
Curbing Junk E-Mail via Secure Classi�cation

E. Gabber M. Jakobsson Y. Matias

?

A. Mayer

Bell Laboratories

600 Mountain Avenue

Murray Hill, NJ 07974

feran, markusj, matias, alaing@research.bell-labs.com

Abstract. We introduce a new method and system to curb junk e-mail

by employing extended e-mail addresses. It enables a party to use her

(core) e-mail address with di�erent extensions and consequently classify

incoming e-mail messages according to the extension they were sent to.

Our contributions are threefold: First, we identify the components of a

system that realizes the concept of extended e-mail addresses and in-

vestigate the functionality of these components in a manner which is

backwards compatible to current e-mail tools. Secondly, we specify an

adversarial model, and give the necessary properties of extended e-mail

addresses and of the procedure to obtain them in the presence of the ad-

versary. Finally, we design cryptographic functions that enable realizing

extended e-mail addresses which satisfy these properties.

1 Introduction

As more and more people rely on e-mail for daily communication, both for their

work and personal use, it becomes increasingly important to sort and classify

incoming e-mail. Classi�cation allows users to treat di�erent classes of messages

in di�erent ways, e.g., store in di�erent mail folders or delete without inspection.

The need for such classi�cation is becoming painstakingly apparent, as e-mail

is not only becoming more used, but also more abused. The most widespread

example of abuse is mass mailing of unsolicited e-mail messages based on ad-

dress lists collected from various sources. The act of sending this \junk e-mail" is

called \spamming", and it is now threatening to thwart legitimate e-mail. Since

spamming is virtually free, whereas its current methods of prevention are time

consuming and expensive, it is becoming alarmingly clear that an inexpensive

type of protection must be made available, or both the Internet and individual

e-mail accounts will turn into a giant digital tra�c jam. However, as backwards

compatibility is necessary for a resource as distributed as the Internet, the num-

ber of possible solutions are clearly limited.

In this paper, we focus on the problem of how to prevent spamming, which

can be viewed as a binary classi�cation problem: a message is either classi�ed

?

Also with the Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978

Israel; Email: matias@math.tau.ac.il.



as a legitimate e-mail or as spam. We introduce an appropriate adversarial set-

ting, and provide e�cient and inexpensive solutions for secure classi�cation of

spamming. Our solution easily extend to more general classi�cations.

1.1 The Problem of Spamming

Spamming is facilitated by the following facts:

{ It is fairly easy and inexpensive to obtain a list of valid e-mail addresses and

to use it without the corresponding user's consent. Many people give their e-

mail address to Web sites where they open accounts. Newsgroups and home

pages are other good sources for collection of a large number of valid e-mail

addresses.

{ The recipient cannot easily distinguish between a personal e-mail message

and an unsolicited spam massage. There is no characteristic envelope or

sender's address that facilitates easy recognition of spam. The recipient must

open the message and read it before deleting it. Spam messages clog the

recipient's mailbox and necessitate time-consuming examination prior to re-

moval.

{ The cost of generating a relatively large number of spam messages is very

low. Sending one million copies of a message is almost as easy sending one

thousand copies.

1.2 Current Anti-Spamming Tools

All current tools use one or a combination of the following three methods for

detecting and removing spam:

{ Source Address Filtering: Collect a blacklist of known spammer e-mail ad-

dresses. Recognize these source addresses and remove their messages auto-

matically. However, most spammers disguise their true address by various

means and frequently \mutate" among various bogus return addresses.

{ Keyword Filtering: Collect a blacklist of keywords often found in the subject-

line or body of junk e-mail messages. Recognize these keywords and remove

those messages automatically. This has been a somewhat e�ective method,

since spam messages up to now are often characterized by a limited vocabu-

lary. However, automatic removal of messages based on keywords is heuristic

at best. It may eliminate some valid messages. Furthermore, spammers have

started to adapt to such �ltering by changing the vocabulary of their mes-

sages, especially after blacklists of keywords become public knowledge.

{ Address Change: This is a tedious, last-resort action, appropriate when the

user's e-mail address is constantly overloaded with spam messages. The cor-

responding user has to notify all potential senders, from whom she expects

to receive e-mail.



