = 80 by taking k& = 1024.

Additionally, we set |n| = 1024 for all schemes.
Next, we show the comparison between OTM-scheme (resp. PS-scheme and
resp. GPS-scheme) and our signature.

OTM-scheme: One of the verifications in OTM-scheme is x = ¢g¥~*¢ mod n,
where in the index of g, we can see the multiplication of two parameters z and
e. On the contrary, the verification in our scheme is £ = g¥~° mod n, hence the
multiplication in the index does not exist. The large-size index involved by the
multiplication, lead to the inefficiency from both the amount of work and data
size point of view. Nowadays, all the existing on the fly signatures have the same
drawbacks.

Consequently, CVF and SSig in our scheme is superior to those in OTM-
scheme. Since the public key in our scheme and that in OTM-scheme are (n, g)
and (n, g, z), respectively, the number of the parameters in our scheme is smaller
than that in OTM-scheme.

PS-scheme: The size of secret key in PS-scheme is only dependent on the
modulus n, and that is considerably large (about |n|/2). This drawback leads
to inefficient results with respect to the computational work (CPC, CSG and CVF)
and the data size (SSK and SSig).

On the other hand, since PS-scheme is intended to be used with a modulus
product of two strong primes, g = 2 is a correct basis and do not have to be
included in the public key. Consequently, we can set SPC = 1024 for PS-scheme.
Therefore, one may say that PS-scheme is more efficient than our scheme in
terms of size of public key.

GPS-scheme: Since the public key in GPS-scheme consists of three parameters
such as (n, g,v), the size of the public key is SPK = 3072. Hence, GPS-scheme
has the largest size for public-key of all the schemes in Table 1.



Note that, in the table, all the schemes are based on the one-key attack
scenario. Consequently, GPS-scheme has provable security such that the scheme
is as secure as the discrete problem for modulo n. However, the size of secret-
key in GPS-scheme is considerably large: SSK = 1024. In the same reason as in
PS-scheme, this result leads to the inefficiency mentioned above.

Table 1 show that our signature scheme is quite efficient from both the com-
putational cost and the data size point of view.

We now give the concrete evaluation measured by comparing the integer fac-
toring based scheme, OTM-scheme (resp. PS-scheme) and our scheme. Compared
with OTM-scheme, our scheme enables the computational cost to be reduced by
32% for verification. For the data size, the signature size is reduced by 21%. In
the following, compared with PS-scheme, our scheme enables the computational
cost to be reduced by 83% for pre-computation and by 78% for verification. For
the data size, the secret-key size is reduced by 68% and the signature size is 58%.

7 Conclusion

In this paper, we have proposed an efficient and fast signature scheme, which is
derived from a three-pass identification scheme. Our proposed signature is, in a
sense, a counterpart for on the fly signature schemes.

Compared between two types of signatures, the on-line computation in our
scheme is smaller than that in on the fly schemes, because modular reduction is
faster than multiplication from implementation point of view.

We have shown that our signature schemes are existentially unforgeable
against any polynomial-time adversaries that can execute adaptive chosen mes-
sage attack in the random oracle model. In this case, the underlying number
theoretic problem is the integer factoring problem for an RSA modulus n.

We also have shown that our scheme is more efficient than on the fly signature
schemes, in view of both the computational cost and the transmitted data size.
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