1.3 Our Results

We introduce a method to combat junk e-mail via a new kind of e-mail address,

termed an extended e-mail address. It enables a user to use her core (current) e-

mail address with di�erent extensions and consequently classify incoming e-mail

messages according to the extension they were sent to. In particular, a user can

classify e-mail sent to a particular extension as spam. We show how a party (the

initiator) can obtain a valid extension from another party (the receiver) via a

handshake protocol, whereas junk mailers are deterred from doing the same by

introducing a \cost" for each handshake.

Our contributions are threefold. We identify necessary components and their

functionality for a system to realize the concept of extended e-mail addresses.

We specify an adversarial model and necessary properties of extended e-mail

addresses in the presence of such an adversary. We then discuss how to realize

the handshake by introducing a \cost" for the initiator of the request. Finally, we

show a possible realization of the cryptographic functions generating extended

e-mail addresses and the handshake. The system may be implemented on top of

existing e-mail tools and services. It does not require public key infrastructure.

Moreover, the system may be implemented by \agents" that run on behalf of

initiators and receivers, so that the operation of the system (beyond the actual

sending and receiving of (non-junk) mail) can be made transparent to users.

Organization: Section 2 presents a high-level overview of our approach. In Sec-

tion 3, we describe the handshake protocol and introduce the main components

of our system. Section 4 describes alternate simpli�ed handshake protocols. Sec-

tion 5 gives the requirements for the address extensions and a generating func-

tion, and Section 6 covers the cost function for handshakes. Finally, Section 7

concludes by showing that our system e�ectively deals with the facts that cur-

rently facilitate spamming (as mentioned in Section 1.1).

2 Overview of our Solution

Currently, most e-mail users have a very small number of e-mail addresses. For

example, one at the o�ce and one for private use with an ISP at home. In

contrast, the principle behind extended e-mail addresses is that each user has

many e-mail addresses. Possibly, as many as di�erent groups or entities the user

is interacting with. Furthermore, a recipient of such an address cannot guess

an extended address belonging to the same sender and destined for a di�erent

group.

Let Alice be our exemplary e-mail user. Alice wants to communicate with

Bob via e-mail, and wants to register at a web-site www.crook.com, which re-

quires her to give a valid e-mail address. Finally, Alice wants to post to a

newsgroup. Bob receives e-mail from Alice with an extended return address

Alice+xV78Yjklp9@company.com, whereas the folks at www.crook.com will re-

ceive the return address Alice+hdfsjg85nK@company.com. Alice's address will

appear plainly as Alice@company.com in her newsgroup posting. We call



Alice@company.com a core address and xV78Yjklp9 an extension. Subsequently,

www.crook.com sells the obtained address to a spammer. As soon as Alice gets

her �rst junk-mail message from that spammer, she can classify the address she

gave to www.crook.com as \spam". This action is called address revocation, and

it does not a�ect Alice's communication with Bob or with any other e-mail user

or Web site. Furthermore, www.crook.com only knows a revoked e-mail address

and cannot guess any other valid extended e-mail address of Alice. Likewise, an

arbitrary newsgroup reader will not know a valid extension of Alice's. We note

that Alice does not accept messages to her core address; senders (initiators) are

requested to obtain a valid extension �rst by performing a handshake.

Another possible scenario is that Bob inadvertently leaks Alice's address to a

database, which gets into the hands of spammers. Alice has the option of binding

the address Alice+xV78Yjklp9@company.com to Bob, by classifying all messages

sent to the extension xV78Yjklp9 as spam, unless the (recognized) sender is Bob.

In order for extended addresses to be of practical use, Bob (the initiator)

must have a way to obtain a valid extended address of Alice's (the receiver).

For this handshake to be e�ective, it must involve a procedure acceptable for

Bob, but unacceptable to a spammer. One possibility for Alice is to ask Bob

for a valid return address where she can send the extension. Many spammers do

not reveal their real e-mail address. A more sophisticated way is to force Bob

to incur a computational cost by performing a CPU intensive computation on

his machine. Bob might be perfectly willing to \pay" a small amount, but a

spammer intending to send a message to a million users, might not. Once the

receiver veri�ed that the initiator has actually incurred the cost, she provides a

new extended e-mail address to the initiator. The initiator can use this address

for further communication with the receiver, as long as the receiver does not

revoke this address. Thus, the cost of obtaining the extended address is amortized

among multiple messages.

Related Work Extended e-mail addresses are similar in appearance to the e-

mail addresses generated by the Andrew Message System (AMS) [BT91], which

uses addresses of the form user+text@domain. AMS classi�es incoming messages

by executing user-supplied programs. Extensions serve a purpose similar to the

target revocable email addresses generated by the LPWA proxy [LPWA97]. The

system generates such alias e-mail addresses on the user's behalf within the con-

text of Web browsing. The �ltering is done via separate tools, such as the �ltering

functions of popular client mail programs (see http://lpwa.com:8000/filter.html).

Extended e-mail addresses are also related to electronic mail channel identi�ers

(see [Hall98]). Channels, like extended addresses, can be used to block unwanted

mail. The channel identi�ers contain an indication of the policy for handling in-

coming mail on this channel. However, individuals who adopt a channelized email

system might �nd themselves receiving signi�cant amounts of spam on public

channels but be unwilling to revoke those channels because they are also used

for unanticipated, but desired, correspondence. The idea of using computational

cycles as \cost", an option how for implementing the handshake in our system,



was considered by Dwork and Naor [DN92] and Franklin and Malkhi [FM97] in

di�erent settings.

A recent paper by Cranor and LaMacchia [CL98] examines the spam problem

and discusses several of the above approaches in more detail.

3 System Operation and Major Components

MTA
Alice’sAlice’s

MTA
Bob’s Bob’s

The Internet

Alice’s
browser
Alice’s
browser
Alice’s
browser browser

Bob’s Bob’s

user agent userl agent

HTTP proxy

Alice’sAlice’sAlice’s

HTTP proxy

Bob’s

HTTP server

Alice’sAlice’sAlice’s

HTTP server

Fig. 1. Basic Communication Structure

In this section we describe the operation of the proposed scheme in some detail.

We assume that both senders and receivers use an unmodi�ed user-agent for

composing and viewing mail messages (e.g., Eudora Pro, Netscape Messenger,

etc) and that the actual delivery of the mail is accomplished by a mail transfer

agent (MTA). The mail agent is typically located on the user's machine, while the

MTA might be located on a �rewall, Internet access point, etc. A user interacts

with a browser to visit the Web. That tra�c is routed via an HTTP proxy, which

is typically located at the same place as the MTA; see Figure 1. In addition, the

user employs an HTTP server, also often located at the same place as the MTA.

The HTTP server allows the user to control the activities of the system and

allows external initiators to request an extended address manually. We proceed

by presenting in turn the Extension Generator Module, the Destination Lookup

Module, the Message Receiver Module, the Handshake Module, and the State

Information Database. We describe the functionality of each logical \module"

and point out where a module might physically reside.

The system could be employed either in a fully automatic mode, in which all

parties run the entire set of modules, or in a semi-automatic mode, in which some

parties use an unmodi�ed MTA without any of the afore-mentioned modules. In

the fully automatic mode, the initiator's modules can obtain a valid extended

address from the receiver without any interaction with the user. In the semi-



automatic mode, the initiator must obtain the extended address from the receiver

manually.

The following description should be read in conjunction with Figure 2, which

depicts the message ow for obtaining an extended address in the fully automatic

mode.

Alice’s
user agent

Alice’s
EGM

Alice’s
DLM

To: Bob
From: Alice+e(Alice,Bob,nBob)

Bob’s

Alice’s
HM

cost func.
compute

please obtain extended address

HM

Bob’s
EGM

Bob’s
MRM

Alice’s

proof of computing cost func.

From: Bob+e(Bob,Alice,nAlice)

Bob’s
MRMTo: Bob+e(Bob,Alice,nAlice)

From: Alice+e(Alice,Bob,nBob)
user agent
Bob’s

HM

1 2 3 4

5

7

8

9

10

6

address
book

counters
white/black lists

Fig. 2. Message Flow in the Fully Automatic Mode

3.1 Extension Generator Module (EGM)

The EGM computes the appropriate extended address a whenever the e-mail

user A (Alice) registers at a Web-site, or sends an e-mail message to another

party (Bob), or to a group of parties (Bob and Cathy) or subscribe to a mailing

list. The EGM is illustrated in steps 2 and 7 of Figure 2.

When Alice sends a message to Bob, her \From"-address will be calculated as

alice+e(Alice; Bob; n

Bob

)@company.com, where e is a function generating the

appropriate extension. e takes as input Alice's and Bob's core addresses (e.g,

alice@company.com and bob@university.edu) and a counter (state informa-

tion) n

Bob

, whose use is related to the revocation and immediate reissuing of

a valid extension, and which will be elaborated on later. The speci�cation of

e is given in Section 5. The EGM updates Alice's state information database,

as explained in Section 3.7. Bob can forward a message from Alice to a third

party, Charlie. Charlie may communicate directly with Alice using her extended

address in the forwarded message.

When Alice sends a message to both Bob and Cathy, the mail transfer agent

duplicates the message body, and hence both Bob and Cathy will receive the

same From-address. EGM will generate a single extension e(Alice; Bob; n

Bob

),



where Bob is the �rst recipient in the group. Both Bob and Cathy may use the

same reply address (extension) in order to communicate with Alice.

Similarly, the EGM needs to compute extended addresses when Alice registers

at aWeb-site, which asks her to give an e-mail address. The EGM provides a valid

extended address alice+e(Alice; domain(site); n

domain(site)

)@company.com.

When Alice posts to a Usenet newsgroup, it is a prudent choice that only

her core address will be visible in her posting. When a reader of a newsgroup

wants to send Alice e-mail directly, he will have to get a valid extension via a

handshake (as described in Section 3.4). Hence, the EGM will simply forward

Alice's core address to the MTA.

3.2 Destination Lookup Module (DLM)

The destination lookup module replaces the destination's core address (e.g.

bob@university.edu) by its latest known valid extended address using the in-

formation stored in the address book. The DLM is needed only when Alice's user

agent cannot access the address book directly to perform this lookup. The DLM

does nothing if the destination address is an extended address or if the address

book does not contain a valid extended address for this core address. The DLM

is depicted in step 3 of Figure 2.

3.3 Message Receiver Module (MRM)

The MRM is responsible for classifying all incoming mail messages into two

categories: valid, which is passed to the receiver's user agent, and all others,

which are returned to the sender, who is asked to apply for a valid extended e-

mail address. In the description of the MRM we will use the following de�nitions:

De�nition 1. An extension e

0

is genuine for a user A, if e

0

= e(A;B; n

B

) for

some party B and a current counter n

B

; and ingenuine otherwise.

De�nition 2. The subset of genuine extensions, which a user no longer wants

to accept is denoted invalid, all other genuine extensions are valid.

For all parties B, the MRM must deliver each message, addressed with a

valid e(Alice; B; n

B

) to Alice. The action of Alice removing an extension � from

the list of valid extensions is equivalent to classifying e-mail addressed with � as

junk e-mail. In this way Alice essentially revokes an extension she gave out to a

party at some earlier point in time. The MRM must support this operation. Alice

can further specify what the (di�erent) actions of the MRM should be, when it

receives a message addressed with either a invalid (but genuine) extension, a

fake (ingenuine) extension, or no extension at all (i.e., Alice's core address). For

example, a possible action might be an automatic reply, advising the sender to

obtain a valid extension from Alice (via the handshake described in Section 3.4).

The MRM also allows Alice to bind an extension � to a group G of other

parties. The e�ect of binding is that only for parties in G the extension � is

valid, for all other parties, the extension � is invalid.



When managing an intranet, it is bene�cial to eliminate junk e-mail right at

the gateway (MTA). Hence, part of this module should reside close to the MTA.

Hence, an appropriate location for the MRM is inside the gatekeeper, which is

a new component that handles all communication between the user agent and

the MTA, as depicted in Figure 3. The gatekeeper maintains a database for each

user to make a the decision which incoming mail the intended user classi�es as

junk. The required state information is also discussed in Section 3.7.

One way to control the operation of the MRM is to use an internal HTTP

server, which allows the user to specify the desired actions (i.e. �lter-like de�-

nitions) via a some web interface. The most important action is, of course, the

revocation of a certain extended address.

In order to minimize the amount of data storage in the state information

database, we introduce the notion of veri�able addresses:

De�nition 3. A recipient-address a of a message intended for user A is veri-

�able, if there is an e�cient check that a is genuine. This excludes the trivial

check of simply going through the list of parties B, for whom A had generated

an e-mail address at any point in the past.

The use of veri�able addresses thus allows that the system only has to store

those extensions which are genuine, but no longer valid (\blacklist"), a poten-

tially signi�cant reduction in size. We note that a possible way to implement

veri�ability is to append the output of a keyed MAC to each extension. The in-

put to the MAC is the extension, keyed with the user's secret. The key is shared

with the user's MRM for easy discarding of fake (ingenuine) extensions.

3.4 Handshake Module (HM)

The handshake module is employed by the initiator (sender) and the receiver to

implement the protocol for obtaining an extended address, as depicted in steps

5 and 8 of Figure 2.

If Alice would like to start exchanging e-mail with Bob, she might not know

a valid extension for Bob. The handshake procedure allows Alice to obtain a

valid extension for Bob, which she then can store in the address book of her

user agent. We assume that Alice knows either Bob's core address or the URL of

Bob's home-page (which is consistent with today's e-mail usage). Bob can publish

these items on his business card, resume, and other immutable media. Alice

initiates the handshake by sending e-mail to Bob's core address. The handshake

method must involve a procedure acceptable to Alice, but not to spammers.

We observe that spammers often do not give out returnable sender addresses

and typically send to a large number (millions) of recipients. This leads to the

following desirable properties for a handshake method:

{ The handshake requires Alice to give a valid return address.

{ The handshake requires Alice to \pay a cost". For example, Alice might be

required to spend a certain amount of computing power in order to complete

the handshake. We examine suitable cost functions in Section 6.



If Alice's message is satisfactory to Bob, she obtains a reply with a valid

extension for Bob. We note that Bob's part in the handshake can be automated,

so that Bob's HM handles all messages addressed to Bob's core address: The HM

veri�es that Alice has paid her cost and then generates a valid extension (which

requires that the EGM is also accessible by the HM). In any other case, the

HM either ignores a message sent to a core address or executes a user-speci�ed

action. HM might reside on the gatekeeper as well.

3.5 HTTP Proxy

Alice must employ a HTTP proxy to compute her extended address whenever

she is registering at Web sites that require a valid e-mail address. The HTTP

proxy employs the EGM, that was described in Section 3.1. This con�gura-

tion is similar to the con�guration of the Lucent Personalized Web Assistant

(LPWA) [GGMM97], that is used to enhance privacy by creating consistent

aliases for the user.

3.6 HTTP Server

Alice should also employ an HTTP server that has access to her state infor-

mation database. This HTTP server is used for controlling the operation of the

system and to allow manual requests of extended addresses. Alice could query

the internal state information database as well as specify the desired actions of

the system by a Web interface, which is maintained by the HTTP server.

3.7 State Information Database

If Alice revokes the extension e(Alice; Bob; n

Bob

), used for communicating with

both Bob and Cathy, she might later want to re-establish communication with

Bob (alone). EGM uses the counter n

Bob

, and increments it at the time when

Alice re-establishes an extension. The new extension will be e(Alice; B; n

Bob+1

).

Initially, the generated extension is e(Alice; Bob; 0). Hence, the EGM needs to

maintain a counter for each party Alice is communication with. The HM needs

access to these counters as well. This is depicted in Figure 3. The EGM and the

HM on the gatekeeper access the counters in the state information database.

The mail agent keeps an address book for storing valid addresses of other par-

ties, like most agents do already today (Figure 3). So Alice only needs to tell

the mail agent to which party she wants to send a message, and the system sup-

plies the corresponding recipient address and her own extended sender address

transparently.

The MRM must keep track of Alice's genuine and valid extensions. Possible

solutions range from keeping a simple database of valid addresses (\whitelist")

to use veri�ably genuine addresses, and storing (the potentially much smaller list

of) revoked addresses (\blacklist"). In all cases, user updates in the set of valid

addresses have to be reected in the state information database (Figure 3).



Accountability: When Alice quali�es an incoming message addressed to a cur-

rently valid address a as junk e-mail, then she might want to �nd out for whom a

was originally computed. This party is directly or indirectly accountable for the

junk e-mail message. This information is easily stored with the corresponding

counter.

3.8 The Gatekeeper

The EGM, DLM and HM are best located between the user agent and the

MTA, inside a new component called the gatekeeper, as depicted in Figure 3.

The gatekeeper implements the functionality of our system without requiring

any change to user agents or to the MTA. In this way, users need not change their

user agents (mail readers), and the operation of the system is mostly transparent

to the users.

(mail reader)
gatekeeper SMTP

HTTP

book

address

modified Mail Transfer Agent

sendmail

counters
white/black−list

preferences

Web browser
proxy

HTTP

user agent

Fig. 3. Enhanced Communication Structure

Other systems, such as the channels system of [Hall98], use a similar compo-

nent, the Personal Channel Agent (PCA), which also sits between the MTA and

the user agents (mail clients).



Deployment

The proposed system may co-exist with other mail tools, and it does not require

all parties to use it. The receiver may be protected by the system, while the

senders use unmodi�ed mailing tools. The senders have to keep the receiver's

extended e-mail address in their address book, which is often maintained by

their mailing tool.

The best place for placing the gatekeeper software is at the �rewall, so that

unsolicited mail can be returned to the sender immediately without the need to

store or transfer it.

4 Alternative Protocols

The handshake protocol described in Section 3 involves 5 messages and a consid-

erable internal state, as depicted in Figure 2. In this section we propose a variant

that reduces the number of messages by computing the cost function prior to

sending the �rst message to the recipient.

The variant protocol combines steps 3 and 5 in Figure 2 and eliminates step

4. Alice's �rst message to Bob contains the proof of computing the cost function.

In this way, Bob does not have to ask Alice to compute the cost function. In

this way, we reduce the number of messages from 5 to 3. If Bob ever revokes

the extended address he gave to Alice, he will ask Alice to recompute the cost

function.

5 Extension Function

In this section, we give precise requirements for the function e generating a user's

extensions and show a possible realization.

5.1 Requirements

We consider the following adversarial model:

De�nition 4. The adversary can obtain e-mail addresses from any chosen e-mail

\parties" (e.g., Web-site database, Usenet newsgroup, private address book). All

addresses stored at such a party are considered compromised.

Requirements on Generation of Sender Addresses:

1. Authenticity: An adversary cannot do better than guessing an extension of

an uncompromised address with negligible probability. Having compromised

some addresses of a user does not help an adversary in guessing the user's

extension of an uncompromised address with non-negligible probability.

2. Consistency: The computed extension for a given party/state-counter is con-

sistent.

3. E�ciency: The computation of the extension is e�cient.



4. Acceptability: The range of generated extensions must be appropriate for e-

mail addresses. Furthermore, the length of e(A;B; n

B

) is determined to give

meaning to \negligible" in the above requirements.

5.2 Realization

The requirements authenticity, consistency, and e�ciency would all be satis-

�ed by the use of a perfect pseudo-random function generator. However, in the

absence of such a function, we need to consider reasonably inexpensive approx-

imations to it with respect to these requirements and to ensure acceptability at

the same time.

We note that this was investigated by Bleichenbacher et al [BGGMM97] in

the context of secure and pseudonymous client-server relationships. The so-called

Janus function suggested in [BGGMM97] embodies the requirements we put on

our module for generation of sender address extensions. We further note that

the Lucent Personalized Web Assistant ([GGMM97] and [LPWA97]) computes

a di�erent e-mail address on a user's behalf for each Web-site, which requires

registration. More generally, each system which derives di�erent e-mail addresses

from a core address under the above properties forms the basis for an e�ective

tool against spam.

6 Handshake Function

The handshake can be implemented by simply having the initiator calling up

her intended receiver on the phone, asking for an extension, or by sending an

e-mail request of a special format. However, we will consider the somewhat more

intricate solution of using a cost function, since this allows a considerable amount

of automation. Intuitively, we want this function to be such that it has some

well known and well regulated generation cost, is fast to verify, and can be easily

implemented. Thus, a \friendly" user would not be too inconvenienced by its use

(since it only has to be invoked once for each pair of communicating parties), but

it would substantially hinder a spammer desiring to send to a large number of

parties. In this section, we give precise requirements for the function controlling

the cost of a handshake and show a possible realization.

Software implementing (1) a function for generating valid handshakes via

the cost function and (2) a veri�er of valid handshakes would be made publicly

available.

We let c be a parameter describing the cost of performing the handshake; this

may be a global parameter, but may also be individually set (and published) to

customize the level of resistance to spam. Next, there is a target function T that

decides whether its input is the result of a valid handshake or not. This func-

tion could simply compare a preset portion of its input to some predetermined

pattern (of length corresponding to c). The initiator of a handshake repeatedly

attempts to construct a potential handshake using a random approach, and veri-

�es her attempt using the target function. She repeats her attempts until a valid



handshake is found (the cost being measured in the expected number of trials.)

She then sends her request for an extension to the core address of her desired

recipient and encloses the handshake, which we note, is speci�c to this pair of

parties. The handshake module at the recipient will sort out the request and

evaluate the target function on it. If the result indicates that it is valid (and

the initiator is not on some blacklist), then a valid extension will be generated

and returned to the address of the initiator of the handshake. Given the correct

extension, the initiator of the request is now able to send an e-mail that will

reach the recipient.

6.1 Design Goals

The cost function is used to ensure that the party initiating the handshake

has performed a certain expected amount of computation. Thus, this function

controls the number of valid handshakes a party can initiate per time period.

More formally, the cost function should have the following properties:

1. Known Generation Cost: Let c be a security parameter controlling the ex-

pected cost for generating a valid cost function. This cost measures the

number of operations required and can be set either universally or individ-

ually. If the computation can be distributed, the cumulative expected cost

per cost function evaluation must be at least c.

2. Low Veri�cation Cost: We require that it should be inexpensive to verify

that a given handshake is valid, where we leave \inexpensive" to mean con-

siderably less expensive than c, but do not specify the exact maximum cost.

3. Amortization Freeness: Assume that E is an adversary who wants to gener-

ate k valid and di�erent cost function evaluations: each such cost function

transcript may be valid for any two protocol participants (who may not even

exist at the time of the computation, but may be named and created after-

wards) and for any time in the future. We require that the expected cost for

E's computation is at least �kc, for � very close to 1.

4. Function Familiarity: For practical purposes, it is an advantage if the cost

function is based on a well known family of one-way primitives, for which

computational costs are understood.

5. Software Based: In order to make the playground level, and not permit an

adversary any signi�cant advantage, we choose a cost function where hard-

ware implementations are not giving any drastic advantage over software

implementations.

6. Transferability: It may be required that a third party can verify that a given

cost function evaluation is valid. In this situation, the third party wants the

guarantee that the expected generation cost is c, even if all other handshake

participants do not collaborate.

6.2 Realization

We will now briey consider a possible implementation of the cost function,

satisfying the most important requirements listed in the previous section. Recall



that c is the cost parameter and T the target function. Herein, we will assume

that A is the identity of the initiator of the handshake and B is the receiver.

Furthermore, we will let d denote the day of the handshake; this is used to

force an initiator to perform a new handshake computation if an old extension

gets revoked { other degrees of granularity may be employed. The initiator will

construct potentially valid handshakes using a probabilistic approach, and verify,

using the target function, whether the result is satisfactory or not. A handshake

speci�es the identity of the sender, the identity of the recipient, and the date,

and contains a randomly chosen string. The handshake is valid if a one-way

function of it, evaluated by the target function, makes the latter output 1. The

initiator of a request therefore tries di�erent random strings until such a result

is achieved. Consider now the following cost function:

Given a one-way hash function h : f0; 1g

�

! f0; 1g

n

, a cost parameter c < 2

n

and a value v 2 f0; 1g

�

, the cost function is evaluated by picking a random value

x 2 f0; 1g

�

, and evaluating T (x; v; c). If T (x; v; c) = 1 then x is a satisfying

choice for v. In other words, x is a valid cost function value. If T (x; v; c) = 0 we

pick another random value x and repeat the above process. Here, we can choose

MD5 for h, let v = AjjBjjd, let x be a random string of 128 bits, and let T

output 1 when h(xjjh(v)) < 2

n

=c, otherwise 0. We note that the probability of

picking a value x that causes T to accept is 1=c, and so, the expected number of

necessary hash function evaluations required to arrive at a satisfactory value x

is c+ 1. Note that one cannot reduce the e�ort of computing the cost function

by pre-computing h(x) for many values of x, since MD5 works on 512 bit blocks,

and its input (xjjh(v)) is 256 bit long.

Evaluating the cost function for c = 2

20

would take about 2 seconds on a

266 MHz Pentium II processor

2

. On the other hand, verifying that a given value

x satis�es the target function for a certain sender, receiver and date only takes

two hash function evaluations.

Support: We are not able to prove that the suggested function has the

desired properties. In particular, we do not know how to prove that the function

has a known generation cost and is amortization free, since the area of lower

bounds for cryptographic functions still to a large extent is a grey and unknown

area. It will therefore have to su�ce to explain why the cost function was chosen

as it was.

First, the reason why we hash down v �rst, as opposed to plainly appending

it to x, and hash these together, is that this makes the generation cost for the

cost function (largely) independent on the length of v, which would not be the

case if it were plainly to be appended.

Second, note that it is not possible to reduce the e�ort of computing the cost

function by pre-computing h(x) for many values of x, and then for many values

h(v) �nd a pair that results in a valid output. This is so since MD5 works on

2

Wei Dai reports in http://www.eskimo.com/�weidai/ that a 266 MHz Pentium II

processor can compute MD5 hash at the speed of 32MB per second. This is equivalent

to 0.5M blocks of 512 bits per second.



512 bit blocks, and its input, xjh(v), is 256 bits long.

We believe that our requirement for known generation cost is satis�ed: If

we treat the hash function as a random oracle, then we can show that it is not

possible to �nd a valid x in less c trials on average. Without the random oracle

assumption, the generation cost depends on possible (today unknown) meth-

ods of evaluating hash functions such as MD5 on certain inputs. Similarly, the

amortization-freeness can be shown in an idealized setting where we treat the

hash function as a random oracle, and appears to hold without this assumption,

given the current knowledge about hash functions. It is clear that the suggested

function satis�es the rather fuzzy requirement of a low veri�cation cost, since

it only requires one function evaluation (of the extended function, including

the three individual hash function applications). Also, the fuzzy requirement of

function familiarity is satis�ed given a choice of MD5, which is a function for

hardware support does not gain a signi�cant advantage over software implemen-

tations (as opposed to, for example, DES.) Finally, we see that the suggested

function satis�es receipt availability, viz. that a third party is able to verify that

a given valid cost function evaluation indeed is valid.

7 Discussion and Conclusion

We have proposed a design of a new system to e�ectively help in curbing junk

e-mail. We have made typical sources for spammers to obtain valid e-mail ad-

dresses (Web site databases, Usenet newsgroups, ISP lists of (core) addresses of

subscribers) much less attractive. Upon receiving a �rst junk e-mail message, a

user will declare the corresponding extension invalid. Hence, a list of extended

addresses is useless, if another spammer had access to it before. A core address

cannot be used directly for a spamming. We have furthermore introduced a

non-negligible cost to obtain a new and valid e-mail addresses, so even if junk

e-mailers can use a high speed machine with good price/performance ratio, they

must reduce the rate of sending junk messages, which will require them to target

their messages carefully and avoid mass mailing. Furthermore, a spammer must

provide a working e-mail address in the course of this handshake, which serves as

another deterrent and prevents spoo�ng, currently prevalent among spammers.

We have shown that our system is mostly transparent to an e-mail user and

easily integrated with today's e-mail tools. Implementations and practical use

will guide in showing the appropriate cost for a handshake, the appropriate

degree of automation of the functionalities and other possible trade-o�s.

Acknowledgments

The authors would like to thank the anonymous referees for their helpful com-

ments, and Daniel Bleichenbacher for very helpful discussions.



References

[BGGMM97] D. Bleichenbacher, E. Gabber, P. Gibbons, Y. Matias, A. Mayer, On

Secure and Pseudonymous Client-Relationships with Multiple Servers, submitted,

also available at url http://www.bell-labs.com/projects/lpwa/papers.html.

[BT91] N.S. Borenstein and C.A. Thyberg, Power, Ease of Use and Cooperative Work

in a Practical Multimedia Message System, International Journal of Man-Machine

Studies, Volume 34, Number 2, February 1991, pp. 229{259.

[CL98] L.F. Cranor and B.A. LaMacchia, Spam!, to appear in Communications of

the ACM. Also available at url

http://www.research.att.com/�lorrie/pubs/spam/.

[DN92] C. Dwork and M. Naor, Pricing via Processing or Combating Junk Mail,

Crypto'92, pp. 139{147.

[FM97] M. Franklin and D. Malkhi, Auditable Metering with Lightweight Security,

Proc. of Financial Cryptography'97, Springer-Verlag, LNCS 1318, pp. 151{160.

[GGMM97] E. Gabber, P. Gibbons, Y. Matias, A. Mayer, How to Make Personal-

ized Web Browsing Simple, Secure, and Anonymous, Proc. of Financial Cryp-

tography'97, Springer-Verlag, LNCS 1318, pp. 17{31. Also available at url

http://www.bell-labs.com/projects/lpwa/papers.html.

[Hall98] R.J. Hall, Channels: Avoiding Unwanted Elec-

tronic Mail, to appear in Communications of the ACM. Also available at url

ftp://ftp.research.att.com/dist/hall/papers/agents/channels-long.ps.

[LPWA97] LPWA: The Lucent Personalized Web Assistant, A Bell Labs Technology

Demonstration. Available at url http://lpwa.com.

This article was processed using the L

A

T

E

X macro package with LLNCS style


